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ABSTRACT

Extracorporeal membrane oxygenation (ECMO) is a technique that uses a pump to drain 
blood from a body, circulate blood through a membrane lung, and return the oxygenated 
blood back into the body. Venoarterial (VA) ECMO is a simplified version of the heart-lung 
machine that assists native pulmonary and/or cardiac function. VA ECMO is composed of a 
drainage cannula in the venous system and a return cannula in the arterial system. Because 
VA ECMO can increase tissue perfusion by increasing the arterial blood flow, it is used 
to treat medically refractory cardiogenic shock or cardiac arrest. VA ECMO has a distinct 
physiology that is referred to as differential flows. It can cause several complications such 
as left ventricular distension with pulmonary edema, distal limb ischemia, bleeding, and 
thromboembolism. Physicians who are using this technology should be knowledgeable on 
the prevention and management of these complications. We review the basic physiology of 
VA ECMO, the mechanism of complications, and the simple management of VA ECMO.
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INTRODUCTION

The first human use of cardiopulmonary bypass in the operating room was in 1953 to assist 
in the repair of an atrial septal defect, and it was performed by John Gibbon, MD. In 1954, 
C. Walton Lillehei, MD performed cardiac surgery using a bubble oxygenator. In 1957, 
Kammermeryer found that silicone rubber was strong enough to withstand hydrostatic 
pressure, yet it was permeable to gas transfer. With the development of a silicone membrane 
oxygenator, a device used for long-term bypass support that allowed recovery outside the 
operating room was created. Hence, the use of the silicone membrane oxygenator led to the 
use of the term extracorporeal membrane oxygenation (ECMO).1)

The basic ECMO circuit includes cannulae for drainage and return, tubing, a pump, and a 
membrane lung. Venoarterial (VA) ECMO withdraws deoxygenated blood from the venous 
system through a drainage cannula, pumps the blood through a membrane lung, and returns 
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the blood to the arterial circulation through a return cannula. The blood flow through VA 
ECMO always bypasses the native cardiopulmonary system (Figure 1).

A membrane lung, also called as an oxygenator, is composed of hollow fiber bundles. An 
exchange of gas inside the hollow fibers and blood circulating outside the fibers occurs 
through the membrane of the hollow fibers. A membrane lung has been developed to 
maximize the blood-gas contact surface.2) Microporous polypropylene membrane has 
limitation in terms of longevity.3) Compressed surface polymers such as polymethylpentene 
(PMP) have been available since the early 2000s. It is also microporous, but its outer surface 
is compressed to form a solid-like membrane. Gas can still be entrained across the PMP 
material into the blood based on the principle of diffusion, but the plasma has difficulty 
in passing through the membrane because the micropores are covered with a solid-like 
membrane.4) These compressed surface PMP hollow fibers still exchange gas as efficiently as 
the microporous polypropylenes and have longer longevity.

Pumps are divided into the following 2 basic subgroups: a roller pump and a centrifugal 
pump. The earliest circuits used a roller pump, which had the risk of line rupture. Therefore, 
it was dangerous when used outside the operating room. Because a centrifugal pump rarely 
causes such a catastrophe, most centers use it as a standard pump for ECMO. Centrifugal 
pumps generate flow by a spinning rotor that produces centrifugal force. The pump has been 
developed to decrease heat generation, sheer stress, hemolysis, or thrombosis. Recently, 3 
kinds of pump according to the types of bearing are used. The first-generation centrifugal 
pumps have fixed strut and metal bearing. Because it frequently causes thrombosis around 
the bearing within a few days, it is not widely used for ECMO. Favored centrifugal pumps for 
ECMO have either pivot-bearing or a bearing-free magnetic levitation designs.2)

PHYSIOLOGY OF VENOARTERIAL EXTRACORPOREAL 
MEMBRANE OXYGENATION
The ratio of oxygen delivery to consumption
Bartlett and Conrad5) SA explained the ratio logically. Oxygen delivery (DO2) is the amount 
of oxygen delivered to the peripheral tissues per minute, or the product of arterial oxygen 
content (CO2) times the cardiac output. Oxygen is present in the blood as oxygen dissolved 
in the plasma and bound to hemoglobin present in the red blood cells. The following are the 
mathematical formulas to calculate DO2 in a patient on ECMO.
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Figure 1. Schematic configuration of VA ECMO. The principal physiology of VA extracorporeal oxygenation of 
cardiopulmonary bypass. 
ECMO = extracorporeal membrane oxygenation; RA = right atrium; VA = venoarterial.
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DO2 (cc/min)
 =Cardiac output (L/min)×arterial CO2 (cc/dL)×10

CO2 (cc/dL)
 =Hemoglobin bound O2+dissolved O2

 =(Hemoglobin [g/dL]×saturation [%]×1.36 cc/g)+(pO2 [mmHg]×0.0031 cc/mmHg/dL)

DO2 during VA ECMO
 =Native cardiac output×arterial CO2+ECMO flow×perfusate CO2 

If we take a closer look at the formula, DO2 is controlled by cardiac output, hemoglobin 
concentration, hemoglobin saturation, and dissolved oxygen, in that order. Therefore, if DO2 
is insufficient, it is necessary to calibrate it in the above order to efficiently increase DO2.

