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Abstract

There is an urgent need for potent inhibitors of dengue virus (DENV) replication for the treatment and/or prophylaxis of
infections with this virus. We here report on an aglycon analogue of the antibiotic teicoplanin (code name LCTA-949) that
inhibits DENV-induced cytopathic effect (CPE) in a dose-dependent manner. Virus infection was completely inhibited at
concentrations that had no adverse effect on the host cells. These findings were corroborated by quantification of viral RNA
levels in culture supernatant. Antiviral activity was also observed against other flaviviruses such as the yellow fever virus and
the tick-borne encephalitis virus (TBEV). In particular, potent antiviral activity was observed against TBEV. Time-of-drug-
addition experiments indicated that LCTA-949 inhibits an early stage in the DENV replication cycle; however, a virucidal
effect was excluded. This observation was corroborated by the fact that LCTA-949 lacks activity on DENV subgenomic
replicon (that does not encode structural proteins) replication. Using a microsopy-based binding and fusion assay
employing DiD-labeled viruses, it was shown that LCTA-949 targets the early stage (binding/entry) of the infection.
Moreover, LCTA-949 efficiently inhibits infectivity of DENV particles pre-opsonized with antibodies, thus potentially also
inhibiting antibody-dependent enhancement (ADE). In conclusion, LCTA-949 exerts in vitro activity against several
flaviviruses and does so (as shown for DENV) by interfering with an early step in the viral replication cycle.
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Introduction

The genus flavivirus (family Flaviviridae) comprises several

pathogens, including dengue virus (DENV), yellow fever virus

(YFV), West Nile virus (WNV), tick-borne encephalitis virus

(TBEV) and Japanese encephalitis virus (JEV). Flaviviruses that

are pathogenic to man are transmitted to humans by bites of

mosquitoes or ticks [1]. The incidence and geographical distribu-

tion of the four distinct DENV serotypes and its vector are

increasing dramatically. DENV causes more than 50 million

infections annually (mainly in South-East Asia and Latin America)

and infections with this virus may develop into dengue hemor-

rhagic fever (DHF) or dengue shock syndrome (DSS) [2–4].

Increased disease severity has been associated with pre-existing

heterologous DENV antibodies, a phenomenon described as

antibody-dependent enhancement (ADE) of infection. Antibodies

have been found to enhance viral entry into Fc-c-receptor-bearing
cells and to alter the antiviral immune response, leading to

increased virus particle production and subsequent immune

activation. During homologous re-infection, antibodies are

believed to neutralize the infecting virus and provide life-long

protection against disease development. Intriguingly, however,

during heterologous re-infection, cross-reactive antibodies have

been implicated to enhance viral replication leading to a higher

infected cell mass and increased viral burden. There is neither

a vaccine nor a specific antiviral therapy available [3]. This is also

the case for YFV that, together with DENV, is a leading cause of

hemorrhagic fever worldwide, although a highly efficacious

vaccine is available [5]. Furthermore, vector-control strategies

that were once successful in eliminating YFV have faltered,

thereby leading to a re-emergence of the disease [5]. The World

Health Organization currently estimates that there are 200,000

cases of yellow fever annually of which over 90% occur in Africa,

resulting in about 30,000 deaths per year [6]. There is, as is the

case for most of the other flaviviruses, no antiviral drug available

for the treatment of YFV infections.

Glycopeptide antibiotics (i.e. teicoplanin, eremomycin and

vancomycin) are used for the treatment of gram-positive bacterial

infections. Synthetically modified glycopeptide antibiotics (SGPAs)

have been reported to be endowed with in vitro antiviral activity

against retro- and corona viruses [7,8]. For human immunode-

ficiency virus (HIV) it was shown that semisynthetic glycopeptide
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aglycons potentially interfere with the viral entry process [9]. The

mechanism by which deglycosylated SGPAs exert antiviral activity

against other viruses remains unclear.

We recently demonstrated that the teicoplanin aglycon

analogue LCTA-949 inhibits the replication of hepatitis C virus

(HCV) by interfering with the intracellular replication of the virus

[10]. We here report that LCTA-949 also exerts in vitro anti-

flavivirus activity and does so, surprisingly, by interfering with the

very early stages of the viral replication cycle.

Results

LCTA-949 is an in vitro inhibitor of flavivirus replication
The effect of LCTA-949 (Figure 1) on the in vitro infection of

a selection of flaviviruses was evaluated in CPE-reduction assays

and in virus yield reduction assays. LCTA-949 inhibits DENV-2-

induced CPE formation in a dose-dependent manner (Figure 2A).

