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ABSTRACT
Background. The ability to maintain balance in an upright stance gradually worsens
with age and is even more difficult for patients with cognitive disorders. Cognitive
impairment plays a probable role in the worsening of stability. The purpose of this
study was to expose subjects with mild cognitive impairment (MCI) and healthy, age-
matched controls to moving visual scenes in order to examine their postural adaptation
abilities.
Methods. We observed postural responses to moving visual stimulation while subjects
stood on a force platform. The visual disturbance was created by interposing a moving
picture in four directions (forward, backward, right, and left). The pre-stimulus (a static
scene for 10 s), stimulus (a dynamic visual scene for 20 seconds) and post-stimulus (a
static scene for 20 seconds) periods were evaluated. We separately analyzed the total
path (TP) of the center of pressure (COP) and the root mean square (RMS) of the COP
displacement in all four directions.
Results. We found differences in the TP of the COP during the post-stimulus period
for all stimulus directions except in motion towards the subject (left p= 0.006, right
p= 0.004, and away from the subject p= 0.009). Significant RMS differences between
groups were also observed during the post-stimulus period in all directions except when
directed towards the subject (left p= 0.002, right p= 0.007, and away from the subject
p= 0.014).
Conclusion. Exposing subjects to a moving visual scene induced greater destabilization
in MCI subjects compared to healthy elderly controls. Surprisingly, the moving visual
scene also induced significant aftereffects in the MCI group. Our findings indicate that
the MCI group had diminished adaptation to the dynamic visual scene and recovery.
These results suggest that even mild cognitive deficits can impair sensory information
integration and alter the sensory re-weighing process.
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INTRODUCTION
The ability to maintain an upright stance is an essential prerequisite for carrying out many
activities of daily living (ADLs). The postural system involves multiple sensory inputs
(proprioceptive, visual, and vestibular), an executive (motor) system, and integrative
central regulation by a complex of neural systems (Horak & Macpherson, 1996). However,
like many other physiological systems, the effectiveness of the postural control system
decreases with age (Sturnieks, George & Lord, 2008) and it is still not fully understood
which factors play decisive roles in its deterioration. Postural control relies on accurate
sensory information to determine how the body is moving and maintains stability in a
dynamic environment. Deficits in sensory system structure and function are important
factors in the worsening of balance among the elderly (Härlein et al., 2009). Posturographic
analyses during quiet bipedal stance show that sway amplitudes and velocities are greater
in healthy elderly subjects compared to young people (Abrahamova & Hlavacka, 2008).
Increased sway parameters are also associated with a greater number of falls, which are a
major cause of morbidity (Johansson et al., 2017).

Cognitive impairment may also contribute to the deterioration of postural control.
An increased risk of falling has been observed in cognitively impaired elderly subjects
(Bouwen, Lepeleire & Buntinx, 2008). When sensory (vestibular, proprioceptive, and
visual) compensation is needed, cognitive involvement plays a pertinent role (Horak
& Kuo, 2000). Sensory adjustments are essential for everyday multitasking that demands
postural instability signaling. The connection between cognition and postural control
has been supported by dual-task experiments. Elderly subjects tasked with counting
backwards while speaking aloud had significantly disturbed quiet stances (Swanenburg et
al., 2009). Single digit naming (a working memory task) disturbed the upright stance of
elderly subjects, especially those with Alzheimer’s disease (AD), both on stable and moving
platforms (Rapp, Krampe & Baltes, 2006).

Many studies have used static posturography to examine the link between postural
control and cognitive impairment. A systematic review published by Bahureksa et al.
(2017) showed that mild cognitive impairment (MCI) had a significant effect on static
postural control, both in the medio-lateral (ML) and antero-posterior (AP) sway positions
with the eyes open, but not with the eyes closed. Furthermore, AP sway velocities showed
greater fluctuations than ML sway velocities in MCI subjects. Leandri et al. (2009) reported
decreased balance parameters in amnesticMCI patients compared to age-matched controls,
and also identified AP sway as the most sensitive parameter when discriminating between
healthy controls and MCI subjects (Leandri et al., 2009).