Oxygen consumption (VO2) is controlled by tissue metabolism. The normal DO2:VO2 ratio is 
5:1. Mixed venous oxygen saturation (SvO2) results from this ratio. If systemic DO2 is moderately 
decreased and there is no change in VO2, the amount of oxygen extracted from each deciliter 
of arterial blood is greater. This results in decreased SvO2. If DO2 is severely decreased, there 
is insufficient oxygen to meet metabolic demands, anaerobic metabolism occurs, and, finally, 
lactic acidosis and shock occur. In practice, this situation occurs when the DO2:VO2 ratio is 
less than 2:1. Therefore, the overall goal of management is to keep DO2 at least twice the VO2, 
and preferably 5 times the VO2. Since SvO2 reflects this ratio accurately, it is one of the most 
important considerations when monitoring and managing critically ill patients.

ECMO is indicated when other treatment modalities cannot sustain the DO2:VO2 ratio. If 
DO2:VO2 ratio decreases due to decreased DO2 in cardiogenic shock, ECMO can increase 
systemic blood flow to replace the reduced cardiac output. Cardiogenic and obstructive shock 
reduces not only the cardiac output but also CO2 in the blood due to ventilation-perfusion 
mismatch. ECMO can correct both the decreased cardiac output and CO2. In septic shock, 
DO2:VO2 ratio decreases due to the increase in VO2. Moreover, if the septic shock is combined 
with decreased cardiac contractility, DO2 is decreased, further reducing DO2:VO2 ratio, hence, 
ECMO may be considered.

To summarize, VA ECMO can be an option for the treatment of various types of shock 
because it can increase CO2 and systemic blood flow and eventually increase DO2. Hence, the 
goal of VA ECMO is as follows: to restore organ blood flow and adequate tissue oxygenation 
while awaiting recovery, without damaging to the lungs or circulation.6)

Interaction between the native cardiovascular system and venoarterial 
extracorporeal membrane oxygenation
The important basic pressure-volume loop of left ventricle (LV) are shown in Figure 2A. 
The loop changes as cardiogenic shock occurs (Figure 2B). In the beginning, the stroke 
volume and the left ventricular end-systolic pressure (LVESP) decrease. Left ventricular end-
diastolic pressure (LVEDP) or left ventricular end-diastolic volume (LVEDV) can be increased 
secondarily but not greatly in a short time. As the cardiogenic shock develops some more, 
LVEDP and LVEDV begin to increase, maintaining some linear correlation. If the cardiac 
shock persists, LVEDV increases, but LVEDP increases furthermore. Subtle increases in 
LVEDV can be associated with substantial increases in LVEDP due to the nonlinear end-
diastolic pressure-volume relationship.7)

659https://e-kcj.org https://doi.org/10.4070/kcj.2019.0188

VA ECMO for Cardiogenic Shock

https://e-kcj.org


660https://e-kcj.org https://doi.org/10.4070/kcj.2019.0188

VA ECMO for Cardiogenic Shock

Normal status
Acute cardiogenic shock
Congestive heart failure

B

LV volume

LV
 p

re
ss

ur
e

A

LV volumeStroke volume

Stroke work

Mitral
valve

opening

Aortic
valve

closing
Aortic
valve
opening

LVSP

LVEDP

Mitral
valve
closing

LV
 p

re
ss

ur
e

D

LV volume

LV
 p

re
ss

ur
e

Baseline CGS
ECMO+vasodilator
ECMO alone

C

LV volume

LV
 p

re
ss

ur
e

Baseline CGS
Low ECMO flow
High ECMO flow

Baseline CGS
ECMO+inotropic agent
ECMO alone

E

LV volume

LV
 p

re
ss

ur
e

F

LV volume

LV
 p

re
ss

ur
e

ECMO+preload ↓
ECMO alone

Figure 2. Pressure-volume loops before and after VA ECMO. (A) Normal pressure-volume loop. (B) Representative 
pressure-volume loop as heart failure persists and deteriorates. (C) Impact of ECMO flow during VA ECMO. 
(D) Impact of decreasing PVR during VA ECMO. (E) Impact of inotropic agent during VA ECMO. (F) Impact of 
decreasing preload during VA ECMO. Modified from Burkhoff et al.7) 
CGS = cardiogenic shock; ECMO = extracorporeal membrane oxygenation; LV = left ventricle; LVEDP = left 
ventricular end-diastolic pressure; LVSP = left ventricular systolic pressure; PVR = peripheral vascular resistance; 
VA = venoarterial.
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If VA ECMO is started in this state, the pulse pressure is decreased and the mean arterial 
pressure (MAP) is increased. The stroke volume decreased because the amount of native 
cardiopulmonary circulation decreases due to the physiology of ECMO called cardiopulmonary 
bypass.7)8) Increasing the ECMO flow further reduces the stroke volume, increases the LV 
afterload, and increases the LVEDV and especially LVEDP as shown in the Figure 2C.7)

The increased LV end-diastolic, left atrial (LA), and pulmonary capillary wedge pressures 
during VA ECMO can be mitigated by decreases in systemic vascular resistance or 
improvement in ventricular contractility. First, the peripheral vascular resistance (PVR) can 
be decreased as shown in Figure 2D. PVR can be reduced naturally by the baroreceptors, 
pharmacologically (e.g., nitroprusside) or mechanically (e.g., by intra-aortic balloon 
pumping).7) This increases stroke volume as well. Pharmacological enhancement of 
contractility is also possible, but may not be beneficial in cardiogenic shock due to their 
independent effects in increasing myocardial VO2 and potential effects on heart rate and 
arrhythmias (Figure 2E).7) Reducing the cardiac preload through volume restriction can also 
reduce LVEDP or LVEDV to some extent (Figure 2F).7) Therefore, monitoring for an increase 
in LVEDP is important by performing serial physical examinations, chest radiographies, and 
echocardiographies and monitoring the pressures from Swan-Ganz catheter.9)

