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ABSTRACT: Alterations in visceral adipose tissue (VAT) are closely linked to cardiometabolic
abnormalities. The aim of this work is to define a metabolic signature in VAT of insulin
resistance (IR) dependent on, and independent of, obesity. An untargeted UPLC-Q-Exactive
metabolomic approach was carried out on the VAT of obese insulin-sensitive (IS) and insulin-
resistant subjects (N = 11 and N = 25, respectively) and nonobese IS and IR subjects (N = 25
and N = 10, respectively). The VAT metabolome in obesity was defined among other things by
changes in the metabolism of lipids, nucleotides, carbohydrates, and amino acids, whereas when
combined with high IR, it affected the metabolism of 18 carbon fatty acyl-containing
phospholipid species. A multimetabolite model created by glycerophosphatidylinositol (18:0);
glycerophosphatidylethanolamine (18:2); glycerophosphatidylserine (18:0); and glycerophos-
phatidylcholine (18:0/18:1), (18:2/18:2), and (18:2/18:3) exhibited a highly predictive
performance to identify the metabotype of “insulin-sensitive obesity” among obese individuals
[area under the curve (AUC) 96.7% (91.9−100)] and within the entire study population [AUC
87.6% (79.0−96.2)]. We demonstrated that IR has a unique and shared metabolic signature dependent on, and independent of,
obesity. For it to be used in clinical practice, these findings need to be validated in a more accessible sample, such as blood.

KEYWORDS: discordant phenotypes, insulin resistance, lipid remodeling, metabotype, metabolomics, phospholipids, obesity, diabetes,
biomarker

■ INTRODUCTION

The prevalence of obesity is increasing dramatically, making it
one of the biggest public health challenges across the world.
Other comorbidities, including cardiovascular complications,
type 2 diabetes, and insulin resistance (IR), usually accompany
obesity, but when obesity and IR occur simultaneously, it
hampers the study of the physiopathology associated with
obesity or IR itself.
Adipose tissue, which is a metabolically dynamic organ, is

the primary storage site for excess energy, while at the same
time being an endocrine organ that synthesizes numerous
biologically active compounds that regulate metabolic homeo-
stasis. It has been stated that obesity is the result of excessive
growth of adipose tissue depots. When the size, expandability,1

and functionality2 of the adipose tissue depots vary
significantly it results in a chronic state of “low-grade”
inflammation that is related to a diverse risk of developing
comorbidities linked to obesity.3 Furthermore, the risk of
developing metabolic alterations may also be influenced by
changes in the secretion of these active compounds, including
adiponectin, leptin, and proinflammatory molecules.1,4 The
existence of discordant phenotypes, as well as obese subjects
with high insulin sensitivity and nonobese subjects with high
insulin resistance, implies that the composition of adipose
tissue, rather than the amount of fat, may play a key role in

studying the development of insulin resistance dependent on,
and independent of, obesity. Because of the nature of this
sample, though, and the difficulty involved in getting hold of
large amounts, few studies have analyzed the composition of
visceral adipose tissue (VAT), particularly in nonobese
subjects.
It is thought that visceral adipose tissue (VAT) is different,

both functionally and metabolically, from adipose tissue types,
including subcutaneous adipose tissue (SAT). SAT is less
metabolically active than VAT and is described as an active
endocrine organ whose complex roles go beyond energy
storage.5 Changes in VAT are closely related to cardiometa-
bolic disorders.6 A global assessment of the metabolic status of
the VAT of obese individuals with high insulin sensitivity (IS)
or high IR using a metabolomic-driven approach will enable
these metabolic phenotypes (metabotypes) to be profiled and
allow potential markers of metabolic healthy obesity (MHO)
to be discovered.
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The aims of the present study were to (1) explore the VAT
metabolome of obese and nonobese subjects with high and low
IR and the associated pathways, (2) identify metabolomic
differences between metabotypes, and (3) explore the potential
of metabolites as promised candidate biomarkers of VAT in
obese individuals with MHO or high IR. To achieve these
aims, we adopted an untargeted metabolomic-driven approach
on the VAT of human concordant and discordant phenotypes
of obesity and high IR. Univariate and multivariate statistical
analysis, regression analysis for variable selection, receiver
operating characteristic (ROC) curves, and pathway enrich-
ment analysis were employed to analyze the data. The
comprehensive analysis of the metabolome of concordant
and discordant phenotypes of obesity and high IR may open
the way for potential metabolites as candidate biomarkers of
visceral fat in obese subjects with MHO or high IR.

