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Objective: This study aimed to analyze the changes in intestinal flora and metabolites in
the intestinal contents of mice with inflammatory bowel disease (IBD) to preliminarily clarify
the mechanism of action of Schistosoma soluble egg antigen (SEA) on IBD, thus, laying a
research foundation for the subsequent treatment of IBD.

Methods: A total of 40 Institute of Cancer Research (ICR) mice were divided into four
groups: control, SEA 50 μg, dextran sulfate sodium salt (DSS), and SEA 50 μg + DSS. The
overall state of the animals was observed continuously during modeling. The colonic length
was measured after 10 days of modeling. The degree of colonic inflammation was
observed by hematoxylin and eosin staining. 16srRNA and liquid
chromatography–mass spectrometry sequencing techniques were used to determine
the abundance of bacteria andmetabolites in the intestinal contents of mice in the DSS and
SEA 50 μg + DSS groups, and the differences were further analyzed.

Results: After SEA intervention, the disease activity index score of mice with IBD
decreased and the colon shortening was reduced. Microscopically, the lymphocyte
aggregation, glandular atrophy, goblet cell disappearance, and colonic inflammation
were less in the SEA 50 μg + DSS group than in the DSS group (p < 0.0001). After
SEA intervention, the abundance of beneficial bacteria prevotellaceae_UCG-001 was
upregulated, while the abundance of the harmful bacteria Helicobacter,
Lachnoclostridium, and Enterococcus was downregulated in the intestinal tract of mice
with IBD. The intestinal metabolite analysis showed that SEA intervention decreased the
intestinal contents of glycerophospholipids (lysophosphatidylcholine,
lysophosphatidylethanolamine, phatidylcholine, and phatidylethanolamine) and
carboxylic acids (L-alloisoleucine and L-glutamate), whereas increased bile acids and
their derivatives (3B,7A,12a-trihydroxy-5A-cholanoic acid and 3A,4B, 12a-trihydroxy-5b-
cholanoic acid). Combined microbiota–metabolite analysis revealed a correlation between
these differential microbiota and differential metabolites. At the same time, the changes in
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the contents of metabolites and differential metabolites in the two groups also correlated
with the abundance of the gut microbiome.

Conclusions: The study showed that SEA reduced DSS-induced inflammation in IBD and
improved the symptoms of IBD in mice through the combined regulation of intestinal flora
and intestinal metabolism. It suggested a potential possibility for the use of SEA in treating
and regulating intestinal flora and metabolism in patients with IBD.

Keywords: flora, inflammatory bowel disease, metabolism, schistosoma soluble egg antigen, dextran sulfate
sodium salt (DXT)

INTRODUCTION

Inflammatory bowel disease (IBD) is a chronic, recurrent
inflammatory bowel disease characterized by abdominal pain,
diarrhea, rectal bleeding, and weight loss (Kaplan, 2015).In recent
decades, the incidence of IBD has increased globally, and to date,
it has affectedmillions of people and caused huge economic losses
(Ben-Ami Shor et al., 2013). Currently, IBD therapy relies on
frequent high doses of 5-aminosalicylic acid, corticosteroids,
immunomodulators, and anti-tumor necrosis factor-α
monoclonal antibodies (Damião et al., 2019; Jeong et al.,
2019). However, these therapies are effective only in the early
stage of IBD and relieve only the inflammatory symptoms of IBD,
often with certain side effects and limitations, including
immunosuppression, drug resistance, and huge costs (Mao and
Hu, 2016). These drawbacks pose challenges to the treatment
of IBD.

Although the pathogenesis of IBD remains to be further
explored, most studies believe that IBD is related to immune
imbalance (Nanini et al., 2018; Neurath, 2019; Mitsialis et al.,
2020). As a common chronic parasitic worm (Huang et al.,
2016a; Huang et al., 2016b; Deol et al., 2019), a schistosome
develops a variety of mechanisms to manipulate the adaptive
immune system of the host while infecting the host (Huang
et al., 2016a; Huang et al., 2019; Huang et al., 2020a; Huang
et al., 2020b; Buck et al., 2020; Zheng et al., 2020). Studies have
shown that the host immune system gradually shifts from its
own invasive T helper 1 (Th1) cell response to anti-
inflammatory Th2 cell response 4–6 weeks after cercariae
penetrated the skin of the host (Dunne and Cooke, 2005).
In recent years, the use of Schistosoma soluble egg antigen
(SEA) or its derivatives for autoimmune diseases is not
uncommon (Driss et al., 2016; Li et al., 2020). It has been
suggested that SEA can reduce the intestinal inflammatory
symptoms of IBD and reduce the susceptibility to colitis
(Floudas et al., 2019; Cleenewerk et al., 2020). However,
the specific mechanism of action needs further exploration.