If the heart recovers, the pulse pressure and MAP increase. However, if it does not recover 
and it gets worse, the LVEDP and pulmonary capillary wedge pressure increase furthermore. 
These increases are detrimental to blood oxygen saturation coming from the lungs and 
markedly increase myocardial oxygen demand, which can worsen LV function, especially 
in acute myocardial ischemia or infarction.7) In such cases, the left heart venting should 
be considered, which will be discussed later. The typical changes of ventricular loads or 
coronary perfusion during VA ECMO are summarized in Table 1. Based on these physiologic 
interactions between the native cardiovascular system and VA ECMO, we suggest minimizing 
dose of vasopressors (afterload reduction), fluid removal (preload reduction), and keeping a 
good amount of ECMO flow (adequate tissue oxygenation). This principle will let the native 
heart rest while balancing tissue oxygen supply and demand.
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Table 1. The changes of ventricular loads and coronary perfusion during VA ECMO
VA ECMO Mechanism Special situation

RV preload Decreased Cardiopulmonary bypass Mobilization of physiologically 
reserved venous blood volume may 
happen by increasing overall cardiac 
output.

Direct drainage from RA

RV afterload Unpredictable Multiple factors influence RV 
afterload such as pulmonary 
vasoconstriction, preload and 
afterload of LV, vasopressors, 
ventilator settings, and total 
volume status.

Increased LV afterload by VA ECMO 
may increase RV afterload. However, 
improved myocardial perfusion by 
ECMO can also reduce RV afterload 
by improved LV contraction.

LV preload Decreased Cardiopulmonary bypass Aortic regurgitation even in mild 
degree can dramatically increase LV 
afterload. Collateral circulation to 
pulmonary system varies.

Reduced pulmonary blood flow

LV afterload Increased Continuous flow Reduction of MAP by the 
administration of vasodilators may 
reduce afterload while keeping high 
overall cardiac output.

Increased MAP

Coronary  
perfusion

Generally 
increased

Increased MAP If LV diastolic pressure is too high 
by increased afterload, coronary 
perfusion may decrease.

Reduced catecholamines

ECMO = extracorporeal membrane oxygenation; LV = left ventricle; MAP = mean arterial pressure; RA = right 
atrium; RV = right ventricle; VA = venoarterial.
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Harlequin syndrome
During VA ECMO, perfusate blood from ECMO mixes in the aorta with the LV blood, which 
has traversed the lungs. Hence, the content of oxygen and carbon dioxide in the patient’s 
arterial blood represents a combination of blood from these 2 sources, and the total systemic 
blood flow is the sum of the extracorporeal flow plus the amount of blood passing through 
the heart and lungs.5) Fully saturated blood from the ECMO circuit will meet the blood ejected 
from the native ventricle. The location of this mixing point, so called the watershed point, 
depends upon the amount of ECMO support provided and the degree of LV ejection. If there 
is extremely severe myocardial dysfunction, the mixing point will typically be in the proximal 
ascending aorta or aortic root. As myocardial function improves, the mixing point may 
migrate more distally into the descending thoracic aorta. The CO2 of blood ejected by the LV 
depends on the gas exchange ability of the native lungs. If significant pulmonary edema is 
present, hypoxic blood may perfuse the proximal aortic branches, including the coronaries 
and the innominate artery. The patient's upper body will appear blue, while the lower body 
will appear pink.10) This is the reason we call it Harlequin syndrome. The watershed point 
has been shown in computed tomography or fluoroscopic images in several reports.11-14) 
Therefore, measuring saturations in the right hand or analyzing arterial blood gases from the 
right arm is important (Figure 3).10)

INDICATIONS OF VENOARTERIAL EXTRACORPOREAL 
MEMBRANE OXYGENATION
Cardiogenic shock and cardiac arrest
The best indication of VA ECMO is a cardiogenic shock. Common causes of cardiogenic 
shock are acute myocardial infarction, acute myocarditis, progression of cardiomyopathy, 
acute allograft rejection after heart transplantation, overdose of cardiotoxic drugs, refractory 
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Figure 3. A simplified diagram showing the physiology of VA ECMO. Harlequin syndrome is common during VA 
ECMO. Patients on VA ECMO often have lung failure caused by pulmonary edema with preexisting cardiogenic 
shock, combined pneumonia, ventilation-perfusion mismatch, and pulmonary edema by left ventricular 
distension. If mixing point is distal to the aortic arch, patients are at risk of cerebral ischemia. 
ECMO = extracorporeal membrane oxygenation; RA = right atrium; VA = venoarterial.
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ventricular tachycardia, failure to wean off cardiopulmonary bypass, or cardiac failure 
coexistent with severe respiratory dysfunction. Although the most important step for 
successful VA ECMO is correct diagnosis, the timing of application is also important. Medical 
refractoriness is practically difficult to define. Persistent hypotension (systolic blood pressure 
less than 80 mmHg), increase of lactate level, worsening metabolic acidosis, frequent non-
sustained ventricular tachycardia or fibrillation, and requirement of other organ support 
devices such as dialysis or intra-aortic balloon pump (IABP) under high-dose inotrope or 
vasopressor infusion suggest the timing of VA ECMO.15) It is very important to start VA ECMO 
before cardiac arrest. The outcome of VA ECMO before cardiac arrest is much better than that 
of extracorporeal cardiopulmonary resuscitation (ECPR). A common mistake in the intensive 
care unit is the reliance on blood pressure only in deciding the initiation of VA ECMO. The 
cause of cardiogenic shock, responsiveness of medical therapy, signs of organ hypoperfusion 
(drowsy mentality, agitation, dyspnea, cold skin, and poor urine output), and laboratory 
findings should be taken into consideration when making a decision to initiate VA ECMO.