At 25 and 12.5 mM LCTA-949 (concentrations that did not prove

cytotoxic as assessed microscopically and by the MTS/PMS

method), DENV-2-induced CPE formation was completely

inhibited. Although LCTA-949 did not reduce viability of

uninfected host cell cultures, at concentrations of 50 and

100 mM as assessed by the MTS method, some cytostatic effects

were noted at these concentrations when cells were counted with

a Coulter Counter. DENV (Figure 2B panel C) and YFV

(Figure 2B panel F) protein expression (respectively E and NS1)

was completely inhibited at a concentration of 12.5 mM LCTA-

949. The antiviral effect of LCTA-949 was further confirmed in

virus yield reduction assays [EC50 value of 6.9 mM62.9 mM for

DENV-2 and 5.163.1 mM for YFV-17D]; ribavirin was included

as a reference molecule (Figure 3). In addition LCTA-949

inhibited the replication of the tick-borne encephalitis virus

(EC50: 0.3 mM), the West Nile virus (EC50: 13 mM), the Japanese

encephalitis virus (EC50: 4.3 mM), and the murine flavivirus

Modoc virus (MODV) (EC50: 9.2 mM) (Table 1).

LCTA-949 inhibits an early event in the replication cycle
Time-of-drug-addition experiments were carried out to obtain

a first indication of the stage of the viral replication cycle where

LCTA-949 exerts its antiviral activity. LCTA-949 (10 mM) was

added at the time of infection or at several time points before or

after infection. At 24 h p.i., luciferase activity or viral antigen

expression (DENV) or viral RNA content (YFV-17D) was

analyzed and compared to that of untreated infected cells.

Addition of the compound at the time of infection resulted in

nearly complete inhibition of viral replication and viral antigen

expression (Figure 4). LCTA-949 failed to efficiently inhibit

DENV infection when added 2 h or later after infection

(Figure 4A and 4C panel D). For YFV, most of the protective

activity of LCTA-949 was already lost when LCTA-949 (10 mM)

was added to the infected cultures 20 min p.i. or later (Figure 4B).

Thus, LCTA-949 interferes with the earliest stages of the viral

replication cycle.

LCTA-949 does not exert a virucidal effect
To study whether the inhibitory effect of LCTA-949 is a result

of direct virucidal activity, DENV-2 was incubated for 1 h (37uC)
in the presence or absence of LCTA-949 (50 mM) and/or RNase

A, after which viral RNA was amplified. Virus samples that had

been incubated with LCTA-949 contained comparable amounts

of viral RNA as samples that had not been incubated with the

molecule. This demonstrates that LCTA-949 does not destroy the

viral particle (data not shown). By contrast, in virus samples that

had been incubated with proteinase K, viral RNA was no longer

detected.

LCTA-949 does not inhibit DENV subgenomic replicon
replication
To confirm that LCTA-949 exerts its antiviral effect at the early

stages of viral replication (entry/uptake) and not at a later stage,

the effect of the molecule on DENV subgenomic replicon

replication that encodes only non-structural viral proteins was

studied. LCTA-949 did not inhibit replication of the DENV

subgenomic replicon, whereas the replication inhibitor ribavirin

did (data not shown). This indicates that LCTA-949 exerts its

antiviral activity by targeting (one of the) structural proteins. ThisFigure 1. Structural formula of LCTA-949.
doi:10.1371/journal.pone.0037244.g001

Figure 2. Dose-dependent inhibition of virus-induced CPE
formation by LCTA-949 and effect of LCTA-949 on flavivirus
protein expression. A: Vero-B cell cultures infected with DENV-2 were
treated with different concentrations of LCTA-949. CPE formation was
monitored at day 8 p.i. B: Vero-B cell cultures (panels A and D) were
treated with 12.5 mM LCTA-949 (panels C and F) and infected with
DENV-2 (panels B and C) or YFV-17D (panels E and F). DENV-2 E protein
and YFV-17D NS1 protein expression was visualized on day 3 p.i.
doi:10.1371/journal.pone.0037244.g002

LCTA-949 Inhibits Flavivirus Infection
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observation corroborates the data obtained in the time-of-drug-

addition studies.

LCTA-949 inhibits DENV entry into host cells
A microscopy-based binding and fusion assay using DiD-labeled

virus was next employed to study whether LCTA-949 interferes

with virus binding and/or entry into the host cell. DiD-labeling of

DENV virions does not influence the specific infectivity of the

virus [16]. The ability of DiD-labeled virions to bind to cell surface

receptors at increasing concentrations of LCTA-949 was assessed

in highly permissive BS-C-1 cells. In untreated cells, on average

65615 DiD-labeled virus particles were detected. Addition of

LCTA-949 markedly reduced the number of bound virus particles

to cells in a dose-dependent manner (Figure 5A). At a concentra-

tion of 25 mM, LCTA-949 inhibited virus-cell binding by 80%.

These results demonstrate that LCTA-949 acts by preventing

virus-cell binding. Next, we investigated whether LCTA-949 has

an additive effect on the membrane fusion capacity of the virus.