Static posturography may not be the most efficient method to detect subtle changes
associated with MCI-induced postural control impairment. However, the combination of
static posturography and sensory input manipulation may shed light on more complex
deficits. Visual scenesmoving in specific patterns can induce the illusion of bodymovement
in the environment. Without other inputs, subjects cannot distinguish whether they are
moving (self-motion) or the environment is moving (Keshner, Dokka & Kenyon, 2006).
This creates a sensory conflict that demands the subject use additional cognitive resources,
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such as adapting their body sway to changes in the environment (Assländer & Peterka,
2014). The perception of moving visual information (and the resulting sway) may be
influenced by various visual stimulation and directional characteristics such as speed
(Guerraz & Bronstein, 2008) and movement (Lestienne, Soechting & Berthoz, 1977; Van
Asten, Gielen & Denier van der Gon, 1988).

Sensory-motor integration, the term for the sensory-motor coupling that occurs
between visual information and body sway when maintaining an upright stance, gradually
decreases with age (Prioli, Freitas Júnior & Barela, 2005). A previous study involving
visual feedback manipulation showed larger postural sway increases in older participants,
indicating that older subjects prioritized visual input during postural control (Yeh, Cluff
& Balasubramaniam, 2014). Systematic research that focuses on visual stimulation in the
context of postural stability and MCI patients is scarce. The majority of related studies
assessed the role of vision in postural control with opened/closed eyes, or the role of
visual feedback in MCI patients, but only employed two types of visual stimulation
(Szczepańska-Gieracha, Chamela-Bilińska & Kuczyński, 2012; Borges et al., 2016).

Our study investigated the influence of moving visual scenes on postural adaptation
in healthy elderly controls and subjects with MCI. We hypothesized that MCI patients
would show pronounced destabilization, demonstrated by increases in the total path (TP)
of the center of pressure (COP), the root mean square (RMS) of the COP, and posture
stabilization time.

MATERIALS & METHODS
Subjects
All participants were recruited from the Second Department of Neurology, University
Hospital in Bratislava, Slovakia.

The MCI patient group consisted of 10 participants (five males and five females) with a
mean age of 74.4 years (standard deviation [SD]= 6.6) andMontreal Cognitive Assessment
(MoCA) scores between 20 and 24 points, with amean score of 21.9 (SD= 1.6). The control
group consisted of 10 (six male and four female) age-matched subjects with a mean age
of 72.2 years (SD = 5.2). Their MoCA scores were between 26 and 30 points with a mean
score of 27.8 points (SD = 1.7).

The inclusion criteria for the MCI group were: age (≥65), good visual acuity (with or
without correction), and an MCI diagnosis based on the MoCA results (Nasreddine et al.,
2005) and ADLs. We considered scores <25 as an indication of cognitive impairment.
ADLs were assessed by standard clinical interview. Patients with severe ADL impairment
were excluded. We examined their magnetic resonance imaging (MRI) scans for typical
signs of microvascular leukoencephalopathy, and each subject’s scan had to be Fazekas
stage 2 or higher (Fazekas et al., 1987; Fazekas et al., 1993). The MRI scans were thoroughly
examined to rule out signs typical of early AD, namely significant and localized (especially
posterior) cortical atrophy (Pini et al., 2016) or hippocampal atrophy (Fox et al., 1996).
The inclusion criteria for the control group were: age ≥65, good visual acuity (with or
without correction), no history of somatic or psychiatric disease, and no history of balance
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disorders. MoCA testing was also conducted for all control participants, who were required
to have scores ≥25. All healthy controls underwent brain imaging (computed tomography
and/or MRI) to rule out any structural changes. The exclusion criterion for both groups
was any disease that may interfere with or reduce the ability to maintain balance (subjects
were asked specific questions about neuropathy history, sensitivity disorders, movement
disorders, and vestibular impairment).

Ethical approval
The Ethics Committee of the University Hospital of Bratislava approved the study
procedures (2015/69-UNB). Participants received comprehensive information about
the experiments and gave written informed consent to participate, in accordance with the
Declaration of Helsinki. The experiments were carried out in accordance with the World
Medical Association’s Code of Ethics.