ECPR is the application of rapid deployment of ECMO to provide circulatory support 
in patients under cardiac arrest who fail to achieve a sustained return of spontaneous 
circulation (ROSC).9) Two studies of propensity score matching demonstrated the 
neurological or survival benefits of ECPR over conventional cardiopulmonary resuscitation 
(CPR).16)17) Most practitioners would agree that the goal is to minimize the duration of cardiac 
arrest and advocate shorter periods of CPR as being optimal. The previous reports usually 
suggest that the duration of CPR before ECMO should be less than 30 minutes, not greater 
than 60 minutes.18-20) Commonly used inclusion criteria for ECPR are as follows9): witnessed 
arrest,21) bystander CPR initiation within 5 minutes, high-quality and uninterrupted CPR 
including end-tidal CO2 more than 10 mmHg,22) failure to achieve ROSC within 15 minutes 
of CPR, initial rhythm of ventricular fibrillation or ventricular tachycardia, and age less than 
70 years. Nevertheless, age greater than 70 years is not an exclusion criterion.23) The 2015 
American Heart Association guidelines recommended that in settings where it can be rapidly 
implemented, ECPR may be considered for selected patients with cardiac arrest for whom 
the suspected etiology of the cardiac arrest is potentially reversible during a limited period of 
mechanical cardiorespiratory support.22)

Pulmonary thromboembolism
Treatment of acute pulmonary thromboembolism (PTE) varies considerably depending 
on the amount of thrombus and vital signs. VA ECMO is useful in rapidly deteriorating 
vital signs such as cardiac arrest or refractory shock because of acute PTE, that is, massive 
PTE.24-28) Moreover, if we consider the ECMO's physiology of partial cardiopulmonary bypass, 
VA ECMO is the most suitable device for the pathophysiology of right heart failure from 
PTE. After the patient becomes stable, the treatment for the thrombus should be selected 
among the following options: anticoagulation,25)29) systemic thrombolysis,30) catheter-
directed thrombectomy or thrombolysis,31) or surgical embolectomy.24)26) The European 
Society of Cardiology 2014 acute PTE guidelines briefly mention that ECMO can be used 
to treat massive PTE as a method for hemodynamic support and as an adjunct to surgical 
thrombectomy.32) Because VA ECMO itself requires systemic anticoagulation, VA ECMO with 
or without catheter-directed thrombectomy may cure acute PTE.31) Thrombolysis, especially 
systemic thrombolysis, would to be dangerous under VA ECMO. Authors have experienced 
severe uncontrollable cannulation site bleeding after thrombolysis.
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Septic shock
Sepsis was historically regarded as a contraindication to ECMO.1) A number of studies 
demonstrated that it could be lifesaving in neonatal and pediatric septic shock.33) Therefore 
in neonates and children, ECMO has been established as a valid salvage therapy. However, 
the evidence of its benefits in adult patients is weak, particularly in cases of refractory 
septic shock.34) Controversies surrounding the benefits of ECMO in septic shock with a 
predominantly vasoplegic phenotype persist.35) Favorable outcomes of VA ECMO in patients 
with septic shock combined with heart failures have been reported for recent years.36-39)

When applying VA ECMO for septic shock, the central ECMO is often performed because 
vasoplegia requires a significant amount of ECMO flow. Central ECMO can insert the largest 
available cannulae directly into the right atrium and ascending aorta. MacLaren et al.33) 
reported that the central ECMO has been used in adult patients to achieve flows of up to 10 L/
min with good outcomes. If the central ECMO is hesitant due to the bleeding risk, bilateral 
femoral cannulation can be considered.40) However, high-flow VA ECMO for septic shock 
does not seem to produce consistently favorable outcomes. We suggest using ECMO only 
when there are significant signs of combined cardiogenic shock such as high central venous 
pressure or pulmonary artery occlusion pressure.9) A sepsis patient with low LV ejection 
fraction and multi-organ failure already in progress is inadequate to perform VA ECMO 
because cardiac failure may be a sign of imminent death.

CANNULATION, MANAGEMENT, AND COMPLICATIONS

Cannulation strategies
There are 2 principles in VA ECMO configurations. One is central and another is peripheral. 
Although there is no clear definition of central ECMO, it generally means that at least one of 
the venous or arterial cannulation sites is in the central vessels (vena cava, pulmonary artery, 
or aorta) or cardiac chambers. Peripheral ECMO is inserted only through the peripheral 
vessels. Most of the VA ECMO is cannulated peripherally. The Seldinger technique is usually 
used for cannulation. Cannulae can be inserted blindly. However, the vast majority of 
patients who require VA ECMO for cardiovascular reasons have weak pulsatility.41) Therefore, 
ultrasound-guided cannulation or surgical exposure of the vessels is useful. Fluoroscopic-
guided cannulation is also helpful in advancing the guidewire or cannula without vascular 
complications.21)