To this end, BS-C-1 cells were infected with DiD-labeled DENV-2

particles in the presence of different concentrations of LCTA-949.

The relative extent of virus fusion was estimated by measuring the

total fluorescent signal per imaging field. Membrane fusion activity

of DENV was efficiently reduced in cells treated with the reference

controls ammonium chloride and chlorpromazine (Figure 5B)

[11]. LCTA-949 markedly impaired membrane fusion activity of

DENV (Figure 5A–B). This effect can likely be ascribed to the low

binding efficiency of virions to cells in presence of LCTA-949, as

no statistically significant added effect was measured for inhibition

of membrane fusion activity as compared to the effect on binding

(Figure 5A).

Figure 3. Dose-dependent inhibition of flavivirus replication by LCTA-949 and ribavirin. Vero-B cell cultures infected with DENV-2 (panels
A and B) or YFV-17D (panels C and D) were treated with different concentrations of LCTA-949 (panels A and C) or ribavirin (panels B and D). Viral RNA
levels were quantified on day 4 p.i. by means of RNA RT-qPCR (bars). Mock-infected cells were treated with the same dilution series of LCTA-949 or
ribavirin. Cell viability was determined by the MTS/PMS method (lines). Data represent mean values6 standard deviations (SD) for three independent
experiments.
doi:10.1371/journal.pone.0037244.g003

Table 1. In vitro antiviral effect of LCTA-949 against selected
flaviviruses.

Virus EC50 (mM) * CC50 (mM) * SI

DENV-2 6.962.9 .100 .15

YFV-17D 5.163.1 .100 .20

JEV 4.363.9 .100 .23

TBEV 0.360.2 .100 .333

WNV 1364.9 .100 .7

MODV 9.261.2 .100 .11

*Data are mean values 6 standard deviations (SD) for three independent
experiments.
EC50: 50% effective concentration, CC50: 50% cytostatic concentration.
doi:10.1371/journal.pone.0037244.t001

LCTA-949 Inhibits Flavivirus Infection
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LCTA-949 interferes with antibody-dependent
enhancement of DENV infection
The observation that LCTA-949 prevents virus binding to the

cell surface prompted us to evaluate whether LCTA-949 also

exerts an antiviral effect towards DENV particles pre-opsonized

with antibodies. To this end, the infectious properties of DENV

particles pre-opsonized with enhancing concentrations of anti-E

mAb DV2-104 was determined in the presence of increasing

concentrations of LCTA-949. Under the experimental conditions,

,0.2% of the cells were infected with DENV in the absence of

mAbs, whereas in presence of enhancing concentrations of anti-E

mAb DV2-104 62.8% of the cells were infected with DENV. The

infectivity of anti-E DV2-104 mAb opsonized DENV particles was

markedly reduced in the presence of LCTA-949 (Figure 6) [EC50:

4.060.4 mM and EC90: 1261.2 mM]. To confirm that the effect

observed is not antibody-specific, the effect of two other anti-E

mAbs, DV2-48 or DV2-96 mapped to E domain I/II and to E

domain III [12], respectively, were evaluated. In agreement with

the results obtained with anti-E mAb DV2-104, the infectivity of

DENV-immune complexes formed with anti-E DV2-48 and DV2-

96 was significantly reduced in the presence of LCTA-949 [EC90s:

1160.3 mM and 1665 mM, respectively (data not shown)].

Discussion

In addition to targeting viral enzymes that are indispensable for

replication, interference with the virus entry step may be an

attractive therapeutic strategy [13]. Flavivirus entry in the host cell

consists of several dynamic events, including virus attachment,

receptor-mediated endocytosis, pH-dependent membrane fusion

and virus uncoating. Each of these steps can potentially serve as

a target for inhibition of the virus life cycle. The DENV E protein

represents an attractive target to inhibit DENV entry, since it plays

a crucial role in both binding of the virus particle to host cell

receptors and fusion of the viral membrane with the target

membrane [14].

Polyanionic substances and plant lectins, amongst others, have

been shown to be capable of inhibiting the first step of the

flavivirus replication cycle, i.e. binding to the host cell. These

polyanionic compounds act as heparin sulphate-mimetic sub-

stances, interfering with the interaction of the E glycoprotein with

the cellular heparan sulphate receptor [14–17]. Some lectins, in

particular those with sugar-binding specificity, were reported to

prevent the interaction between the E glycoprotein and the

cellular receptor DC-SIGN [18]. In addition to interfering with

binding, targeting the E protein may also affect the fusion of the

virus particle with cellular membranes. Virtual screening has been

employed to identify molecules that interact with the b-OG pocket

in the E protein [19–21]. Although this method seems promising,

this screening still needs refinement. Additionally, we recently

reported on SA-17, an analogue of the antibiotic doxorubicin,

exerting anti-flavivirus activity by preventing entry of the virus,

most likely via an interaction with the b-OG pocket [14].