■ EXPERIMENTAL SECTION

Subjects and Study Design

A total of 71 adults, comprising 27 men and 44 women, were
recruited from the Virgen de la Victoria University Hospital in
Malaga, Spain. The study design and inclusion/exclusion
criteria have previously been described in detail.7 In brief,
patients suffering from either an acute or chronic disease,
including type 2 diabetes, or who were on antihyperglycemic
agents, insulin, or any potential lipid profile-altering drugs,
were excluded.
Individuals were classified in this cross-sectional study

according to their body mass index (BMI) into nonobese
(BMI = 18.5−26.9 kg/m2) or morbidly obese (BMI > 40 kg/
m2) subjects and according to their risk of developing type 2
diabetes based on fasting plasma glucose (FG) concentrations
and homeostatic model assessment-IR (HOMA-IR) as follows:
low IR or IS state (FG < 100 mg/dL and HOMA-IR < 2.5) or
high IR state (FG levels 100−125 mg/dL or HOMA-IR > 3.4).
The HOMA-IR cutoff was established experimentally by
dividing the whole of the initial cohort into quartiles as
previously described.7 Participants were categorized into the
following four sex-matched phenotypic groups: (1) nonobese
subjects with low IR or IS, referred to as the control group (N
= 25), (2) obese subjects with IS (N = 11), (3) nonobese
subjects with high IR (N = 10), and (4) obese subjects with
high IR (N = 25), as previously described.7

Standardized techniques were employed to measure
anthropometric values and parameters, as previously de-
scribed.7,8 Laparoscopic surgery was carried out to obtain
biopsies of VAT, which were then frozen at −80 °C until
assayed. The local Ethics and Research Committee (Hospital
Universitario Virgen de la Victoria, Maĺaga, Spain) approved
the protocol, and written informed consent was obtained from
all participants.
Metabolomic Profiling

Sample preparation and analytical metabolomic analysis were
carried out at Metabolon Inc. (Durham, NC). The automated
MicroLab STAR system (Hamilton, Bonaduz, Switzerland)
was used to prepare tissue extracts with methanol, as
previously described.9

Two extracts were used for reverse-phase ultraperformance
liquid chromatography−tandem mass spectrometry (RP-
UPLC−MS/MS) with positive ion mode electrospray
ionization (ESI+) in acidic conditions for hydrophilic and
hydrophobic compounds and one extract with negative

ionization (ESI−) in basic conditions. A fourth extract was
analyzed by hydrophilic interaction chromatography (HILIC)/
UPLC-MS/MS ESI−. Aliquotes were analyzed using an
ACQUITY UPLC system (Waters, Milford, MA), coupled
with a Q Exactive mass spectrometer and an Orbitrap mass
analyzer (both from Thermo Scientific, Waltham, MA). The
UPLC system was equipped with a UPLC C18 BEH (2.1 ×
100 mm2, 1.7 μm) or UPLC BEH Amide (2.1 × 150 mm2, 1.7
μm) column (Waters). The Q Exactive system was interfaced
with a heated ESI (HESI-II) source and an Orbitrap operated
at 35 000 mass resolutions. The mass range was 70−1000 m/z,
and the MS analysis alternated between MS and data-
dependent MSn scans using dynamic exclusion. More
information was detailed previously.9 To determine instrument
variability, the relative standard deviation (RSD) was
calculated for the internal standards that were added to each
sample prior to injection into the MS. The RSD for all
endogenous metabolites present in all of the samples was
calculated to determine the total process variability using
replicates of pooled human samples injected periodically
during the platform run. The median RSD of the analytical
platform instrumentation was 3%, while the median RSD of
the overall process variability was 7%. These values indicated
acceptable levels of variability for both instrument and overall
process variability.
The peak area was used to quantify peaks. Compounds were

identified by comparing them to a Metabolon library that
contains more than 4000 purified standard entries. Three
criteria were used to identify metabolites: the retention time/
index (RI), the mass-to-charge ratio (m/z)′, and chromato-
graphic data (including MS/MS spectral data) on all molecules
present in the library, considering an accurate mass match to
the library of ±10 ppm.10