Peripheral cannulation entails drainage of the venous blood from the right atrium through 
a cannula that exits the femoral vein. Multistage cannula is usually inserted with its tip in 
the inferior vena cava, right atrium or superior vena cava. Less commonly, the right internal 
jugular vein may also be used. Typically, the arterial cannula is a short cannula inserted in the 
femoral artery with the tip in the common iliac artery. Alternatively, arterial blood can also be 
returned into the axillary or subclavian artery through a side graft or directly.42)43)

The main advantage of peripheral cannulation is its ease of cannulation. The cannulation 
is often performed bedside and can even be performed in patients undergoing CPR. 
Disadvantages include the occurrence of Harlequin syndrome, aortic root thrombus 
formation, LV distension, and lower extremity ischemia. Furthermore, femoral cannulation 
may not be feasible in patients with significant peripheral vascular disease.44)
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In some peripheral VA ECMO cases, an additional cannula can be inserted to make two kinds 
of triple cannulations. One is venoveno-arterial ECMO which refers to the insertion of an 
additional venous drainage cannula typically into the right internal jugular vein. This intends 
to improve drainage and unloading.44)45) Another is veno-venoarterial or veno-arteriovenous 
ECMO which provides respiratory and circulatory support simultaneously. Part of the outflow 
is directed toward the right atrium. The relative flows of the 2 outflow limbs (arterial and 
oxygenated venous) are modulated using the adjustable clamps and flow sensors and must be 
carefully regulated as each change will impact preload, afterload, oxygenation, and location 
of the watershed.45)

The configuration of the central ECMO was originated from the classical cannulation during 
cardiac surgery. However, recently, it is performed when obtaining higher ECMO flow is 
necessary or peripheral cannulation is impossible. The short, large-bore venous cannulae 
are used for greater cardiac decompression than in peripheral cannulation. Additionally, 
as oxygenated blood is returned to the ascending aorta, there is less concern for retrograde 
flow and Harlequin syndrome.44) In most ECMO centers, chest is kept closed after central VA 
ECMO. After recovery from the surgery, the patient may be able to move more liberally than 
peripheral cannulation. This can be a significant benefit to the patients who have to wait for 
recovery or transplantation for longer period such as several weeks. A key disadvantage of 
central cannulation is that it requires entering the chest for cannulation and decannulation. 
As such, central cannulation results in the increased risk of bleeding, surgical reexploration, 
and mediastinitis.44)

Monitoring of adequate oxygen delivery
Flow of extracorporeal membrane oxygenation
In general, target flow rate for adults is 60 cc/kg/min.2) However, it never means “full flow.” 
The real target flow should be whatever flow that is needed to promptly reverse shock 
and restore tissue oxygenation. Circuit flows should be goal-directed, targeting rapid 
normalization of lactate, improvement in SvO2 >65%, and restoration of appropriate MAPs 
which is explained in the next paragraphs.6)

If the ECMO flow is insufficient, a correct cause should be differentiated from various ones 
such as ineffective circulating volume due to hypovolemia, pulmonary congestion or sepsis, 
problems in the drainage or return, or resistance in the ECMO circuit.

Blood pressure and pulsatility
ECMO provides continuous blood flow. Any pulsatility, if present, is created by the residual 
LV function. In severe cases of cardiogenic shock, only mean blood pressure, which is created 
by ECMO, can be measured, necessitating the use of an arterial line.10) The target MAP is 
usually more than 50 to 60 mmHg. We prefer the lower side of MAP to reduce LV afterload. 
As cardiac function improves, pulse pressure increases as a sign of recovery.9) Although 
keeping pulse pressure more than 10 mmHg has been a general recommendation in VA 
ECMO management, there is no evidence that “making pulse pressure more than 10 mmHg” 
improves outcomes. There are many studies insisting that high pulsatility and high MAP after 
ECMO is a good prognostic factor. However, augmenting pulsatility using low ECMO flow 
and high vasopressors may cause low cardiac output state and increase afterload of the heart. 
We prefer a cardiac resting (preload and afterload reduction) with no or low dose inotropes 
rather than artificially augmented pulsatility.
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Oxygen balance
Adequate systemic perfusion is best measured with a SvO2 and serum lactate level. Ideally, 
SvO2 greater than 70% and serum lactate level less than 2.2 mmol/L or 19.8 mg/dL ensure 
optimal balance between DO2 and VO2. SvO2 is generally increased immediately after ECMO 
initiation. However, increase in lactate level takes for a while depending on the pre-ECMO 
lactate level. Rather than the absolute value of lactate, the level should be decreased over 
time toward normal value. If SvO2 and lactate levels are not recovered with satisfaction, there 
are 2 typical scenarios. One is a wrong ECMO indication such as severe septic shock without 
cardiac compromise (high VO2). Another is insufficient oxygen supply (low DO2). This can 
be tried to manage by increasing ECMO flow with volume infusion or transfusion. Rarely, 
localized ischemia such as bowel infarction will present as a low SvO2 and reduced lactate 
clearance during VA ECMO.

Complications
Limb ischemia
Vascular complications include bleeding or hematoma in the cannulation site, lower limb 
ischemia, femoral artery embolism, and retroperitoneal bleeding,46)47) with lower limb 
ischemia being the major complication. If the femoral arterial cannula takes up most 
of the internal diameter of the artery, perfusion to the distal limb is impeded and limb 
ischemia occurs. If the distal limb ischemia is detected late or if the reperfusion procedure is 
performed late, it may be fatal due to rhabdomyolysis, acute kidney injury, or compartment 
syndrome requiring fasciotomy. Sometimes, amputation is inevitable.48)49) Risk factors for 
distal limb ischemia include the use of larger bore cannulae, presence of peripheral vascular 
disease, cannulation in the superficial femoral artery, presence of small iliofemoral arteries 
(in younger or female patients), and vasospasm (in profound shock, cardiac arrest, or high 
dose of vasopressors).

