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ABSTRACT: Structural diversity in heterocyclic chemistry is key to unlocking new properties and modes of action. In this regard,
heterocycles embedding emerging fluorinated substituents hold great promise. Herein is described a strategy to access 2-SF5-
(aza)indoles for the first time. The sequence relies on the radical addition of SF5Cl to the alkynyl π-system of 2-ethynyl anilines
followed by a cyclization reaction. A telescoped sequence is proposed, making this strategy very appealing and reproducible on a
gram scale. Downstream functionalizations are also demonstrated, allowing an easy diversification of N- and C3-positions. Ames test,
pKa, log P, and differential scanning calorimetry measurements of several fluorinated 2-Rf-indoles are also disclosed. These studies
highlight the strategic advantages that a C2-pentafluorosulfanylated motif impart to a privileged scaffold such as an indole.
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■ INTRODUCTION

The incorporation of a fluorinated motif in organic or
inorganic molecules influences chemical and physical proper-
ties (metabolic stability, bioavailability, pKa, etc), and this
strategy is nowadays widely used in medicinal chemistry.1

Among the so-called “emerging” fluorinated groups, the
pentafluorosulfanyl group (SF5)

2,3 is of growing interest in
heterocyclic synthesis,4−7 materials science,8 and medicinal
chemistry.9 The SF5 group has a volume of 55.4 Å3, between
the t-Bu (76.9 Å3) and CF3 (34.6 Å3) groups, and its unique
octahedral geometry allows a more selective interaction of SF5-
containing molecules with biological receptors.10−12 The high
lipophilicity of SF5, expressed by the Hansch parameter (π =
1.23),2,13 is greater than the ones of CF3 (0.88) or OCF3
(1.04) groups and may confer an enhanced cell membrane
permeating ability. The high electronegativity of SF5 expressed
by the Hammett constant (σp = 0.68, σm = 0.61)2,13 is also
greater than that of CF3 (σp = 0.53, σm = 0.43)2,13 which, in
turn, confers high metabolic stability. All of these properties
make SF5 an interesting alternative to the CF3 group as a
bioisostere, especially in drug development.9,14−16

However, synthetic routes to SF5-containing compounds
and their structural diversity remain highly challenging. Two
general methods are reported for accessing SF5-containing
small molecules. The first method is an oxidative fluorination
reaction of (hetero)aromatic disulfides, thiols, or, more
recently, sulfenyl phthalimides which give access to ClF4S-
and then SF5-(hetero)aromatic compounds after a final

chloride−fluoride exchange step.17−23 The second method is
a direct introduction of the SF5 group to an alkyne, an alkene,
or an α-diazo carbonyl thanks to the use of SF5Cl gas

24 under
radical conditions to yield SF5-containing compounds.25−28

Although the use of commercially available gaseous SF5Cl is
atom economical and quite straightforward from a practical
point of view, recent efforts toward its preparation from sulfur
powder, potassium fluoride, and trichloroisocyanuric acid have
been disclosed.29,30 Recently, SF6 was used as an alternative
source of SF5

• in photoredox catalysis, but this method up to
now is limited to reactions with styrene derivatives.31−33

Indoles are privileged scaffolds in medicinal chemistry, and
developing synthetic strategies to modulate their structures and
physicochemical properties is of central importance.34−36 In
this regard, combining indoles and original fluorinated
moieties such as the pentafluorosulfanyl group is of interest
as it would pave the way to structural and physicochemical
studies that could have an impact in medicinal chemistry. Only
a handful of 5-37−42 and 6-SF5-indoles