A growing body of evidence highlights the complexity,
importance, and interactions between symbiotic bacteria and
the host immune system in health and disease (Goto et al.,
2015; Zhou et al., 2020). IBD is closely associated with changes
in intestinal microbiota diversity and the disruption of the
balance between symbiotic microbiota and potentially
pathogenic microbiota components (Ni et al., 2017).
Metabolites act as a bridge between the intestinal

microbiome and the host (Dong et al., 2019; Lavelle and
Sokol, 2020). Metabolites are small molecules produced as
intermediates or end products of microbial metabolism,
which transmit signals of intestinal microorganisms and
affect immune maturation, immune homeostasis, host
energy metabolism, and maintenance of mucosal integrity
(Wilson and Nicholson, 2017). In addition, studies have
shown that the metabolic profile of patients with IBD is
different from that of normal people (Franzosa et al.,
2019). Specific types of metabolites, especially bile acids,
short-chain fatty acids, and tryptophan metabolites, are
associated with the pathogenesis of IBD (Lavelle and Sokol,
2020). Therefore, this study preliminarily explored the
mechanism of action of SEA on IBD based on the changes
in intestinal flora and metabolites of the intestinal contents of
mice with IBD and laid a research foundation for the
subsequent clinical application of SEA and the treatment
of IBD.

MATERIALS AND METHODS

Materials
Experimental Animals
A total of 40 female ICR mice (age 6 weeks, weighing 26.22 ±
1.12 g) were purchased from SiPeiFe (Beijing) Biotechnology
Co., Ltd (License Number: SCXK (Beijing) 2019–0,010,
Quality Certificate Number: No: 110,324,201,104,129,683,
Ethical review number: JIPD—2020–009).

Preparation of SEA
Schistosoma japonicum (Jiangsu strain) was preserved by the
Jiangsu Institute of Parasitic Diseases, and the cercariae were
escaped from infected Oncomelania snail in our laboratory
and collected for animal experiments. New Zealand rabbits
were infected with 1,500 cercariae each, and the Schistosoma
eggs were collected from the liver and mesenteric venous
plexus after 42 days of raising in the laboratory. Eggs were
then mixed with 0.9% sodium chloride solution and ground
for 20–30 min. After grinding, the mixture was centrifuged at
10,000 g for 10 min, and the supernatant was collected. The
process was repeated three times, and the supernatant was
filtered with a 0.22-μm pore size filter membrane. The
concentration of crude protein was determined using the
NanoDrop absorbance value and stored at –80°C for later use.
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Methods
Animal
A total of 40 mice were divided into four groups: SEA 50 μg (S),
dextran sulfate sodium salt (DSS) (D), SEA50 μg + DSS (S + D),
and control (C).

On day 0, the mice in the D and S + D groups were given 3%
DSS (Sigma, lot#BCCD1174, Denmark) instead of pure water. On
day 0 of DSS modeling, each mouse in the S and S + D groups was
intraperitoneally injected with one dose of 50 μg SEA.The mice
were euthanized after 10 days.

Collection of Intestinal Contents
For model making, the colon of each mouse was taken out after
10-days execution. The colonic contents were collected and
placed in 1.5-ml cryogenic vials. The intestinal contents were
first placed under liquid nitrogen for 10 min, immediately
transferred to –80°C for subsequent detection.

Intestinal Histology
The length of the colon was measured, and a 1-cm sample from
the distal colon was fixed in a 10% neutral buffer formalin. After
fixation, the samples were fixed in paraffin, sectioned (5-µm
thick), and stained with hematoxylin and eosin (HE). The
histopathological changes were observed and recorded under a
microscope.