We here report on the anti-DENV activity of LCTA-949, an

aglycon derivative of the antibiotic teicoplanin. LCTA-949 inhibits

not only the replication of DENV, but also that of other

flaviviruses albeit with different efficiencies, including YFV,

WNV, JEV and in particular TBEV. Time-of-drug-addition

Figure 4. Time-of-drug-addition assay. LCTA-949 [10 mM] was added to DEN reporter virus (A, circles) or YFV-17D-infected cultures (A, squares)
at 2-h intervals starting 2 hours before infection. The luciferase activity (DEN reporter virus) or the intracellular viral RNA content (YFV-17D) was
measured at 24 hours p.i. Values were standardized to untreated virus controls. The data represent averages6 SD for 3 independent experiments. B:
Similar conditions for YFV as in A, but time-intervals are now 20 min, starting 60 min before infection. The data represent mean values 6 SD for 2
independent experiments. C: Effect of LCTA-949 on protein expression at 2-h intervals starting 2 hours before infection. DENV-2 E protein expression
was visualized on day 3 p.i.
doi:10.1371/journal.pone.0037244.g004

LCTA-949 Inhibits Flavivirus Infection
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studies revealed that the compound exerts its antiviral activity at

the time of infection and inhibits binding of the virus to the host

cell. This was further supported by the observation that LCTA-

949 (in contrast to the replication inhibitor ribavirin) has no effect

on DENV subgenomic replicon replication and hence does not

inhibit the intracellular replication machinery of the virus. Besides,

a microscopy-based binding and fusion assay using DiD-labeled

particles revealed that LCTA-949 inhibits DENV infection by

preventing binding of the virus to the host cell. This observation

may point to an interaction of LCTA-949 with the E protein;

however, further studies are needed to elucidate the specific

antiviral target(s) of this inhibition. A direct virucidal effect of

LCTA-949 was excluded as well.

LCTA-949 was earlier identified as an inhibitor of viral

infection for human immunodeficiency virus, feline and human

coronavirus and hepatitis C virus [7–10]. The mechanism of

action against HIV and coronaviruses has been ascribed to a likely

effect on entry [8]. In contrast, the rather pronounced in vitro

activity against HCV is caused by an inhibitory effect on

intracellular viral replication. It is remarkable, given the fact that

flaviviruses and HCV belong to the same family (Flaviviridae), that

one and the same molecule inhibits the replication of such closely

related viruses by affecting two entirely different stages in the

replication cycle. An interesting example of another antiviral agent

that inhibits the replication of two different viruses via a different

mechanism of action (but by targeting the same cellular factor) are

the cyclophilin binding molecules. Cyclosporin A and related

analogues (such as the non-immunosuppressive molecules Debio-

025 and MIM811) inhibit the activity of cyclophilins, which are

essential co-factors in the replication of both HIV and HCV. The

inhibitory effect on HIV replication is caused by an interaction

with the matrix protein and thus the encapsidation process [22],

whereas the effect on HCV is mediated via the cis/trans

isomerisation of HCV NS5A that is required for viral RNA

replication [23].

Interestingly, of all the flaviviruses studied, LCTA-949 elicited

the highest antiviral activity against the TBEV (EC50: 0.3 mM) and

proved the least active against WNV (EC50: 13 mM). We have as

yet no explanation for the differences in responsiveness of the

different flaviviruses to LCTA-949.

In order to identify the molecular target of LCTA-949, at least if

this target is a viral protein, an attempt was made to generate

drug-resistant variants. However, so far we have not been able to

select for drug-resistant variants even not following 20 passages in

the presence of suboptimal concentrations of the molecule,

indicating a high barrier to resistance. We currently continue

our efforts to select for drug-resistant variants. It can as yet not be

excluded that LCTA-949 inhibits the entry process via interaction

with a cellular target. This would mean that each of the flaviviruses

that are susceptible to LCTA-949 use the same cellular factor for

entry (that is targeted by LCTA-949). An interaction with the host

cell membrane that disturbs the flavivirus entry process can also

not been excluded. However, if this should be the mechanism, it

may be difficult to explain that the entry process of the closely

related HCV is not affected by this molecule. Altogether, the

precise mechanism by which LCTA-949 inhibits the binding/

entry process remains to be elucidated.