One of the best ways to increase distal perfusion is to perform an ultrasound- or fluoroscopy-
guided percutaneous catheterization into the superficial femoral artery.50)51) Catheterization 
after surgical exposure of the artery is another option.52) Surgical side graft perfusion is 
sometimes performed. After cannulation, the limb perfusion should be frequently checked 
because the catheter may be occluded by a thrombus or kink.

The timing of distal limb perfusion such as early preemptive perfusion or late selective 
perfusion is not yet established. Early perfusion is preferable over late perfusion when 
considering the fatal risk of limb ischemia.51)53) Several methods are known in determining 
the limb perfusion state. Measuring capillary refilling time of the toes is simple but less 
accurate. Distal limb perfusion is often nonpulsatile during ECMO. Thus, performing pulse 
oximetry is not useful. A Duplex ultrasound is more accurate than the pulse oximetry because 
it can detect continuous and nonpulsatile flow. However, performing Duplex ultrasound 
requires skills, and this procedure cannot be monitored continuously. Recently, near-infrared 
spectroscopy has been widely used because it is less invasive and continuous monitoring is 
possible.54)55) There is also a method of measuring the distal limb flow using a flowmeter.52)

Left ventricle distension and pulmonary edema
ECMO does not directly decompress the LV. Some venous blood continues to enter the right 
ventricle and thus is delivered through the pulmonary circulation into the LV. Additionally, 
bronchial circulation and Thebesian veins will also deliver blood into the LV. This blood must 
be ejected through the aortic valve and into the arterial circulation.10) Without satisfactory 
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ejection, blood will accumulate under pressure, until it eventually equalizes with systemic 
arterial pressure. The LV will not eject if its systolic function is too poor to overcome the 
afterload. Without urgent correction, severe pulmonary edema will occur, followed by fatal 
pulmonary hemorrhage. The LV must be encouraged to eject, by maintaining inotropes 
and decreasing afterload or blood pressure. Liberal use of echocardiography can be helpful 
in demonstrating routine opening of the aortic valve and in allowing the measurement of 
LV dimensions.10) A pulmonary artery catheter can also be helpful by noting a progressive 
increase in left-sided filling pressures. Dyspnea, low SaO2 of the right hand, increased tracheal 
secretion, and bloody and watery sputum are classic signs of LV distension. Aggravation of 
bilateral pulmonary congestion after VA ECMO also suggests pulmonary edema by VA ECMO. 
Generally, pulmonary artery occlusion pressure or pulmonary capillary wedge pressure, 
diastolic pulmonary artery pressure, and mean right atrial pressure reflect directly or indirectly 
LVEDP. High LVEDP will affect the pulmonary artery pressure and right atrial pressure. If 
there is no pulmonary artery catheter, monitoring the right atrial pressure may be helpful 
to detect LV distension. In echocardiography, decreased LV ejection fraction with increased 
LV end-diastolic dimension may suggest LV distension. Echocardiography will reveal many 
signs of increased LVEDP. Increased amount of valve regurgitation after VA ECMO is also 
helpful in diagnosing LV distension. There is no single diagnostic finding of LV distension. 
There should be a combination of symptoms or signs and available data from invasive lines or 
echocardiography. If the LV is distended despite the infusion of inotropes or vasodilators, left 
heart must be physically decompressed.10) Kapur and Esposito56) summarized the relationship 
between pressure and volume of the LV during VA ECMO with or without LV venting. VA ECMO 
reduces biventricular volumes with a concomitant increase in MAP and both LV systolic and 
diastolic pressures as we explained earlier in Figure 2B. This increase in LV afterload or wall 
stress occurs because there is no direct venting of the left heart with VA ECMO. Venting of the 
left heart with an IABP, Impella device, transaortic catheter, or transseptal LA cannula during 
VA ECMO support reduces LVESP and LVEDV. Left heart venting not only improves left heart 
distension but also improves Harlequin syndrome.57) ECMO with left heart decompression is 
known to improve survival in severe cardiogenic shock.58)

A number of methods have been suggested for left heart venting. Venting with other 
mechanical circulatory support such as IABP and Impella will be discussed in detail later.

1) Percutaneous transseptal LA venting
Percutaneous transseptal LA venting is performed with transseptal cannula insertion over the 
wire after transseptal atrial puncture. 59-62) If multistage venous cannula is available, we prefer 
inserting a single multistage venous cannula over the interatrial septum. This approach 
is referred to as LA-VA ECMO. LA-VA ECMO generally offers a sufficient biventricular 
decompression (Figure 4). 63)

2) Balloon atrial septostomy
Balloon atrial septostomy or atrial septal stenting, which induces left-to-right shunt during 
LV dysfunction, has been introduced as a less invasive technique than LA drainage through 
the transseptal puncture.61)64-67) However, if the hole of septostomy is not large enough, left-
to-right shunt may be ineffective.62)

3) Surgical left heart venting
Left heart vent cannula can be inserted through the right upper pulmonary vein.68) The 
cannulation can be performed with the right mini-thoracotomy as a less invasive technique. 
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It can later be used as a drainage cannula for paracorporeal LV assist device if necessary.69)70) 
Transapical LV cannulation through full sternotomy, lower median sternotomy,71) or left mini-
thoracotomy72) is also known to be useful, which has the advantage of subsequent bridging 
the LV assist device later.72)

4) Transaortic catheter left ventricle venting
In LV venting catheterization, the catheter is inserted retrogradely through the aortic valve.73) 
Moreover, this technique is considered to be less invasive technique, but as of today, the 
amount of drainage collected in this technique seems to be insufficient.74)75)

5) Percutaneous pulmonary artery venting
Percutaneous pulmonary artery venting with a 15-Fr drainage cannula via the jugular vein is 
considered a less invasive technique, which is inserted under fluoroscopy.76)77)

Venting with other mechanical circulatory support such as IABP and Impella will be 
discussed in detail later.