The histological score of the colon was determined in a blinded
manner. Cell infiltration: score 0, occasional inflammatory cells in
the lamina propria (LP); 1, increased lymphocyte infiltration
mainly at the base of the crypt; 2, inflammatory infiltration
extending to the confluence of the mucosa; and 3, infiltration
and extension through the wall. Tissue injury: score 0, no mucosal
injury; 1, some areas (up to 50%) of crypts lost; 2, large-area crypt
partial or total loss of 50–100%, and epithelial integrity; and 3,
complete loss of large-area crypts and loss of epithelium.

Disease Activity Index Score
The disease activity index (DAI) of mice was calculated on 0, 3, 5,
7, and 10 days after modeling.

DAI was calculated for each mouse based on three parameters
(body weight, stool shape, and stool bleeding), with a score of 1–4
for each parameter and a maximum cumulative DAI score of 12.
The score was assigned as follows: 0, no weight loss, normal stool,
and no blood; 1, weight loss 1%–3%; 2, weight loss 3–6%, stool
thinning, and occult blood positive; 3, weight loss 6–9%; and 4,
>9% weight loss, diarrhea, and overt bleeding.

Intestinal Flora Detection
Intestinal flora was detected using 16srRNA technology by
specific methods as follows.

Bacterial DNA was isolated from the intestinal contents
using MagPure Soil DNA LQ Kit (Magen, Guangdong, China),
and the concentration of DNA was detected using agarose
gel electrophoresis and a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific, MA, United States). Polymerase
chain reaction (PCR) amplification of the V3-V4
hypervariable regions of the bacterial 16S rRNA gene was
carried out in a 25 μl reaction using universal primer pairs

(343F: 5′-TACGGRAGGCAGCAG-3′; 798R: 5′-AGGGTA
TCTAATCCT-3′).

The PCR products were purified with Agencourt AMPure XP
beads (Beckman Coulter Co., United States). After purification,
the PCR products were used as a template for second-round PCR
amplification. The Amplicon quality was visualized using gel
electrophoresis and quantified using a Qubit dsDNA assay kit.

The concentrations were then adjusted for sequencing.
Sequencing was performed on an Illumina NovaSeq6000
system with two paired-end read cycles of 250 bases each
(Illumina Inc., CA, United States; OE Biotech Company;
Shanghai, China).

Vsearch software was used after the sequencing data were
preprocessed to generate high-quality sequences. The sequences
were grouped into multiple operational taxonomic units (OTUs)
based on their similarity. The parameters for sequence similarity
greater than or equal to 97% were classified as an OTU. QIIME
software package (version 1.8.0) was used to select the
representative sequences of each OTU, and all representative
sequences were compared with the database for annotation. All
representative reads were annotated and blasted against the
SILVA database (v123) using the RDP classifier (v2.2). Alpha-
and beta-diversity indexes were calculated using QIIME as
previously described. To visualize diversity, we employed
QIIME software to calculate estimators for each sample
including the Shannon index, Chao1 index, Simpson’s
Diversity Index, and Observed Species. In addition, β diversity
between the communities was assessed by weighted UniFrac for
principal coordinate analysis (PCoA).

Comparison of OTUs and taxonomy abundances was
calculated using the Kruskal–Wallis test or Mann−Whitney
analysis. Following statistical analyses with multiple
comparisons, p values were corrected using the
Benjamini–Hochberg method to control the false discovery
rate (FDR). The resultant p values were FDR corrected with a
significance threshold of 5%. Furthermore, the linear
discriminant analysis (LDA) and the LDA effect size (LEfSe)
measurements were used to find unique bacterial taxa among
different groups LDA >2, FDR-p < 0.05 and p values <0.05 were
considered statistically significant.

Intestinal Metabolite Analysis
Intestinal metabolites were detected by liquid
chromatography–mass spectrometry (LC-MS) sequencing, and
the specific methods were as follows.