Figure 5. Inhibition of virus-cell binding and membrane fusion
of DiD-labeled DENV by LCTA-949. BS-C-1 cells were incubated
with DiD-labeled DENV in the presence or absence of different dilutions
of LCTA-949 (6.25 mM, 12.5 mM and 25.0 mM). Virus cell binding was
assessed after 1 h incubation at 4uC and the relative extent of
membrane fusion was determined at 20 min p.i. at 37uC. (A) The
percentage of binding or fusion inhibition of LCTA-949 was calculated
with respect to the positive non-treated control. Ammonium chloride
and chlorpromazine were used as negative controls in the fusion assay.
The average of three independent experiments is shown 6 SD. (B)
Snapshots of the controls: no treatment, NH4Cl (50 mM), chlorproma-
zine (60 mM)] and LCTA-949 treatment are shown. Scale bar: 25 mm.
doi:10.1371/journal.pone.0037244.g005

Figure 6. LCTA-949 prevents antibody-dependent enhance-
ment of DENV infection. P388D1 cells were infected with DENV pre-
opsonized with anti-E mAb DV2-104 at an MOI of 10 in presence of
increasing concentrations of LCTA-949. Anti-E DV2-104 was used at
a concentration of 400 ng/ml. The percentage of inhibition of infection
after LCTA-949 treatment was calculated with respect to the positive
control of untreated opsonized virus. Data are expressed as the means
6 SD from two separate experiments, each of which was carried out in
duplicate.
doi:10.1371/journal.pone.0037244.g006

LCTA-949 Inhibits Flavivirus Infection
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We found that LCTA-949 also interferes with antibody-

mediated cell entry of DENV particles. ADE is thought to play

a pivotal role in the exacerbation of DENV-induced disease during

a secondary infection (DHF or DSS). Hence, drugs with properties

like those of LCTA-949 could be of particular interest for

intervention strategies. LCTA-949 was added to preformed virus-

antibody complexes and was also shown to result under these

conditions in an antiviral effect. These results suggest that LCTA-

949 does not interfere with DENV infection through direct

binding to the virus receptor since antibody-mediated cell entry of

DENV is facilitated by Fc-receptors and not by the virus receptor.

Indeed, these results strengthen the hypothesis that LCTA-949

binds not by the host cell receptor of the virus. However, the

inhibitory effect is exerted very early since the molecule was

washed away in the ADE experiments 1 hr after infection. The

particular mechanism by which LCTA-949 inhibits ADE remains

to be elucidated.

In conclusion, we here report on a teicoplanin aglycon analogue

that exerts broad-spectrum activity against flaviviruses in vitro and

that interferes with an early step in the viral replication cycle

(binding/entry) including antibody dependent enhancement of

DENV infection. Insights in the precise mechanism by which

LCTA-949 exerts its antiviral activity may allow to rationally

designing more potent and selective inhibitors of flavivirus entry.

Materials and Methods

Cells and viruses
DENV serotype 2 New Guinea C [DENV-2 NGC (kindly

provided by Dr. V. Deubel (formerly at Institute Pasteur, Paris,

France)] were cultured on C6/36 mosquito cells (from Aedes

albopictus; American Type Culture Collection (ATCC) CCL-1660)

in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Belgium)

with 1% L-glutamine (Gibco), 1% penicillin (100 U/ml)/strepto-

mycin (100 mg/ml) solution (Gibco), 1% non essential amino acids

(Gibco), 1% hepes and 8% foetal bovine serum (FBS; Integro, The

Netherlands) at 28uC. DENV-2 strain 16681, kindly provided by

Dr. Claire Huang (Center for Disease Control and Prevention,

USA), was propagated in C6/36 cells as described before [24]. BS-

C-1 cells (African Green Monkey kidney cells) were maintained at

37uC and 5% CO2 in 16 high glucose, L-glutamine-enriched

DMEM (PAA) with 10% FBS, penicillin (100 U/mL), and

streptomycin (100 mg/mL). Mouse macrophage P388D1 cells

were maintained in DMEM supplemented with 10% FBS,

penicillin (100 U/ml), and streptomycin (100 mg/ml), sodium

bicarbonate (Invitrogen, 7,5% solution) and 1.0 mM sodium

pyruvate (Gibco) at 37uC, 5% CO2. Green monkey kidney cells

[Vero-B cells (ECACC for DENV assays and ATCC CCL-81 for

YFV assays)] were grown in minimum essential medium MEM

Rega-3 (Gibco) supplemented with 10% FBS, 1% L-glutamine

and 1% sodium bicarbonate (Gibco). Antiviral assays were

performed in medium with 2% FBS. Baby hamster kidney cells

(BHK-21; ATCC CCL-10) were grown in DMEM supplemented

with 10% FBS (culture medium) or 2% FBS (assay medium).