Statistical Analysis

Data analysis was conducted in R (v.3.4). First, to remove ion
compounds with more than 80% of values missing in all
groups, the data set was filtered. Next, data were logarithmi-
cally transformed and Pareto-scaled and the gender, age, and
drug consumption were included as covariables in the analysis
of variance (ANOVA) model and for multivariate analysis
using the residual matrix of their effects. In the latter case, data
were first imputed with the k-nearest neighbor algorithm (k =
5).11

To describe clinical and metabolic parameters, univariate
analysis was carried out. An ANOVA for unbalanced groups
was conducted to evaluate the effects of obesity and high IR
and to compare clinical and metabolic parameters between
groups. Based on the Benjamini−Hochberg procedure, all p-
values were also corrected for multiple testing by the false
discovery rate (FDR)12 and the only metabolites considered
significant were those with adjusted p-values < 0.05.
Random forest (RF) modeling within an in-house-developed

repeated double cross-validation (rdCV) was employed to find
the most discriminative metabolites between groups.13 The
following parameters were set: number of repetitions = 20,
metabolites in the outer loop = 5, varRatio = 0.8, and number
of permutations = 200. The rdCV minimizes statistical
overfitting, improves the accuracy of modeling, and reduces
misclassifications. More information on this procedure can be
found in refs 14, 15. The stability of the model was evaluated
through the misclassification rate (<20%) and the fitness of
randomly permuted classifications (p-value < 0.05).
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Models of Classification of “IS Obesity” Metabotype

Variable selection was carried out with the least absolute
shrinkage and selection operator (LASSO) logistic regression
utilizing a leave-one-out cross-validation with metabolites with
a p-value of <0.05 and an adjusted p-value of <0.25. The
LASSO method is a multivariate regression model that
penalizes those metabolites that do not contribute to the
model. Therefore, the most predictive metabolites are selected
for the model, while the coefficients of the remaining
metabolites are reduced to zero.16 A new parameter is created
using the coefficients of the most predictive metabolites, the
multimetabolite biomarker. The global performance of this
biomarker model and its components was assessed by receiver
operating characteristic (ROC) curves, namely, area under the
curve (AUC) value, confidence intervals (CIs 95%), sensitivity,
and specificity. The performance of the multimetabolite
biomarker was also evaluated in the nonobese population.

Enrichment and Correlation Analysis

A hypergeometric test was used to conduct enrichment
analysis. For estimating the associations among the selected
metabolites and clinical variables, Spearman correlation
coefficients were calculated, and they were represented as a
hierarchically clustered correlation matrix with average
distance.
The LASSO regression and ROC curves were performed

using the glmnet and pROC packages, respectively. The Hmisc
and ggplot packages were used, respectively, for the analysis of
correlations and the creation of a heatmap.

■ RESULTS

Clinical Data

Obese subjects presented increased adiposity indicators,
including BMI, weight, and hip and waist circumferences, as
well as raised levels of liver damage markers and uric acid, and

Figure 1. Selected metabolites from the comparison between obese and nonobese subjects by random forest. (A) Summary of the chemical classes
of the selected metabolites. (B) Mean and standard error of the logarithmic transformation of the levels of the discriminant metabolites in the obese
subjects (white bars) and those of normal weight (colored and sorted according to the class of the metabolites). (C) Hierarchical clustered
Spearman correlation matrix of the selected metabolites and anthropometric and clinical parameters by random forest analysis of obese and
nonobese subjects. Adjusted p-values with the significant threshold set at <0.05 are marked with +. Positive correlations are in blue, and negative
correlations are in red.
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decreased levels of cholesterol associated with high-density
lipoprotein (HDL) particles than normal-weight individuals.
Individuals with high IR showed increased concentrations of
IR indicators, including fasting glucose and insulin and
HOMA-IR, and raised levels of triglycerides and cholesterol

associated with low-density lipoprotein cholesterol (LDL)
particles and uric acid. No significant changes were noted in
the interaction of obesity × high IR. Concordant and
discordant phenotypes of obesity (IR obesity versus high IS
obesity) showed differences in IR markers, as expected,