Anticoagulation-related complications: thromboembolism and bleeding
The primary purpose of systemic anticoagulation is to protect the major organs from 
thromboembolism. The secondary reason of anticoagulation is to keep ECMO circuit 
patent. There may be 2 sources of thrombi including native cardiopulmonary system and 
extracorporeal circuit. The more dangerous site of thrombi is the native cardiopulmonary 
system, since it is close to the coronary arteries and cerebral vessels. Currently available 
ECMO circuits are generally resistant to thrombus formation and sudden malfunction. It is 
highly important that good anticoagulation status is maintained during high-flow VA ECMO 
because native cardiopulmonary blood flow is slow or static (Figure 5). In adult patients, 

668https://e-kcj.org https://doi.org/10.4070/kcj.2019.0188

VA ECMO for Cardiogenic Shock

A B

Figure 4. LAVA ECMO. (A) In LAVA ECMO, the multistage cannula drains both in the left atrium (via end hole) 
and right atrium (via side holes). (B) A chest radiograph in which the cannula tip (red arrow) is placed in the left 
atrium through the atrial septum. 
ECMO = extracorporeal membrane oxygenation; LAVA = left atrial venoarterial.
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ECMO blood flow 1 L/min is enough to keep the circuit patent. At this low flow, it is almost 
impossible for the thrombi from ECMO to reach to the cerebral vessels.

Hemolysis is also an important complication of ECMO. There are many potential causes 
of hemolysis including pump thrombosis, increased resistance of the membrane lung, 
and kinking of tube or cannulae and so on. The most common cause of hemolysis is pump 
thrombosis. If a thrombus is formed in the centrifugal pump, there will be excessive friction 
that will damage the blood cells. Massive intravascular hemolysis results in multiorgan 
failure and anemia.78) Plasma lactate dehydrogenase is a useful maker of hemolysis. Although 
it is nonspecific for hemolysis, it rapidly increases during hemolysis and normalizes after 
the resolution of hemolysis. Dark red-colored urine and acute renal failure are also signs of 
hemolysis. Significant increase of plasma-free hemoglobin (>50 mg/dL) confirms massive 
intravascular hemolysis.

Heparin-induced thrombocytopenia (HIT) is a rare complication reported in up to 5% of 
patients, and screening tests have an unacceptably high false-positive rate, while confirmation 
tests, that is, HIT antibody assay and serotonin release assay, are very costly.79) As the latter 
tests are not available in most centers including our own, we take action on a positive HIT 
screening test only if there is clinical evidence of HIT.80) Management of HIT includes 
prompt cessation of heparin and transition to a direct thrombin inhibitor, for example, 
argatroban. This novel drug selectively binds to circulating and clot-bound thrombin. 
This direct mechanism of action renders antithrombin levels irrelevant, resulting in more 
predictable pharmacokinetics and better efficacy. Argatroban may have a more significant 
platelet-preserving effect than unfractionated heparin, regardless of whether HIT is present.81) 
Argatroban administered during ECMO is reported to be administered significantly less 
(0.1–0.2 mcg/kg/min) than the recommended dose for HIT (2 mcg/kg/min).81)82)
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High ECMO flow=Low native cardiopulmonary flow
: stasis in the cardiac chamber and ascending aorta
: increased risk of stroke

Lower bodyBrain

High native cardiopulmonary flow=Low ECMO flow
: decreased risk of stroke

Lower bodyBrain

Figure 5. Simplified diagrams are showing interaction between a patient's native cardiovascular system and VA 
ECMO flow. Embolic stroke is usually caused by thrombi in the native cardiac chambers rather than extracorporeal 
circuit. Anticoagulation is more crucial at high-flow than low-flow ECMO. 
ECMO = extracorporeal membrane oxygenation; VA = venoarterial.
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EXTRACORPOREAL MEMBRANE OXYGENATION 
WEANING
Myocardial recovery should be suspected when there is increased pulsatility in the arterial 
circulation, increased mixed venous saturation, decreased serum lactate level, and 
improvement in the echocardiographic appearance of systolic function. Flow can be gradually 
decreased, and hemodynamics are assessed. If blood pressure and cardiac output can be 
maintained on reasonable doses of inotropes, decannulation should be considered.5)10)

Echocardiography plays a key role in the ECMO, including patient selection, adequate placement 
of cannulae, and monitoring, weaning, and follow-up after decannulation.83) In our institution, 
we perform echocardiography at 3 L/min and 1 L/min of ECMO flow. Improved LV ejection 
fraction and cardiac output accessed by echocardiography are favorable signs of a successful 
weaning. If echocardiographic findings indicate that it is fine to proceed with weaning, we 
perform ECMO at 1 L /min for 12–24 hours. After 12–24 hours, we check the urine output, 
vasopressor or inotrope requirement, and SvO2 and lactate levels. We strongly discourage 
decannulation under high-dose inotropes or vasopressors with signs of organ hypoperfusion.