BHK-21 cells harboring the subgenomic dengue replicon

dCprMEPAC2NS3lucNS3 (derived from the dengue replicon

construct pDENDCprME-PAC2A) in which an antibiotic selec-

tion cassette encoding the puromycin N-acetyltransferase (PAC)

together with the Firefly luciferase expression cassette was inserted

upstream of the non-structural (NS) genes, will be referred to as

BHK-Rep-Pac-LUC cells [25]. BHK-Rep-Pac-LUC cells were

cultured as the parental BHK-21 cells with the exception that

3.3 mg/ml of puromycin was added to the culture medium (Sigma-

Aldrich, Belgium). Puromycin was omitted from the culture

medium in antiviral assays. The construction of an infectious, full-

length dengue virus (DENV-2 16681), in which a Renilla luciferase

expression cassette under the translational control of the enceph-

alomyocarditis virus internal ribosome entry site (EMCV IRES)

was inserted upstream of the 39 untranslated (39UTR) region, was

reported earlier [26]. Here this virus is referred to as ‘‘dengue

reporter virus’’. Yellow fever virus (YFV) 17D vaccine strain

(StamarilH) [Aventis Pasteur (MSD, Belgium)] was passaged once

in Vero-B cells to prepare a working virus stock and stored at

280uC until further use. Modoc virus (MODV) strain M544

(ATCC VR415) was propagated in BHK-21 cells. All work using

infectious JEV strain SA-14, TBEV strain Oshima and WNV

strain NY99 was carried out in a biosafety level 3 laboratory. The

batches of the viral inoculum (JEV, TBEV and WNV) were

prepared by culturing virus twice on Vero cells in MEM

supplemented with 7% FBS, 2 mM L-glutamine and penicillin-

streptomycin. Finally, cell culture supernatants were collected and

frozen at 280uC in 50 mM HEPES.

Antiviral molecules
The teicoplanin analogue LCTA-949 (Figure 1) was synthesized

as reported elsewhere [9]. Ribavirin [1-(b-D-ribofuranosyl)-1H-

1,2,4-triazole-3-carboxamide (Virazole; RBV)] was purchased

from ICN Pharmaceuticals (Costa Mesa, CA).

CPE-reduction assay
Vero-B cells were seeded in 96-well plates (Becton Dikinson

Labware, Franklin Lakes, NJ) at a density of 76103 cells/well in

100 ml assay medium and were allowed to adhere overnight.

Subsequently, a compound dilution series was added after which

cultures were infected with 100 CCID50 (i.e., 50% cell culture

infectious dose) DENV-2 NGC in 100 ml assay medium. Plates

were incubated at 37uC [95–99% relative humidity and 5% CO2].

On day 8 post infection (p.i) the cultures were fixed with 70%

ethanol and stained with 1% methylene blue. Ribavirin was

included in the assay as a reference compound.

Virus yield reduction assay
Vero-B cells (56104) were seeded in 96-well plates. One day

later, culture medium was replaced with 100 ml of assay medium

containing a 26 serial dilution of the compound and 100 ml of
virus inoculum [either DENV-2 (NGC), YFV-17D or MODV; 50

CCID50/well]. Following a 2 hour incubation period, the cell

monolayer was washed 3 times with assay medium to remove non-

adsorbed virus and cultures were further incubated for 4 days in

the presence of the inhibitor. Supernatant was harvested and viral

RNA load was determined by real-time quantitative RT-PCR.

The 50% effective concentration (EC50), which is defined as the

compound concentration that is required to inhibit viral RNA

replication by 50%, was determined using logarithmic interpola-

tion. Ribavirin was included as a reference compound. Antiviral

assays for JEV, TBEV and WNV were carried out in Vero-B cells

in 24-well plates (56104 cells/well). Briefly, cells were cultured in

MEM supplemented with 7% FBS, 2 mM L-glutamine, and

penicillin-streptomycin. One day after seeding, cells were infected

with 100 ml of the viral inoculum (at a multiplicity of infection of

either 0.1 or 1) in the presence or absence of LCTA-949.

Following incubation for 90 min (37uC; 5% CO2), cultures were

washed twice with Hanks balanced salt solution (HBSS) after

which 1 ml fresh medium either supplemented or not with the

compound was added to the wells. Cells were further incubated at

37uC (medium with compound was refreshed at days 3 and 5 p.i).

At various time points p.i., supernatants were harvested and stored

at 280uC for later quantifications by means of RT-PCR. Potential
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cytotoxic/cytostatic effects of the compound were evaluated in

uninfected cells by means of MTS/PMS method as described

earlier [27]. The 50% cytotoxic concentration (CC50; i.e., the

concentration that reduces the total cell number by 50%) was

calculated using logarithmic interpolation.

Quantitative reverse transcriptase-PCR (qRT-PCR)
RNA was isolated from 150 ml supernatant with the NucleoSpin

RNA virus kit (Macherey-Nagel, Germany) as described by the

manufacturer. Primers and probe sequences are described earlier

[27]. The TaqMan probe was fluorescently labeled with 6-

carboxyfluorescein (FAM) at the 59 end as the reporter dye and

with minor groove binder (MGB) at the 39 end as the quencher.