Figure 2. VAT metabolome of the discordant phenotype of obesity. (A) Fold changes in the levels of lipid species between obese subjects with high
insulin resistance and nonobese subjects with insulin sensitivity. Lipids significantly different between groups were marked in a dark color and with
bold text (adjusted p-value < 0.25). (B) Spearman correlation matrix of the selected lipids with clinical variables. Adjusted p-values with a cutoff at
<0.05 are marked with +. Positive correlations are in blue, and negative correlations are in red. (C) ROC curves (AUC%, CI 95%) of the
multimetabolite biomarker model to identify the IS obesity metabotype among the obese population (IS and high IR) or all of the subjects of the
study (normal weight and obesity and IS or high IR). The model was formed by GPE 18:2, GPI 18:0, GPS 18:0, GPC aa 36:1, GPC aa 36:4, and
GPC aa 36:5, selected by the LASSO method. (D) Boxplot of the levels of the individual metabolites of the multimetabolite biomarker after
logarithmic transformation and Pareto scaling. Abbreviations: AUC, area under the curve; CI, confidence interval; GPC, glycerophosphatidylcho-
line; GPE, glycerophosphatidylethanolamine; GPI, glycerophosphatidylinositol; PS, glycerophosphatidylserine.

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00918
J. Proteome Res. 2021, 20, 2410−2419

2414

https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00918?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00918?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00918?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00918?fig=fig2&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00918?ref=pdf


whereas phenotypes of high IR (high IR nonobesity versus
high IR obesity) did not in adiposity and liver damage markers
(Table 1).

VAT’s Metabolic Profiling Obesity

Four hundred and twenty-two different metabolites were
identified among all of the groups of the study. A total of 118
various metabolites were revealed through the use of univariate
statistics in the VAT metabolome of obese compared to
nonobese subjects (adjusted p-value of the interaction obesity
× high IR > 0.05) (Table S1). Changes in these metabolites
reflected changes in the following six metabolic pathways: (1)
metabolism of leucine, isoleucine, and valine; (2) tricarboxylic
acid (TCA) cycle; (3) metabolism of glutathione; (4)
glycolysis and gluconeogenesis; (5) metabolism of glycer-
olipids; and (6) metabolism of glycine, serine, and threonine
(Table S2).
The random forest model picked 32 of these metabolites

that distinguished between obese and normal-weight subjects
(Figure 1A,B and Table S3) with a 15% misclassification and p-
value < 0.001. The ten most discriminative metabolites among
these metabolites were urate, lactate, N-acetylglutamate, urea,
2-hydroxy(iso)butyrate, succinate, two plasmalogens glycer-
ophosphaethanolamine (GPE), α-hydroxyisovalerate, and γ-
glutamylglutamine.
The correlation analysis revealed negative correlations of

glycerophosphatidylcholines and plasmalogen GPE with
clinical data except for HDL particles. Positive correlations
were noted between all of the other 28 metabolites and weight-
related parameters. Furthermore, there were also positive
correlations between N-nervonoyl-sphingadiene (d18:2/24:1),
N-acetylglutamate, steroyl ethanolamide, isobutyrylcarnitine
and isovalerylcarnitine (carnitines C4 and C5, respectively),
and glycemic parameters. Blood pressure correlated positively
with choline, glycerol, α-hydroxyisovalerate, α-ketoglutarate,
urea, urate, S-methylcysteine, carinitine C5, uracil, stearoyl
ethanolamine, N-nervonoyl-sphingadiene (d18:2/24:1), and
N-acetylglutamate, while HDL particles were negatively
correlated with glycerate, erythronate, 7-methylguanine, α-
hydroxyisovalerate, 2-hydroxyisobutyrate, and α-ketoglutarate
(Figure 1C).

VAT’s Metabolic Profiling in High IR

There were no differences in VAT metabolome in subjects
with high IR when they were compared with subjects with IS.
The effect of high IR in the metabolome depending on the
obesity variable was neither observed. Higher levels of
plasmalogen GPE (P-18:0/18:2) were observed in subjects
with IS, p-value = 0.001 (adjusted p-value = 0.077). Moreover,
the RF analysis was unable to distinguish clearly between
subjects with IS and those with high IR.