Femoral cannulae are removed by direct surgical exposure and repair, by removal and manual 
compression, or by removal with Perclose ProGlide suture-mediated closure system (Abbott 
Vascular, Clonmel, Ireland).10)84) Manual compression has the following disadvantages: 
performance of the procedure for 1–2 hours and performance of additive bed rest and the 
presence of risk of pseudoaneurysm or thrombotic occlusion. Surgical arterial repair requires 
surgical skills, although the risk of pseudoaneurysm is rather low.

COMBINED USE OF OTHER MECHANICAL CIRCULATORY 
SUPPORT
The use of other mechanical circulatory support during VA ECMO is performed because 
VA ECMO has no direct effect of venting the LV and the LVEDP increases as the cardiac 
function deteriorates.56)

Intraaortic balloon pump
An IABP can be instrumental in reducing afterload 10). There are still some conflicts over the 
effect of IABP under VA ECMO.85)86) However, neither report had any disclosures about the LV 
function or LA pressure before or after IABP. Tay et al.87) presented a hypothesis that the LV 
afterload may paradoxically increase during systole due to balloon deflation or “de-clamping” 
effect of the descending thoracic aorta. In diastole, balloon occlusion of the aorta may reduce 
ECMO-driven blood flow to the aortic root and arch and attenuate myocardial and cerebral 
perfusion (Figure 6). We believe IABP may be useful in a patient who only needs low-flow of 
VA ECMO than high-flow of ECMO. It also may facilitate weaning from VA ECMO. Further 
research on the degree of left heart decompression via IABP is deemed necessary.

Impella
The Impella devices (Abiomed Inc., Danvers, MA, USA) are microaxial flow blood pumps 
designed to be positioned across the aortic valve, actively pumping blood from the LV into the 
ascending aorta. The Impella pumps are approved by the US Food and Drug Administration 
for only 6 hours of support but are often used for longer duration of support.10) Impella 
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during VA ECMO has been demonstrated to be feasible and effective.88-90) Three devices for 
the left sided support and one for the right sided support are available.

CONCLUSION

We suggest a simplified flowchart for the initial management of VA ECMO (Figure 7). VA 
ECMO should be deployed before cardiac arrest or profound shock occurs. The ability of 
establishing quick and precise diagnosis of medically refractory cardiogenic shock is the 
most important step for a successful outcome. Proper cannulation is also important to 
prevent cannulation-related problems. After cannulation, blood flow of ECMO should be 
optimized. There are 3 values to easily monitor good ECMO flow including MAP, SvO2, and 
lactate level. MAP should not be too low or too high. To ensure enough tissue perfusion, 
SvO2 should be higher than 65%. If the flow of VA ECMO is adequate, the lactate level will 
be gradually decreased and finally normalized (<2.2 mmol/L). Inotropes and vasopressors 
are generally tapered out or maintained at a minimal dose. Systemic anticoagulation should 
be initiated as soon as hemostasis in the cannulation site is achieved. Distal limb perfusion 
should be checked frequently. If there are significant signs of hypoperfusion, selective 
perfusion catheter is inserted within 6–8 hours after VA ECMO initiation. Pulmonary edema 
by LV distension occurs after several hours or a few days after VA ECMO initiation. The classic 
signs are watery and pinkish tracheal secretion, bilateral pulmonary haziness, and low pulse 
pressure. If MAP is high, aggressive fluid removal and vasodilatation may help. However, LV 
decompression is frequently necessary.

We should examine the causes of cardiac failure and correct it as much as we can. For 
prolonged support, central ECMO conversion may be performed or an implantable LV 
assist device may be used. ECMO is not a procedure or treatment. It is a process including 
establishing a diagnosis, selecting a good candidate, performing a risky procedure, 
preventing and managing of complications, weaning, decannulation, and providing 
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(A) Severely depressed left ventricular systolic function with pulmonary edema

Head Foot

(B) During systolic phase, intraaortic balloon is deflated. Retrograde flow from ECMO
is not influenced by balloon pump.

ECMO flow
Balloon deflated

Head Foot

(B) During diastolic phase, intraaortic balloon is inflated. Retrograde flow is reduced
by balloon pump. Upper body hypoperfusion may be aggravated.

ECMO flowBalloon inflatedHead Foot

Figure 6. The blood flow in a patient with pulmonary edema on VA ECMO is shown. If a patient has extremely poor 
left ventricular systolic function, IABP may increase cardiac afterload by systolic deflation and decrease cerebral 
perfusion by diastolic inflation. 
ECMO = extracorporeal membrane oxygenation; IABP = intra-aortic balloon pump.
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general critical care. Therefore, a multidisciplinary approach is crucial for a good outcome. 
Cardiologists, intensivists, cardiovascular surgeons, perfusionists, and intensive care unit 
nurses should continuously discuss and collaborate to save such a sick patient. Although 
not previously mentioned, meticulous general critical care is extremely important. Intensive 
care unit physicians, ECMO specialists, and nurses are the people standing right beside 
these patients. They should know how to monitor a patient on ECMO and how to respond 
to complications. Teamwork and 3-dimensional care are keys in the success of ECMO. Yoko 
Ono, wife of John Lennon, said: “A dream you dream alone is only a dream. A dream you 
dream together is reality.”
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