One-step, quantitative RT-PCR was performed in a total volume

of 25 ml, containing 13.9375 ml H2O, 6.25 ml master mix

(Eurogentec, Belgium), 0.375 ml forward primer, 0.375 ml reverse
primer, 1 ml probe, 0.0625 ml reverse transcriptase (Eurogentec)

and 3 ml sample. RT-PCR was performed using the ABI 7500 Fast

Real-Time PCR System (Applied Biosystems, Branchburg, NJ)

using the following conditions: 30 min at 48uC and 10 min at

95uC, followed by 40 cycles of 15 s at 95uC and 1 min at 60uC.
The data was analyzed using the ABI PRISM 7500 SDS software

(version 1.3.1; Applied Biosystems). For absolute quantification,

standard curves were generated using 10-fold dilutions of template

preparations of known concentrations.

Immunofluorescence assay
Vero-B cells were seeded in a 8-well chamber slide (Lab-tek, II,

Nunc, Germany) at a density of 26104 cells/well; 24 hours later,

cells were infected with 50 CCID50 DENV-2 NGC or YFV-17D

in the presence or absence of 12.5 mM LCTA-949. The virus

inoculum was removed after 1 hour; cells were washed and further

incubated in the presence of the compound for 72 hours. Cells

were stained with the anti-dengue E protein antibody (Ab) clone

3H5 (Millipore, Billerica, MA) or the anti-YFV NS1 Ab 1A5, and

the secondary Ab Alexa Fluor 488 (Millipore) [28]. Following

DAPI staining, the cultures were visualized using a confocal laser

scanning microscope (LCSM, Leica Microsystems, Germany).

Time-of-drug-addition assay
One day prior to infection, 26104 BHK-21 cells were seeded in

a tissue culture-treated white view 96-well plate (Perkin Elmer,

Boston, M.A). The next day, cells were infected with 26105 PFU/

well of the dengue reporter virus. After one hour, the virus

inoculum was replaced by assay medium. LCTA-949 at a concen-

tration of 10 mM was added to the assay medium 2 hours before

infection, or at 0 (i.e., together with the virus), 2, 4 and 6 hours

post infection. Luciferase activity was measured at 24 hours p.i.

using the Renilla Luciferase Assay System (Promega, The Nether-

lands). Luciferase activity of treated, infected cells was compared

to that of untreated, infected cells. For experiments with YFV,

confluent Vero-B cells [in a 12-well plate (Iwaki, Asahi Techno

Glass, Japan)] were treated with 10 mM LCTA-949 and infected

with 50 CCID50 of YFV in a similar way as was done for DENV.

At 24 hours p.i. the intracellular RNA was isolated using the

RNeasy minikit (Qiagen) and YFV-17D RNA levels were

quantified using RT-qPCR. In addition, a more elaborate assay

was performed for YFV in which the compound was added to the

cell cultures every 20 minutes beginning 60 minutes before

infection up until 100 minutes after infection.

Vero-B cells were seeded in a 8-well chamber slide (Nunc) at

a density of 26104 cells/well. The next day, the cells were infected

with 50 CCID50 DENV-2 NGC. One hour later, the inoculum

was replaced by assay medium. LCTA-949 at a concentration of

10 mM was added to the assay medium 2 hours before infection,

together with the virus or 2 hours post infection. Cells were stained

as described before.

DENV Replicon system
BHK-Rep-Pac-LUC cells were seeded at a density of 16104

cells/well in a tissue culture-treated white view 96-well plate

(Perkin-Elmer). The next day, medium was replaced by a two-fold

serial dilution of LCTA-949. After 72 hours, luciferase activity was

measured using the Luciferase Assay System according to the

manufacturer’s protocol (Promega). Luciferase activity was com-

pared to that of untreated replicon cells. The cytotoxic effect of the

compounds on BHK-Rep-Pac-LUC cells was evaluated in parallel

cultures by using the MTS/PMS assay [27]. Ribavirin was

included, for comparative reasons, as a replication inhibitor. The

inhibitory effect of the compounds on luciferase activity was

adjusted for inhibitory effects on cell proliferation.

Virucidal assay
An undiluted stock of DENV-2 (,16106 PFU, 50 ml) was

incubated at 37uC in the presence or absence of 50 mM LCTA-

949 and in the presence or absence of 80 mg/ml RNase A

(Promega). After one hour the RNase A was inactivated with

1 mg/ml proteinase K (Promega). Viral RNA was isolated using

the Nucleospin kit (Filter Services) and the samples were subjected

to RT-PCR and gel electrophoresis. The positive control consisted

of virus incubated with 1 mg/ml proteinase K; the enzyme was

inactivated after 1 hour with 5 mM phenylmethanesulfonyl

fluoride (PMSF; Sigma-Aldrich) for 15 minutes and RNase A

was added. Following 1 hour of incubation, RNA was isolated

from the samples and analyzed.