Experimental setup
We adapted a standard posturographic lab by reducing ambient lighting and peripheral
field of view interference when constructing the experiment room. The subjects’ peripheral
field of view was reduced by curtains on both sides of the screen (to prevent visual cueing).
The measuring equipment consisted of a force plate, data acquisition card, computer,
projector, and a screen for back projection. We created a custom MATLAB environment
for the entire acquisition process. A detailed explanation of the apparatus and calculations
can be found in our earlier study (Pucik et al., 2012). The force plate was developed by the
Institute of Normal and Pathological Physiology, Slovak Academy of Sciences (Hlavacka
et al., 1990) and produced two analog signals proportional to the COP deviations in the
ML and AP directions. The measured subject stood barefoot in a standard foot posture
(forming a ‘‘V’’ shape with their feet at a ∼30◦ angle) on the force platform (Scoppa et
al., 2013) in front of the projection screen. The dimensions of the projection screen were
2.0 × 1.5 m. We set the distance between the eyes and screen at 0.75 m.

Visual stimuli
There is currently no ‘‘gold standard’’ for visual motion stimuli design, but various test
patterns and movements have been reported. Previous research on visual stimulation
usually employed sinusoidal stimuli (Peterka & Benolken, 1995;Mergner et al., 2005; Dokka
et al., 2010). Other known stimulation scenes rotated an image around the horizontal plane
(Day et al., 2016), or created and tested multiple scenes that closely resembled situations
that could provoke postural disturbance (Pucik et al., 2014). However, these scenes did
not elicit the expected response. In this study, we used high contrast scenes because they
showed greater potential for inducing postural sway and imbalance.

Using a Virtual Reality Modeling Language format, we rendered visual stimuli as 3D
objects moving in time. The scene used for the illusion of lateral movement (a ‘‘roll’’
movement along the x-axis) consisted of a checkered board that rotated around an axis
aligned with the approximate center of the measured subject’s body mass (see Fig. 1A). The
checkered pattern surface was chosen to eliminate ‘‘cueing’’ of vision on any solid object
in the visual field. For the illusion of forward and backward motion along the y-axis, we
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Figure 1 Images used for ML stimulation (A) and AP stimulation (B).
Full-size DOI: 10.7717/peerj.10363/fig-1

used a scene with an animated tube (see Fig. 1B). The checkered pattern surface was used
for the same reason as in the lateral scene. Both scene types moved at a constant angular
velocity. The ML scene rotated at an angular velocity of 36◦/s. This rotation produced
linear velocity with a horizontal component of 1.1 m/s in the central field of view, and the
velocity vector magnitude increased up to 1.6 m/s in the peripheral field of view. In the AP
scene (Fig. 1B), image points in the center moved vertically at 0.57 m/s, while the optical
flow was 2.5 m/s in the periphery. We used the MATLAB environment to play and stop
the files during the experiments.

We analyzed the signals on a 100-Hz frequency after 12-bit AD conversion, and filtered
them using a zero-phase fourth-order Butterworth filter with a cut-off frequency of 20
Hz. Measured COP positions were used to calculate the TP of the COP, RMS in the
anteroposterior (RMSAP), and RMS in the mediolateral (RMSML) directions. Standard
equations were used to calculate the TP of the COP and RMS, and are explained in detail
in our previous study (Pucik et al., 2012).

Protocol
Each participant underwent the same measurement protocol for their responses to scenes
in four directions (right, left, away from the subject, and towards the subject). Each
response was measured for a duration of 50 s, consisting of the 10-second pre-stimulus
period (static scene), followed by the 20-second stimulation period (moving scene), and
the 20-second post-stimulus period (static scene). Each scene was presented five times in
a pseudo-random order (the directions were randomly shuffled to suppress adaptation).
A total of 20 scenes were presented. After every two scenes, there was a break for at least
120 s to decrease the influence of the adaptation effect and to prevent fatigue.

Computer and statistical analyses
We evaluated postural stability using the TP of the COP, the RMSML, and the RMSAP.
The TP of the COP is a representative velocity-related measure that provides information
on the postural corrections required to maintain postural stability, while the RMS reflects
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displacement-related measures that allow for the estimation of overall standing postural
performance (Hufschmidt et al., 1980; Holliday & Fernie, 1990).

The descriptive statistics were separately calculated for each phase (pre-stimulus, 10 s;
stimulus, 20 s; and post-stimulus, 20 s). We also separately analyzed the measurements
across the four different directions (away from, towards, left, and right). The three phases
(pre-stimulus, stimulus, and post-stimulus) were compared within groups and across
different groups. We used IBM SPSS version 24.0 software for statistical analyses.