43−45 are known and
were obtained from commercially available SF5-anilines or
nitrophenyls (Scheme 1B). However, introducing the SF5
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group on other positions of the indole nucleus, and more
precisely on the C2-position, which is as close as possible to
the nitrogen atom, is highly challenging and still not reported.
Among the different strategies to access C2-SF5-indoles, the
intramolecular 5-endo-dig cyclization46−49 of an ortho-alkyny-
laniline appears to be the most promising (Scheme 1C).
Indeed, SF5-substituted alkynes are easily prepared by the
reaction between SF5Cl and a terminal alkyne under radical
conditions followed by basic elimination, as demonstrated by
Dolbier (Scheme 1A).25 In addition, Tsui reported that 2-CF3-
indoles could be synthesized via a domino trifluoromethyla-
tion/5-endo-dig cyclization of ortho-alkynylanilines.49 Herein,
we report that this strategic blueprint allows for a general
synthesis of 2-SF5-indoles from readily available starting
materials. Their thermal stabilities, pKa values, and lip-
ophilicities were also studied and compared to more classical
C2-fluorinated/fluoroalkylated indoles. Finally, evaluation of
the mutagenic potential (Ames test) of a selection of 2-SF5-
indoles was performed.

■ RESULTS AND DISCUSSION
N-Tosyl-2-ethynylaniline 1a was selected as a model
compound for the screening of chloropentafluorosulfanylation
conditions (Scheme 2).50 Using catalytic amounts of
triethylborane and oxygen,51,52 the reaction proceeded
smoothly in ethyl acetate or dichloromethane (0.4 M) at
−40 to −20 °C, delivering 2a in quantitative yield. Gratify-
ingly, a single regio- and stereoisomer was observed, with the
structure of 2a being unambiguously confirmed by X-ray
diffraction (CCDC 2073141).53 As reported by Paquin in
2019,54 several classical organic solvents are compatible with
SF5Cl, and we found that ethyl acetate turned out to be the
solvent of choice for the synthesis of 2a−p in terms of
conversions and, more importantly, purity. Indeed, in most
cases, no further purification of 2 is needed.55

Electron-donating (4-Me 2b, 4-OMe 2c, and 5-Me 2d) and
electron-withdrawing (4-Cl 2e, 4-CO2Me 2f, 4-OCF3 2g, 4-

CN 2h, 4-Br 2i, 5-Cl 2j, and 5-F 2k) substituents on the
aromatic ring are well-tolerated and give high NMR yields
(77−100%). Noteworthy, when the conversion is high, the
crude product 2 is very clean and can be used for the next step
without further purification. In a few cases, we noticed that
with 6-F 2l,m and 6-Cl 2n aniline derivatives, very low
conversion or no reaction was observed. Much to our delight,
2-aminopyridine derivatives are tolerated, and SF5 adducts
2o,p were obtained in 44 and 33% yields, respectively.
For the subsequent step, we first tested basic conditions

described by Dolbier for the dehydrochlorination reaction
(LiOH in DMSO).25 After 16 h at room temperature, we were
pleased to observe full conversion of 2a to the expected SF5-
alkyne 3a, along with N-Ts-2-SF5-indole 4a in a 50:50 ratio (as
measured by 19F NMR, Scheme 3). Extended reaction times,
up to 84 h, afforded a 47:53 mixture of N-Ts-2-SF5-indole 4a
and 2-SF5-indole 5a (arising from the deprotection of 4a under
basic conditions). Structures of 4a (CCDC 2073143) and 5a
(CCDC 2073142) were unambiguously confirmed by X-ray
diffraction.56 After careful optimization, it was found that full
conversion of 2a into 5a was obtained after 40 h at 40 °C. This
one-pot three-step sequence (dehydrochlorination, 5-endo-dig
cyclization, and deprotection of the tosyl moiety) is general
and proceeds smoothly with all substrates 2a−p independently
of the substitution.