DiD-labeling of DENV particles
The lipophilic fluorescent probe 1,19-dioctadecyl-3,3,39,39-

tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt

(DiD) (Molecular Probes, Eugene, OR) was used to label the viral

membrane of DENV-2 virus particles, as previously described

[29]. In brief, DENV-2 16681 wild type virus was propagated in

C6/36 cells and harvested at 3 days p.i. Subsequently, the virus

was purified on a potassium-tartrate density gradient (10 to 35%,

wt/vol) by ultracentrifugation (Beckman type SW41 rotor, 2 h,

125,0006 g, 4uC) and stored at 280uC. Virus preparations were
analyzed with respect to the infectious titer (PFUs) and the number

of genome-containing particles (GCPs), as described before [29].

Before labeling, tartrate was cleared by using a 100 kDa filter

device (Millipore, The Netherlands). While vortexing, approxi-

mately 1010 GCPs of virus (equivalent to ,108 PFUs) was mixed

with 2 nmol DiD dissolved in dimethyl sulfoxide (DMSO) with an

end concentration of DMSO of ,2.0%. To remove unbound dye,

the DiD-labeled virus was filtered with a Sephadex G-50 Fine

(Pharmacia, Uppsala, Sweden) column prepared in a glass pasteur

pipette. Different fractions were collected, stored at 4uC and used

within 2 days.

Binding and fusion assays
BS-C-1 cells were seeded in a Lab-Tek II Chambered

Coverglass (Nunc No. 155409) such that the well was 50 to 70%

confluent at the day of the infection. Prior to the binding assay,

cells were incubated for 10 min at 4uC. Subsequently, DiD-labeled

DENV was added in the presence or absence of LCTA-949 or

a DMSO control, and incubation was continued for 1 h at 4uC.
Unbound virus was removed by gently washing the cells three

times with cold phenol red-free MEM. Subsequently, cold phenol
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red-free MEM containing 1% glucose and a glucose oxidase

solution (GLOX) was added to the cells and the microscopic

analysis was done as described below. GLOX is composed of

a 250 mM of glucose oxidase (Type VII from Aspergillus niger, Sigma

Aldrich No. G2133) solution, prepared in 200 mL of 16PBS, and

50 mL of catalase (from beef liver, Roche No. 10106810001). For

the fusion assay, the same experimental setup was used except that

the cells were kept at 37uC during the experiment. Ammonium

chloride (NH4Cl, 50 mM) and chlorpromazine (60 mM) were used

as negative controls in the fusion assay. The microscopy analysis

was done by taking 10 snapshots of randomly selected fields using

both differential interference contrast (DIC) and DiD channels.

DIC images were taken from each field to make sure that the

visualized DiD-particles are bound to a cell and not lying in an

empty space with no attached cells. DiD-labeled viruses were

detected by epifluorescence microscopy in a Leica Biosystems

6000B instrument by using a 635-nm helium–neon laser. The

fluorescent emission was collected by an oil-immersion 1006
objective with a numerical aperture of 1.46 (Leica Microsystems)

and imaged using an EM CCD camera (Hamamatsu 9100-02). A

thermostatted stage and objective heater were used to keep the

temperature at 37uC in the fusion assay. The acquired images

were processed and analyzed with ImageJ using an in-house

macro. In the binding assay, the total number of bound DiD-

particles was counted. The extent of membrane fusion was

analyzed by measuring the total fluorescent signal per imaging

field at 20 minutes post infection. The quantitative results of the

negative controls in the fusion assay were taken as background;

hence, they were subtracted from the total fluorescence result of

the positive control and LCTA-949 treatments.

ADE-inhibition assay
Virus or virus-antibody complexes were added to 26105

P388D1 cells at MOI 10 of DENV-2 16681 in the presence or

absence of serial two-fold dilutions of LCTA-949, and incubated at

37uC with 5% CO2 for 1 h. DENV-2 anti-E antibodies were

generously provided by M. Diamond (Washington University, St.

Louis, USA). Cells were then washed with PBS and new media

was added. At 43 hpi, the cells were fixed and stained for FACS

analysis as previously described [30]. The number of infected cells

was determined using the anti-E monoclonal antibody MAB8702

(Millipore). For virus-antibody complex formation, virus particles

were incubated for 1 h at 37uC with murine anti-E antibodies,

DV2-104 (400 ng/ml), DV2-48 or DV2-96 in cell culture medium

containing 2% FBS prior to the addition to cells [31]. The EC50

and EC90 were defined according to the percentage of infectivity

inhibition relative to that of the positive control. No cytotoxic

effects of LCTA-949 were observed at the concentrations

evaluated.
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