Repeated measures analyses of variance (ANOVAs) were utilized to calculate the TP of
COP and RMS scores. We tested two types of models. In the first model, we considered
stimulus type and direction as within-group factors and group as a between-subject
factor. Four simpler models were also tested in all directions, with stimulus type as a
within-group factor and group as a between-subject factor. We used a Greenhouse-Geisser
correction when a violation of sphericity occurred. For post-hoc analyses, t -tests were used.
When groups were compared across stimulus type, we performed a Bonferroni correction
(alphabonf = alpha/number of comparison). Group differences were considered statistically
significant when p≤ 0.0167. The effect sizes were expressed with η2 coefficient (we used
following cut offs for quantification of size: small - η2 = 0.01; medium - η2 = 0.06; and
large - η2 = 0.14) (Miles & Shevlin, 2001).

RESULTS
We found that a moving visual field induced responses in the same direction for both the
MCI and control groups. Figure 2 shows the postural sway elicited by visual stimulation.

In the TP of the COP, we observed significant effects caused by time (F(1.316,23.683)=
26.803, p< 0.001, eta2 = 0.598), direction (F(1.572,28.302) = 3.877, p = 0.042,
eta2 = 0.177), and group (F(1,18)= 8.379, p= 0.010, eta2 = 0.318). This three-way
interaction effect was not statistically significant (F(1.887,33.972)= 1.206, p= 0.310,
eta2= 0.063) (Fig. 3). The post-hoc t -test results are shown in Fig. 4.

For the RMS, we observed significant effects caused by time (F(1.177,21.183)= 12.869,
p= 0.001, eta2 = 0.417), direction (F(2.074,37.340)= 14.821 p< 0.001, eta2 = 0.482),
and group (F(1, 18)=8.388, p= 0.010, eta2= 0.318). This three-way interaction effect was
not statistically significant (F(3.068,55.229)= 0.357, p= 0.789, eta2= 0.019) (Fig. 5). The
comparisons between the RMSML for lateral stimulation and the RMSAPfor AP stimulation
(post-hoc t -test) in all directions are shown in Fig. 6.

The separate repeated measures ANOVA results and the descriptive statistics for the TP
of the COP and RMS for the four directions are presented in Table 1. In these models, time
(pre-stimulation, stimulation, andpost-stimulation)was thewithin-group factor and group
was the between-subject factor. We found significant differences across different phases
(pre-stimulation, stimulation, post-stimulation) except for the RMS when stimulating
to the right side. In group comparison (healthy controls and MCI patients) we found
significant differences in all conditions, but not in TP of the COP when stimulating toward
the subject. The interaction between stimulus and group was not significant neither in the
TP of the COP nor in RMS in all directions.
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Figure 2 Averaged group responses of COP shift to visual stimulation. (A) Scene moving forward from
the subject. (B) Scene moving backwards from the subject. On the vertical axis, values above and below
zero indicate the subject moving on AP axis forward and backward. (C) Scene rotating to the left. (D)
Scene rotating to the right. On the vertical axis, values above and below zero indicate the subject is moving
on ML axis to the right and left, respectively.

Full-size DOI: 10.7717/peerj.10363/fig-2

Figure 3 Results of repeated measures ANOVAs of TP of COP. Repeated measures ANOVAs of TP of
COP between controls (blue) and MCI patients (red) during the pre-stimulus, stimulus and post-stimulus
periods. Time (pre-stimulation, stimulation and post-stimulation) and group were within- and between-
factor variables, respectively.

Full-size DOI: 10.7717/peerj.10363/fig-3
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Figure 4 Post-hoc t -tests comparing TP of COP between groups during pre-stimulus, stimulus, and
post-stimulus periods. (A) Scene rotating to the left. (B) Scene rotating to the right. (C) Scene moving to
subject. (D) Scene moving away from the subject. Significant differences (p≤ 0.0167) are marked with as-
terisks. In post-stimulus period, for direction to the left p = 0.009, for right p = 0.007 and for direction
from the subject p= 0.012.

Full-size DOI: 10.7717/peerj.10363/fig-4

Figure 5 Results of repeated measures ANOVA of RMS differences between controls (blue) andMCI
patients (red) during pre-stimulus, stimulus, and post-stimulus periods. Time (pre-stimulation, stimu-
lation and post-stimulation) and group were within- and between-factor variables, respectively.