For sample pretreatment, 60 mg of frozen intestinal contents
were removed, put into a 1.5-ml Eppendorf tube, and mixed with
20 μl of internal standard (L-2-chlorophenylalanine, 0.3 mg/ml;
methanol) and 600 μl of methanol–water (v:v � 4:1). Then, two
small steel balls were added, placed in the refrigerator at –20°C for
5 min, and then ground in a grinder (60 Hz, 2 min). The mixture
was subjected to ultrasonic extraction in an ice water bath for
10 min, allowed to stand for at –20°C for 30 min, and centrifuged
for 10 min (13,000 rpm, 4°C). Then, 200 μl of the supernatant was
put into an LC-MS vial and dried. The supernatant was mixed
with 300 μl of methanol–water (v:v � 1:4) (eddy 30 s, ultrasonic
3 min), kept at –20°C for 2 h, and centrifuged for 10 min
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(13,000 rpm, 4°C). Subsequently, 150 μL of the supernatant was
extracted with a syringe, filtered with a 0.22-μm organic-phase
pinhole filter, transferred to an LC vial, and stored at –80°C until
LC-MS analysis.

Quality control samples (QC) were prepared by mixing the
extract of all samples in equal volume. The volume of QC was
the same as that of samples, and LC-MS full-scan detection
was performed. Data processing software Progenesis QI V2.3
was used to carry out qualitative and relative quantitative
analyses of the original data, and the original data were
preprocessed in a standardized way. The analytical
instrument was a Dionex U3000 UHPLC (ultra-high-
performance liquid chromatography system) in series with
a QE Plus high-resolution mass spectrometer.

Statistical Analysis
SPSS 19.0 software was used to process the data. Analysis of
variance was used for multi-group statistical analysis, and
Dunnett’s multiple comparison was used to compare the
differences between the groups. The t test was used for
comparison between the two groups. A p value <0.05 indicates
a statistically significant difference (pp < 0.05, ppp < 0.01, pppp <
0.001, ppppp < 0.0001).

Analysis of microbiome and metabolome: Pearson correlation
coefficients were calculated for microbiome andmetabolome data
integration. Based on the differential microorganism and
metabolite expression, Pearson correlation coefficients were
calculated by R; then, cluster analysis heat maps were drawn.
The relationships between microorganisms and metabolites were

FIGURE 1 | SEA downregulated the DAI score in mice with DSS-induced IBD. (A) Changes in average body weight in the control group, SEA 50 μg group, DSS
group, and DSS + SEA 50 μg group after 0, 3, 5, 7, and 10 days. (B) Body weight in the control group, SEA 50 μg group, DSS group, and DSS + SEA 50 μg group after
10 days. (C) DAI changes in mice in the control group, SEA 50 μg group, DSS group, and DSS + SEA 50 μg group after 0, 3, 5, 7, and 10 days. (D) Comparison of the
10-days DAI score between the SEA 50 μg + DSS and DSS groups.
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visualized and interpreted using Cytoscape (version 3.4.0) with
MetScape plug-in (version 3.1.3).

RESULTS AND ANALYSIS

Changes in Disease Activity Index in Mice
With Dextran Sulfate Sodium Salt-Induced
Bowel Disease After SEA Intervention
After DSS administration, the mice in the model group (D
group) lost weight over time, while the weight in the other three

groups showed an upward trend without significant differences.
On the 10th day of administration, the average weight in the D
group reduced by 2.33 g and was significantly lower than that in
the other three groups (p < 0.001) (Figures 1A,B).
Comprehensive DAI evaluation showed that the DAI score
in the D and S + D groups increased with time, the mice lost
weight, and diarrhea and fecal bleeding were increasingly
aggravated. However, the increase in the DAI score in the S
+ D group slowed down, with a statistically significant
difference compared with the D group (p < 0.0001) (Figures
1C,D), indicating that the intervention of SEA alleviated the
progressive aggravation of enteritis in the D group.