Scheme 1. State of the Art for the Introduction of the SF5
Group on Alkyne (A) and on the C5- or C6-Position of
Indoles (B) and Proposed Synthetic Strategy for the
Preparation of C2-SF5-Indole (C)

Scheme 2. Scope and Limitations for the Addition of SF5Cl
to 1a

aYields determined by 19F NMR and 1H NMR using trifluorotoluene
as internal standard. bReaction performed in CH2Cl2 instead of
EtOAc.
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Good to excellent NMR yields ranging from 55% to
quantitative are obtained. Noteworthy, functional groups
such as ester 5f, nitrile 5h, halides 5e−5i,j, or even the more
exotic OCF3 5g are well-tolerated. It should be noted that
isolated yields of 2-SF5-indoles 5 are 34 ± 16% lower (after
chromatography on silica gel) than NMR yields. Unfortu-
nately, all of the purification media that were screened, such as
deactivated silica gel, demetalated silica gel,57 C-18 reversed-
phase silica, Florisil, or alumina did not improve yields further.
However, 60−70% overall yields are still highly relevant
considering that this is a formal three-step sequence. In
addition, the reaction is easily scalable up to 1.8 g (4 mmol) in
reproducible 66% isolated yield.
While the synthesis of N-unprotected 2-SF5-indoles 5 is of

interest, keeping the N-tosyl protecting group would also be an
asset. After an extensive screening of base, it was found that
lithium hexamethyldisilazane (LiHMDS) led to a smooth
dehydrochlorination reaction at −78 °C for 1 h (Scheme 4).
SF5-Alkynes 3 were formed in 77−100% yield, with an
excellent functional group tolerance. In addition, the reaction
was very clean, and no purification was needed. Next, for the
cyclization step, it was found that K3PO4 was able to convert

SF5-alkynes 3 into the desired N-Ts-2-SF5-indoles 4 in
acetonitrile at 40 °C for 12 h alongside the deprotected indole
5 (Scheme 5). As expected from an electronic point of view,
electron-neutral or electron-donating substituents as in 3a,b
gave high selectivity for the corresponding N-Ts-2-SF5-indoles
4a,b.

In contrast, with electron-withdrawing substituents, a non-
negligible amount of 2-SF5-indoles 5f−i,k (R = Br, F, OCF3,
CO2Me, CN) was observed ranging from 30% with R =
CO2Me OCF3, Br, F) to 50% with R = CN. Quite
interestingly, isolated yields of N-Ts-2-SF5-indoles 4 are
much closer to NMR yields, which indicates that N-substituted
2-SF5-indoles possess improved stability toward purification.
This was further confirmed by the independent preparation of
N-Bn-2-SF5-indole 7 and N-Me-2-SF5-indole 8 via the
interception of the intermediate 6 by the corresponding
electrophiles (Scheme 6A). Clean reactions and excellent
yields for five steps were obtained, in line with the NMR yields
(92% for 7 and 73% for 8, a mean deviation of 7 ± 2% from
the isolated yields).
C3-Functionalizations of 2-SF5-indoles 5 were next inves-

tigated (Scheme 6B,C). We first focused on the innate C3-
nucleophilicity of 5a in halogenation reactions. Double

Scheme 3. Scope and Limitations for the Synthesis of 2-SF5-
Indoles 5a

aNMR yields determined by 19F NMR and 1H NMR using
trifluorotoluene as internal standard. Isolated yields in brackets after
purification on SiO2.

Scheme 4. Synthesis SF5-Alkynes 3
a

aIsolated yields after extraction; no purification needed.

Scheme 5. Synthesis of N-Ts-2-SF5-Indoles 4
a

aIsolated yields after purification on SiO2. Ratio of 4/5 determined by
19F NMR using trifluorotoluene as an internal standard.
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bromination reaction58 with an excess of N-bromosuccinimide
(NBS) is very efficient and yielded 9a in 94% yield.

Monobromination is also possible using a slight excess (1.1
equiv) of NBS in the presence of triethylamine.59 The reaction
proceeded quantitatively by NMR and 10 was isolated in 55%
yield. Incorporation of a C3-iodine atom is also possible using
molecular iodine in the presence of potassium hydroxide,60

delivering 11 in 81% yield. The iodination step can then be
combined in a one-pot process with N-benzylation (13, 58%)
or N-methylation (14, 89%). Finally, C−C bond formations
were investigated (Scheme 6C). Iodine−magnesium exchange
of 14 followed by trapping with an electrophile such as allyl
bromide or tosyl cyanide delivered 15 (77%) and 16 (48%),
respectively.61 Negishi cross-coupling with diethylzinc62

proved to be efficient with the formation of 17 in 78% NMR
yield (along with the reduced indole 8 as an inseparable
mixture). Heck cross-coupling63,64 with methyl acrylate is also
productive, yielding 18 in 58% yield as a single E-stereoisomer.
Finally, we evaluated the reactivity of the 2-SF5-indole 5a
toward Eschenmoser salt for the synthesis of 19 (57%), the 2-
SF5 analogue of the naturally occurring indole alkaloid
gramine.65