Full-size DOI: 10.7717/peerj.10363/fig-5
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Figure 6 Post-hoc t -tests comparing RMS (in mm) between groups during pre-stimulus, stimulus,
and post-stimulus periods. (A) Scene rotating to the left. (B) Scene rotating to the right. (C) Scene mov-
ing to subject. (D) Scene moving away from the subject. Significant differences (p ≤ 0.0167) are marked
with asterisks. In pre-stimulus period, for stimulation away from subject, p= 0.003. In post-stimulus pe-
riod, for direction to the left p = 0.009, for right p = 0.007 and for direction away from the subject p =
0.014.

Full-size DOI: 10.7717/peerj.10363/fig-6

DISCUSSION
Both groups responded to the dynamic visual scenes with postural tilts and new COP
positions. The postural tilts were in the same rotating and linear directions ofmotion shown
in the given scene. These observations were consistent with those reported previously for
postural responses perturbed by moving visual stimuli (Meyer et al., 2013). We did not
find any differences in the postural reactions of the control and MCI groups during
stimulation, but we did observe a difference after the cessation of the visual stimulus
during the post-stimulus period. This difference was reflected in both the TP of the COP
and RMS values in the directions to the left, right, and away from the subject.

The patients remained unstable during the whole recorded (post-stimulus) period,
i.e., the COP position did not reach the initial set. One reason for this stimulation after-
effect could be the persistent feeling of self-motion (vection). Guerraz & Bronstein (2008)
proposed two different postural reactions that differed in latency and origin. The longer
latency postural mechanism was related to the conscious perception of self-motion during
longer-duration body displacements, and the second system could be vection-influenced.

Kucharik et al. (2020), PeerJ, DOI 10.7717/peerj.10363 9/17

https://peerj.com
https://doi.org/10.7717/peerj.10363/fig-6
http://dx.doi.org/10.7717/peerj.10363


Table 1 Results of separate repeated measures ANOVAs of TP of COP and RMS.a

Pre-stimulus Stimulus Post-stimulus Repeated measures ANOVA
controls patients controls patients controls patients TIME

STIMULATION PHASE
GROUP INTERACTION

group averages in milimeters (SD in brackets)

TP of COP LEFT 230.1 (43.2) 312.7 (178.6) 493.6 (165.2) 900.2 (542.3) 286.3 (71.3) 559.1 (260.8) F = 17.177, p <0.001, η 2 = 0.488 F = 8.546, p= 0.009, η 2 = 0.322 F = 1.589, p= 0.144, η 2 = 0.111

RIGHT 245.7 (57.1) 361.6 (216.5) 428.2 (88.2) 726.6 (333.4) 269.3 (44.9) 532.9 (245.1) F = 21.372, p <0.001, η 2 = 0.543 F = 9.626, p= 0.006, η 2 = 0.348 F = 2.609, p= 0.112, η 2 = 0.100

TO 283.5 (49.3) 416.8 (275.3) 635.6 (386.0) 836.9 (425.5) 385.1 (143.8) 798.7 (642.3) F = 9.309, p= 0.001, η 2 = 0.341 F = 3.628, p= 0.073, η 2 = 0.168 F = 1.306, p= 0.284, η 2 = 0.068

FROM 251.9 (58.0) 402.6 (328.4) 441.0 (172.2) 703.8 (302.9) 265.5 (49.4) 547.5 (286.1) F = 29.667, p <0.001, η 2 = 0.622 F = 5.869, p= 0.026, η 2 = 0.246 F = 1.457, p= 0.124, η 2 = 0.117

RMS LEFT 4.82 (2.13) 6.28 (2.55) 7.83 (2.72) 14.26 (9.82) 6.48 (2.22) 11.43 (3.56) F = 9.381, p= 0.004, η 2 = 0.343 F = 8.225, p= 0.010, η 2 = 0.314 F = 1.988, p= 0.172, η 2 = 0.099

RIGHT 4.93 (2.10) 6.96 (3.34) 6.87 (1.50) 12.83 (12.29) 5.90 (1.71) 11.48 (5.05) F = 3.387, p <0.076, η 2 = 0.554 F = 5.993, p= 0.025, η 2 = 0.250 F = 0.991, p= 0.343, η 2 = 0.052

TO 6.31 (1.79) 9.17 (2.92) 12.53 (4.63) 17.96 (8.95) 9.94 (3.28) 16.51 (7.67) F = 18.896, p <0.001, η 2 = 0.512 F = 6.183, p= 0.023, η 2 = 0.256 F = 1.129, p= 0.335, η 2 = 0.059

FROM 5.87 (1.43) 8.06 (1.44) 9.33 (2.53) 15.47 (9.98) 7.42 (1.82) 14.41 (7.21) F = 10.880, p < 0.001, η 2 = 0.377 F = 7.293, p= 0.015, η 2 = 0.288 F = 2.226, p= 0.140, η 2 = 0.112

Notes.
aDescriptive values are given with standard deviations in parentheses.