FIGURE 2 | SEA improved DSS-induced colonic symptoms in IBD (A) Colonic status of mice in the control group, SEA 50 μg group, DSS group, and DSS + SEA
50 μg group after 10 days of subdivision. (B) Colonic tissue of mice was observed under the microscope after HE staining. (C) Comparison of colonic length on the 10th
day in the control group, SEA 50 μg group, DSS group, and DSS + SEA 50 μg group (D) Histological scores of colon sections in the control group, SEA 50 μg group,
DSS group, and DSS + SEA 50 μg group.
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FIGURE 3 | Intestinal microflora of mice with DSS-induced IBD mice treated with SEA. (A) Principal coordinate analysis (PCoA) of intestinal microflora in the DSS
and SEA 50 μg + DSS groups (C50 group). Red represents DSS group, blue represents SEA 50 μg + DSS group, and each icon represents a group of samples. (B)DSS
and SEA 50 μg + DSS group showed significantly differences after t test analysis. Comparative heat map (at the genus level). Each column represents a sample, and
orange represents the SEA 50 μg +DSS group. (C)Comparison of the abundance of the first 10 species in the DSS and SEA 50 μg +DSS group (at the genus level)
(D) Comparison of the abundance of intestinal Helicobacter, Lachnoclostridium, Enterococcus, Prevotellaceae_UCG-001 in the DSS and SEA 50 μg + DSS group (at
the genus level).
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FIGURE 4 | SEA altered the contents of DSS-induced intestinal metabolites in mice with IBD. (A) 2D principal component analysis (PCA) of the contents of intestinal
metabolites in the DSS and SEA 50 μg + DSS groups. Yellow represents the DSS group, and blue represents the SEA 50 μg + DSS group. Each icon represents a set of
samples. (B)Heat maps of the top 50 differential metabolites of intestinal contents in the DSS and SEA 50 μg + DSS groups. The left blue bar represents the DSS group,
and the right side represents the SEA 50μ g + DSS group. Each small square in the figure corresponds to a mass error. The red square represents a positive mass
error, while the blue square represents a negative mass error. The darker the color, the greater the value.
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Effects of SEA on Dextran Sulfate Sodium
Salt-Induced Induced Bowel Disease in
Mice
The results of colon status in the four groups showed that
mucosal bleeding and fecal deformity occurred in the colon,
and the colon length was significantly shortened in the D
group compared with the other three groups (p < 0.001)
(Figures 2A,B). After SEA intervention, the colon
shortening was reduced (p < 0.001) (Figure 2B).
Microscopically, lymphocyte aggregation, glandular atrophy,
and goblet cell disappearance were observed in the colon of
mice in the D group, indicating that the intake of DSS led to
intestinal inflammation in mice and the development of
significant colitis. After SEA intervention, the colon tissue
of mice had less lymphocyte aggregation, glandular atrophy,
goblet cell disappearance (p < 0.0001), and colonic
inflammation (Figures 2C,D).

Changes in the Intestinal Microflora in Mice
With Dextran Sulfate Sodium Salt-Induced
Induced Bowel Disease Treated With SEA
Intervention
This study further analyzed the changes in intestinal
microflora in the S + D and D groups to explore the
protective mechanism of SEA on DSS-induced IBD. PCoA
(Figure 3A) showed that the samples between the two groups
were concentrated and no overlap occurred between the two
groups, indicating that the samples of each group were well
represented and comparable.

Subsequently, we selected the top 10 differential microflora
in the t test analysis (Figure 3B). Four kinds of bacteria were
found to be associated with enteritis, including Helicobacter
(p < 0.05), Lachnoclostridium (p < 0.01), Prevotellaceae_UCG-
001 (p < 0.01), and Enterococcus (p < 0.01) (Figure 3C). The
abundance of harmful bacteria, such as Helicobacter,
Lachnoclostridium, and Enterococcus, was downregulated
(Castaño-Rodríguez et al., 2017; Ben Braïek and Smaoui,
2019; Cao et al., 2020a; Cao et al., 2020b; Liang et al.,
2020), while the abundance of beneficial bacteria, such as
Prevotellaceae_UCG-001 (Cignarella et al., 2018), was
upregulated in the S + D group compared with the D group
(Figure 3D). These results suggested that the changes in SEA-
induced microflora might be a mechanism of action of SEA to
protect intestinal inflammation; the intestinal microflora of
mice with DSS-induced IBD was improved by upregulating the
abundance of beneficial bacteria and downregulating the
abundance of harmful bacteria.

Changes in Intestinal Content Metabolism
in Mice With Acute DSS-Induced Dextran
Sulfate Sodium Salt Treated With SEA
Intervention
According to 2D PCA (Figure 4A) of metabolites in the S + D and
D groups, the samples in each group were concentrated and no

overlap occurred between the groups, indicating good
representativeness and comparability between the two groups.