VAT Metabolome of Discordant Phenotypes: Nonobesity
with High IR and Obesity with IS

The metabolites that distinguished between high IR
phenotypes (nonobese versus obese subjects with high IR)
were the same as those observed in the comparison between
nonobesity and obesity (Table S1). No differences were noted
between nonobese phenotypes (nonobese versus obese
subjects with high IR).
Differences were only revealed in the levels of the metabolite

lysolipid GPE (18:2) between IS obesity and “high IR obesity”.
To be specific, the levels of this lipid species were lower in the
high IR obesity metabotype. When, for descriptive purposes,

we set the adjusted p-value to 0.25, lower levels of other
phospholipids containing fatty acyl groups of 18 carbons
(C18) were also identified in the high IR obesity metabotype.
The phospholipids concerned were glycerophosphatidylinosi-
tol (GPI) (18:0), glycerophosphatidylserine (GPS) (18:0),
lysolipids GPE (18:1), GPE (18:0/18:1), GPE (18:0/18:2),
GPC (18:0/18:2), GPC (18:2/18:2), GPC (18:2/18:3), GPC
(18:2/20:4n6), and plasmalogen GPE (P-18:0/18:2) (Figure
2A).
It can be seen in Figure 2B that these species correlated

negatively with weight parameters. It is also worth noting that
there were statistically significant correlations between GPE
(18:2) and weight, waist, and hip circumferences, as well as
fasting glucose, insulin, and HOMA-IR.
The classification model of the IS obesity metabotype was

obtained using regression analysis based on the LASSO
method. This method was employed for choosing those
metabolites that explained more clearly the differences
between the IS obesity and high IR obesity metabotype.
GPE (18:2) demonstrated a very good ability to detect the IS
obesity metabotype when analyzing the subset with obese
subjects [AUC 89.1% (78.8−99.4)] and the whole study
population, comprising both nonobese and obese subjects
[AUC 71.8% (56.5−87.2)] (Table 2 and Figure 2C).
However, when this lysolipid was combined with the C18-
containing phospholipids GPI (18:0), GPS (18:0), GPC
(18:0/18:1), GPC (18:2/18:2), and GPC (18:2/18:3) (Figure

Table 2. ROC Curve Parameters of the Combined
Multimetabolite Biomarker Model for Detecting Subjects
with Obesity and IS and of the Individual Metabolites That
Are Part of This Modela

detection of OB IS
sensitivity

(%)
specificity

(%) AUC (95% CI)

Only in Obese Population
combined multimetabolite
model

88.0 100 96.7 (91.9−100)

GPE 18:2 76.0 90.9 89.1 (78.8−99.4)
GPI 18:0 76.0 81.8 77.5 (56.7−98.2)
GPS 18:0 84.0 72.7 78.8 (61.1−96.8)
GPC aa 18:0/18:1
(GPC aa 36:1)

88.0 63.6 79.3 (61.0−97.6)

GPC aa 18:2/18:2
(GPC aa 36:4)

72.0 72.7 69.5 (48.7−90.2)

GPC aa 18:2/18:3
(GPC aa 36:5)

72.0 72.7 71.6 (50.0−93.3)

In the Whole Study Population
combined multimetabolite
model

90.9 76.7 87.6 (79.0−96.2)

GPE 18:2 63.6 66.7 71.8 (56.5−87.2)
GPI 18:0 81.8 66.7 70.2 (50.3−90.0)
GPS 18:0 72.7 81.7 77.9 (61.9−93.9)
GPC aa 18:0/18:1
(GPC aa 36:1)

63.6 66.7 61.4 (43.3−79.5)

GPC aa 18:2/18:2
(GPC aa 36:4)

72.7 55.0 53.0 (35.1−70.9)

GPC aa 18:2/18:3
(GPC aa 36:5)