Having designed a synthetic strategy toward 2-SF5-indoles
and explored a selection of downstream functionalizations, we
turned our attention to the investigation of their physicochem-
ical properties and how they compare with differently C2-
substituted indoles. Six indoles were selected: the 2-SF5-
indoles 5a and 8 alongside four C2-substituted indoles, 2-H
(20), 2-Me (21), 2-F (22), and 2-CF3 (23).
We started with differential scanning calorimetry

(DSC)66−69 analysis to gain information about the thermal
tolerance threshold of our process and the thermal stability of
2-SF5-indoles (Figure 1A).55 Both 2-SF5-indole 5a and 8
induce a strong release of energy (exothermic) when the
threshold of thermal stability is reached, with enthalpies of
−1180 kJ/kg with an onset above 165 °C for 5a and −1324
kJ/kg starting above 310 °C for 8.
This highly exothermic event is characteristic of a violent

decomposition. However, this threshold appears at relatively
high temperatures (>165 °C for 5a, 310 °C for 8) and
therefore much higher than the maximum temperatures used
for the synthesis of 2-SF5-indoles (up to 40 °C) or their
functionalization (up to 100 °C). This means that the

Scheme 6. Downstream Functionalizations of 2-SF5-
Indolesa

aNMR yield determined by 19F NMR using trifluorotoluene as an
internal standard. bObtained as an inseparable mixture with indole 8.

Figure 1. Differential scanning calorimetry (A) and pKa and log P (B) of C2-substituted indoles.
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synthetic methods devised in Schemes 2−6 are safe with a
fairly large safety margin gap (>120 °C) between the reaction
processes and the decomposition onsets. As expected, the
protection of 2-SF5-indole 5a by a methyl group (8)
significantly increases its thermal stability. Among the
fluorinated indole analogues, 2-CF3 indole 23 is the most
stable heterocycle with an exothermic degradation above 325
°C (−403 kJ/kg), whereas 2-F indole 22 degrades above 120
°C (−623 kJ/kg). It is important to note that, in comparison,
the temperatures and degradation energies of 2-Me indole 21
(low exotherm above 165 °C, enthalpy of −14 kJ/kg) and
indole 20 (low exotherm above 190 °C, enthalpy of −10 kJ/
kg) are negligible.
Incorporation of a fluorine atom or a fluorinated group has a

tremendous impact on physicochemical properties of mole-
cules and nearby functional groups. In the specific case of the
pentafluorosulfanyl moiety, physicochemical data are scarce2−6

and experimental measurements of the acidity (pKa)
70 and

lipophilicity (log P)71,72 imparted by the pentafluorosulfanyl
moiety would be useful data for medicinal chemistry programs.
We thus turned our attention to a subset of indoles substituted
at C-2 by H (20), F (22), CF3 (23), or SF5 (5a/8), and the
results are summarized in Figure 1B. Values of pKa were
measured in acetonitrile by spectrophotometric titration.55

The pKa of indole 20 (32.57)70 decreases dramatically by 5.4
units upon fluorine and fluorine-containing substitution at C2,
resulting in pKa 27.20 for 22. Swapping C2-F for a C2-CF3
substituent only slightly impacted the pKa by 0.44 units (pKa of
23: 26.76). On the other hand, a pronounced drop in pKa was
measured for 5a possessing a C2-SF5 motif; with a pKa of
24.44, it stands 2.32 units lower than the pKa of 23 and is
comparable to the pKa of 2-nitroindole (23.64).70