The analysis of the top 50 metabolites (Figure 4B) between the
two groups showed that glycerophospholipids
[lysophosphatidylcholine (LPC), lysophosphatidylethanolamine
(LPE), phatidylcholine (PC), and phatidylethanolamine (PE)]
and carboxylic acids (L-alloisoleucine and L-glutamate) were
downregulated, and those of bile acids and their derivatives
(3B,7A,12a-trihydroxy-5A-cholanoic acid and 3A,4B, 12a-
trihydroxy-5b-cholanoic acid) were upregulated in the
intestinal content of mice with IBD after SEA intervention.
These differences in metabolites might be related to the
inflammatory protection mechanism of SEA in mice with IBD.

Association Between Intestinal Content
Metabolism andMetabolic Flora Changes in
Mice
A correlation between differential flora and differential
metabolites was observed (Figure 5A), especially among the
differential flora and differential metabolites related to enteritis
(Figure 5A). Among these, the abundance of harmful bacteria
Helicobacter, Lachnoclostridium, and Enterococcus positively
correlated with the contents of glycerophospholipids,
carboxylic acids, and their derivatives, and negatively
correlated with the contents of bile acids and their derivatives.
In contrast, the abundance of beneficial bacteria
Prevotellaceae_UCG-001 followed the opposite pattern
(Figure 5B). This was also validated by the metabolic analysis
results of the two groups.

Therefore, SEA may have a regulatory effect on intestinal flora
and intestinal metabolites in mice with DSS-induced IBD, which
is mainly manifested by improving the composition of intestinal
flora, affecting the abundance of microbiota-related intestinal
metabolites, and thus exerting a protective effect on DSS-
induced IBD.

DISCUSSION

Parasitic worms can regulate the immune response and change
the intestinal flora structure of the host, which has potential
application prospects in treating autoimmune diseases (Bach,
2018; Castro Rocha et al., 2020).

In this study, the intraperitoneal injection of Schistosoma
japonicum SEA was used to observe the efficacy of SEA against
DSS-induced IBD. The results after SEA intervention showed
that the body weight, DAI score, colon length, histological
score of HE, and other indicators of the severity of enteritis
were improved. These results indicated that the intestinal
inflammation caused by DSS reduced after SEA
intervention. IBD is closely related to the change in
intestinal microbiota and the disruption of the balance
between symbiotic microbiota (Weingarden and Vaughn,
2017). Many studies on IBD have described how changes in
the composition and function of the microbiome are critical to
the organisms (Larabi et al., 2020; Yang et al., 2021). The gut
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FIGURE 5 | The contents of intestinal metabolites inmice correlated with the abundance of microflora. (A)Heat map of the first 20 different microflora and the first 20 different
metabolites in theDSSandSEA50 μg+DSSgroups. The horizontal axis represents thedifferentialmetabolites, and the vertical axis represents thedifferential flora. Each small square
represents a Pearson correlation coefficient, indicating the correlation between the correspondingmetabolite and the bacterial community. The value is between –1 and 1. The closer
the value to 0, the lower the correlation, and the closer the value to –1 or 1, the higher the correlation. Red represents a positive correlation, and blue a negative correlation; the
darker the color, the stronger the correlation. The asterisk indicates the p value of the correlation coefficient, indicating whether the correlation is significant. (B)Correlation diagram of
the first 20differentmicroflora and the first 20differentmetabolites in theDSSandSEA50 μg+DSSgroups. Eachgreendot represents adifferentialmetabolite, and eachorange dot
represents a differential flora. The distance between the two lines represents the size of their correlation, and the closer the line, the greater the correlation. In addition, different colors
represent positive and negative correlations, with red representing positive values and green representing negative values.
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microbiome converts nutrients ingested into metabolites of the
gut microbiome or host cells, making them act as
informational messengers between the gut microbiome and
host cells (Sittipo et al., 2019). Therefore, the composition of
intestinal microbiota and its metabolites has a significant
impact on the occurrence and development of IBD (Postler
and Ghosh, 2017). In this study, 16srRNA gene sequencing and
LC-MS sequencing were performed on the intestinal contents
of mice in the D and S + D groups to observe the diversity,
abundance, and changes in intestinal content metabolism in
the two groups and to explore the correlation between
intestinal flora, metabolism, and intestinal inflammation in
mice with IBD after SEA intervention.