72.7 53.3 60.3 (39.1−81.5)

aTheir predictive power was evaluated in the whole obese subset and
in the whole study population including nonobese individuals.
Metabolites are sorted alphabetically. Abbreviations: aa, diacyl;
AUC, area under the curve; CI, confidence interval; GPC,
glycerophosphatidylcholine; GPE, glycerophosphatidylethanolamine;
GPI, glycerophosphatidylinositol; GPS, glycerophosphatidylserine.
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2D), this metabolite panel’s discriminative ability rose, yielding
values of AUC 96.7% (91.9−100) in the subset of obese
subjects and AUC 87.6% (79.0−96.2) in the whole study
population (Table 2 and Figures 2C and S1).
The discriminative ability of the combined multimetabolite

model between subjects with “IS nonobesity” in the nonobese
population and in the whole study population was AUC 64.8%
(44.19−85.4) and 49.9% (36.1−63.6), respectively, with a
sensitivity and specificity of 70.0 and 68.0% and 52.0 and
58.7% in each case.

■ DISCUSSION
We provided a comprehensive VAT metabolic profiling of
concordant/discordant phenotypes of obesity and high IR with
a view to deepening the understanding of the complex
relationship between obesity and high IR. To that end, we
identified a VAT multimetabolite panel specific and sensitive
to distinguishing obese patients with IS from those with high
IR and also from the overall population. This panel
demonstrated a modest ability to identify those subjects with
normal weight and IS in the nonobese population and in the
overall population.
First, the VAT metabolome of obese patients was extensively

differentiated from that of normal-weight to overweight
patients, in line with previous findings. Changes in the
branched-chain amino acids (BCAAs) in obesity were revealed
by the pathway analysis. Alterations in the metabolism of
leucine, isoleucine, and valine were mirrored by changes in the
metabolites, carnitines C4 and C5, coming from the
metabolism of BCAA17 and α-hydroxyisovalerate. The levels
of BCAA tend to be elevated in obese subjects, and increased
levels of circulating BCAA are associated with imminent high
IR or type 2 diabetes.18 In obese subjects, the impairment of
the mitochondrial metabolism may lead to raised levels of C4
and C5 due to the reduction of fatty acid oxidation.19 In turn,
mitochondrial dysfunction has been linked with high IR.20

However, there was no indication that the interaction of high
IR × obesity was statistically significant in this study.
The lipidomic profiling of multiple populations and clinical

cohorts has indicated that reduced levels of plasmalogens are
linked with obesity, as well as with prediabetes and diabetes.21

Our findings showed that obese patients presented lower levels
of phospholipids, specifically GPC and GPE plasmalogens,
than those of normal weight, as previously observed.22

Plasmalogens are powerful antioxidants and upregulating
them may decrease oxidative stress, ameliorate the lipid
dysregulation that accompanies obesity, suppress inflammatory
responses, and improve the high IR associated with metabolic
diseases.
Comparisons between groups implied that the metabolism

of phospholipids might also be modified by high IR in obese
subjects but not in normal-weight patients. To be precise, GPE
(18:2) and other phospholipid species also containing C18-
fatty acyl groups, including GPE (18:1), GPI (18:0), GPS
(18:0), GPC (18:0/18:1), GPC (18:2/18:2), and GPC (18:2/
18:3), were lower in the high IR obesity metabotype.
Regardless of adiposity, GPE (18:0/18:2) also exhibited
lower levels in subjects with high IR than in those with IS.
Phospholipids are formed by fatty acyl groups attached to their
sn1 and sn2 of the glycerol backbone.23 They are first formed
in the de novo pathway from glycerol-3-phosphate and then
matured in the remodeling pathway. In this second step, the
action of phospholipases (PL) A2 and phospholipid

acyltransferases establish phospholipids’ asymmetry and high
diversity.24 The phospholipid species GPC and GPE are the
primary constituents of the plasma membrane, while GPI and
GPS are less abundant in the cell.25 The enzyme PLA2 forms
lysolipids from the cleavage of an acyl chain of phospholipids.
Their role is a structural one, and they act as lipid mediators
involved in cell signaling.26

Changes in arachidonyl-containing lipid species may be
inconsistent with previous studies,23,27 as their levels were not
significantly altered in obesity or high IR per se. Inflammation
and oxidative stress are closely interconnected processes.28 The
free radicals produced during the inflammatory reaction can
also damage phospholipids, particularly plasmalogens, thereby
reducing their levels.29 There is controversy over how the
plasma membrane is affected by this lipid remodeling. While
some report that the biophysical properties of the membrane
are not altered,27 others suggest there are changes in
membrane potential and permeability30 as well as altered
receptor signaling.26 Obesity and related comorbidities lead to
expansion, differentiation, and remodeling of adipocytes.4