Fine modulation of lipophilicity is central to drug develop-
ment,73−75 and fluorine-containing substituents play an
important role in this regard, whether in the aromatic76 or
aliphatic series.77−79 As a consequence, assessing the impact of
the pentafluorosulfanyl motif at the C2-position of indoles on
log P was of interest. The lipophilicities of the five indole
derivatives were obtained by combining experimental and
computational data.55 The average log P values are given in
Figure 1B. Replacement of the C2-hydrogen atom of indole 20
by a fluorine atom (22) decreases the lipophilic character by
0.85 unit (from 2.14 to 1.29). Although lipophilicity classically
increases upon H−F swap in the aromatic series, this drop in
log P between 20 and 22 can be rationalized by the increased
polarization of the N−H bond, leading to the increased
hydrogen bond donating ability of 22 (favoring hydrophilicity)
balanced by a small increase in hydrophobic surface area.76,80

On the other hand, the latter parameter dramatically increases
in the case of 2-CF3-indole 23, overcompensating the increased
hydrogen bonding ability. An increase of log P to 3.5 ± 0.2 was
measured for 23. Replacing 2-CF3 with 2-SF5 substituent as in
compound 5a further increases log P by roughly 0.3 units, to
3.8 ± 0.2. Finally, N-methylation of 5a logically led to an
increased log P of 4.3 ± 0.3. Overall, these results allow the
assessment of the impact of the pentafluorosulfanyl group
compared to a fluorine atom or a trifluoromethyl group in the
C2-position of indoles. A pronounced drop in pKa and a
simultaneous increase in log P are unambiguously demon-
strated, thereby modulating physicochemical properties of this
relevant heterocycle in a unique fashion.
Finally, as indole is a privileged scaffold in drug discovery,

we thought that the mutagenic character of the newly

synthesized compounds 5a and 8 will be important to be
determined and valuable information to be provided to the
community. In silico assessment is typically done in the first
place to estimate the mutagenic potential of a compound
against databases. Indole is considered to be nonmutagenic,
and therefore, there is no mutagenicity concern emerging from
the indole moiety. However, uncovered fragment −SF5 was
detected in the used systems (Derek, Sarah Nexus, and Case
Ultra).55 Hence, due to incomplete coverage, it was
recommended to perform further tests to evaluate potential
mutagenic activity of the SF5 moiety. We thus performed the
Ames test which is a classical biological test to determine the
mutagenic potential of a chemical compound.55 Since cancers
are often linked to damage to DNA, this rapid, reliable, and
inexpensive test is used to estimate the carcinogenic and
genetic activity at the nucleotide level, based on different
histidine-requiring bacterial strains of Salmonella typhimurium
carrying mutations in the genes in the absence and presence of
a liver-metabolizing system.81,82 Over the years, a large
database has been accumulated with this assay, confirming its
ability to detect genetically active compounds of most chemical
classes with around 80−90% sensitivity and specificity. The 2-
SF5-indoles 5a and 8 have been tested, and no mutagenic
evidence was observed over the different bacterial strains
tested, which means that they can potentially be used for
further development in drug discovery.55

■ CONCLUSION

In conclusion, we developed an efficient synthesis of 2-SF5-
indoles and azaindoles from 2-ethynylaniline derivatives in a
two-step telescoped procedure. This sequence consists of four
formal synthetic steps: radical addition of SF5Cl followed by
dehydrochlorination, 5-endo-dig cyclization and deprotection
of the tosyl fragment in basic conditions. We then decomposed
the full sequence into a stepwise synthesis allowing to keep the
N-protecting group on the 2-SF5-indole. A selection of
downstream functionalizations was demonstrated, including
N-alkylation and benzylation, C3-halogenation, alkylation,
allylation, cyanation, and alkenylation. Carcinogenic potential
(Ames test) and relevant physicochemical properties (such as
thermal stability (DSC), acidity (pKa), and lipophilicity (log P)
were measured in order to highlight the strategic advantages
that a C2-pentafluorosulfanylated motif could impart on the
indole nucleus.
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