We found that SEA administration could downregulate the
abundance of three specific enterica-related pathogenic bacteria,
Helicobacter, Lachnoclostridium, and Enterococcus, and
upregulate the abundance of beneficial intestinal bacteria
Prevotellaceae_UCG-001. In a meta-analysis of environmental
risk factors in clinical IBD samples, Helicobacter infection was
identified as one of the nine factors that increased the risk of IBD
(Castaño-Rodríguez et al., 2017; Piovani et al., 2019).
Lachnoclostridium was significantly enriched in patients with
colorectal cancer (Liang et al., 2020). Enterococcus, an
opportunistic pathogen, is often associated with infection in
clinic (Fiore et al., 2019). The lack of Prevotellaceae, a newly
discovered flora in recent years, led to elevated levels of intestinal
endotoxins and damage to the intestinal mucosal barrier
(Cignarella et al., 2018). SEA administration significantly
reduced the abundance of Helicobacter, lachnoclostridium, and
Enterococcus in mice with IBD and upregulated the abundance of
Prevotellaceae_UCG-001. These changes in enterica-related
microflora further indicated that SEA played a protective role
in DSS-induced IBD by improving the composition of intestinal
microflora.

We also detected and analyzed the metabolic level of
intestinal contents to explore further the changes in
intestinal metabolites caused by intestinal flora. SEA
intervention decreased the contents of
glycerophospholipids (LPC, LPE, PC and PE) and
carboxylic acids (L-alloisoleucine and L-glutamate) in the
intestinal contents of mice with DSS-induced IBD. The
contents of bile acids and their derivatives (3B,7A,12a-
trihydroxy-5A-cholanoic acid and 3A,4B, 12a-trihydroxy-
5b-cholanoic acid) were upregulated. Among these, bile
acid and glutamate have been proved to be closely related
to the pathogenesis of IBD (Sorrentino et al., 2020; Fiorucci
et al., 2021). The release of intestinal bile acids may promote
the regeneration of intestinal stem cells and epithelial cells,
reducing the severe symptoms of IBD (Sorrentino et al., 2020).
Glutamate receptors affect intestinal function (visceral
sensitivity and motility) and brain function (stress
response, mood, and behavior), and are involved in the
pathogenesis of IBD (Baj et al., 2019). In addition, studies
have shown that patients with IBD have significant changes in
plasma lipid and metabolic profiles, most of which are the
elevated contents of glycerophospholipids and linoleic acid
(Tefas et al., 2020); IBD disorders are also implicated in the

metabolism of glycerophospholipids in the body (Guan et al.,
2020). SEA intervention changed the abundance of these IBD-
related differential metabolites, suggesting that its anti-
inflammatory mode of action was related to intestinal
metabolites in mice with IBD.

Based on the bidirectional regulation of intestinal flora and
intestinal metabolites in IBD, we conducted a joint analysis of
intestinal differential metabolites and differential flora. The
results showed correlations between the main differential
microflora and the main differential metabolites. At the
same time, the metabolite content and differential
metabolite abundance in the two groups also correlated
with the abundance of intestinal flora. After SEA
administration, the content of differential metabolites
having a negative correlation with the abundance of
differential intestinal flora in intestinal contents increased,
while the content of positively correlated differential
metabolites decreased. On the one hand, this was verified
by the results of intestinal flora and metabolic sequencing;
on the other hand, it also indicated that the protective
mechanism of SEA in DSS-induced IBD might play a role
through the joint regulation of intestinal flora and intestinal
metabolism. It mainly upregulated the abundance of beneficial
intestinal bacteria and downregulated the abundance of
harmful intestinal bacteria, so as to change the regulation
mode of intestinal metabolic spectrum in mice with
enteritis. In addition, we also found a group of bacteria
such as Sphingomonas, although their relationships with
enteritis have rarely been reported, which showed a strong
correlation with these differential metabolites. Whether these
bacteria also play a relevant role in the inflammatory inhibition
of IBD is worth further exploration.

In conclusion, the results of this study proved that SEA
protected the DSS-induced inflammatory response in IBD and
improved the symptoms of IBD in mice through the joint
regulation of intestinal flora and intestinal metabolism, thus
proposing a potential possibility for the use of SEA in treating
and regulating intestinal flora and metabolism in patients with
IBD. Of course, the specific mechanism underlying the increase in
the abundance of beneficial bacteria and the change in the
immune function caused by SEA remains to be studied.
Therefore, the clinical application of SEA needs further
exploration.
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