Pietila ̈inen et al. studied the adipocyte remodeling in
monozygotic twin pairs discordant for BMI. They found that
the obese twins had higher proportions of palmitoleic (C16:1)
and arachidonic (C20:4) acids in their adipose tissue and
lower levels of both saturated fatty acids and linoleic (C18:2)
and α-linoleic (C18:3) acids.27 Other studies found that
arachidonyl-containing species increased during adipocyte
differentiation, whereas linolenic-containing lipids decreased
due to the raised activity level of the enzyme AT.24

Phospholipids with arachidonyl groups correlated positively
with BMI and an increased risk of metabolic syndrome.24 On
the other hand, we found no differences in levels of
arachidonyl-containing species between obese and nonobese
subjects but we did observe differences between obese subjects
with high IR and those with IS. Engelmann et al. conducted a
study on the erythrocyte plasma membrane in dyslipidaemia.
These authors also found that under abnormal conditions the
enzyme PLA2 is overexpressed and fatty acyl groups linked to
GPE and GPC are transformed into arachidonyl-containing
GPE and GPC.23 Arachidonyl acyl chains are further converted
into proinflammatory markers, such as prostaglandins and
eicosanoids, and intensify a proinflammatory response via
PPARγ receptors.23,24,27 Pietilaïnen et al. also pointed out that
this proinflammatory environment induced by arachidonyl
groups makes the adipocytes more vulnerable and prone to
inflammatory responses and oxidation.27

These C18-fatty acyl-containing phospholipids demonstra-
ted a high ability to discriminate between the IS obesity
metabotype and the high IR obesity one, and also to identify it
among the whole study population, including nonobese
subjects. To be specific, GPE (18:2) was the metabolite that
presented higher AUC and sensitivity and specificity rates.
Furthermore, we performed a regression analysis to develop a
multimetabolite biomarker model with a view to enhancing the
prediction accuracy of the IS obesity metabotype. The
resulting model consisted of a combination of GPE (18:2)
with other 18 carbon-containing phospholipids: GPE (18:1),
GPI (18:0), GPS (18:0), GPC (18:0/18:1), GPC (18:2/18:2)
and GPC (18:2/18:3). This model demonstrated a very high
ability to discriminate the IS obesity metabotype from high IR
obesity and to differentiate it from all of the metabotypes of
the study. However, the limited ability to distinguish subjects
with IS nonobesity and a missing alternative biomarker in
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identifying this group within the whole population may suggest
a different metabolic connection of IR in obese compared to
nonobese subjects.
To the best of our knowledge, no studies report a biomarker

based on metabolite levels to discriminate obese subjects with
IS. We present for the first time a panel of metabolites
comprising phospholipids to identify accurately the IS obesity
metabotype and potentially MHO subjects. This model might
also enable specialists to monitor the progression from IS to
high IR in the obese population. Nevertheless, to that end,
additional research needs to be carried out in a greater and
independent cohort to validate this biomarker model in
adipose tissue and identify it in a more accessible biological
sample such as blood samples. Moreover, the progression of
these lipid species will need to be explored in the pathological
state, i.e., obesity with one or more comorbidities, to define
normality intervals and a disease cutoff.

■ CONCLUSIONS
In conclusion, our study has demonstrated the association of
obesity with an important alteration in the composition of
VAT. Obese subjects with IS present an alteration of the
phospholipids containing C18-fatty acyl groups metabolism.
This lipid remodeling might promote proinflammatory
responses in VAT, which will be improved if the patient
presents both conditions at the same time. The particular
combination of GPE (18:2), GPI (18:0), GPS (18:0), GPC
(18:0/18:1), GPC (18:2/18:2), and GPC (18:2/18:3)
configures a sensitive and specific biomarker to distinguish
subjects with an IS obesity metabotype from those with high
IR obesity. This research was supported by Project PI13/
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Rissanen, A.; Kaprio, J.; Yki-Jar̈vinen, H.; Vattulainen, I.; Vidal-Puig,
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