Kucharik
etal.(2020),PeerJ,D

O
I10.7717/peerj.10363

10/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.10363


This system takes time to fully develop and consistently induce body tilt in the direction of
visual motion. Based on the duration of the stimulation, a longer latency system could ‘‘kick
in’’ during movement cessation or even later, increasing sway during the post-stimulus
period.

Vection is perceived differently in subjects with MCI, since cognitive status is known to
alter the recognition of vection (Riecke et al., 2006). Mather et al. (2008) summarized that
adaptation to visual motion perception (and the experience of motion after-effect) involves
up to five different cortical areas, reflecting the multiple levels of processing involved in
visual motion analysis. Healthy but fall-prone seniors need more time to adapt to changes
in visual stimulus amplitude compared to young people (Jeka, Allison & Kiemel, 2010).
Furthermore, healthy seniors need more exposure to visual motion perturbation in order
to habituate themselves, and this may be exacerbated in MCI patients (O’Connor & Kuo,
2009). As a result, subjects with MCI may have more difficulties mastering vection and the
consequent postural responses needed to respond to changes in static and dynamic scenes.

Studies on augmented visual feedback have found that elderly adults and subjects with
MCI prioritize vision during postural control (Szczepańska-Gieracha, Chamela-Bilińska &
Kuczyński, 2012; Yeh, Cluff & Balasubramaniam, 2014). This reflects a compromised ability
to correctly reweigh visual information and an overreliance on visual input. The MCI
group’s persistent postural destabilization after visual stimulation cessation may have been
caused by their loss of ability to quickly downweigh the importance of visual information
during postural stabilisation. This top-down inhibition of sensory information may be
mediated by the cholinergic system, which is deficient in patients with subcortical vascular
lesions associated with MCI (Murray et al., 2018; Liu et al., 2017). We also observed similar
difficulties with downweighing visual information and fusing different sensory modalities
when adaptation was needed in subjects with Parkinson’s disease (PD), which is associated
with subcortical cognitive impairment (Hwang et al., 2016). PD patients can also react
hyperactively to visual stimuli, and can find visual information to be misleading (Bronstein
et al., 1990).

Despite extensive efforts, we did not find any relevant studies describing motion
after-effects in subjects with MCI or any cognitive disorder of subcortical vascular origin.
However,multiple studies have observed akinetopsia (the inability to distinguishmovement
in a visual scene) in subjects with AD (Tsai & Mendez, 2009). Our results did not rule out
the possibility that subjects with MCI of a vascular origin (as opposed to subjects with
AD) may sway more in a variable environment due to their increased sensitivity to motion
after-effect.

Compensatory postural feedback mechanisms are impaired in people with white matter
lesions (Zheng et al., 2011). In our MCI group, we observed increased sway parameters
during the post-stimulus phase that suggest alterations in the feedback mechanisms.
The persistent instability of the MCI group during the post-stimulus phase supports the
assumption that these subjects have a decreased ability to adapt their perception to a
dynamic visual scene.

The non-significant results for the TP of the COP and RMS AP between the MCI and
control groups in the direction towards the subject (both in the stimulus and post-stimulus
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periods) may be explained by the biomechanical restrictions on backward ankle joint
movement and the shorter distance towards safe posture boundaries (Horak, 1997).
Another explanation could be the subjects’ fear of falling, which may have activated their
stiffening strategies and smaller backward postural reactions (Carpenter et al., 2001).

Study limitations
The sample size of our studied population was small, but the statistical significance of the
results and the thorough age matching between groups supports their validity. A statistical
RMSAP difference could have affected the RMSAP values during and after stimulation.
However, a statistical difference was only achieved during the post-stimulus period. Our
findings are also in line with those of Novak et al. (2009), who found increased sway
parameters in patients with periventricular white matter lesions. Additionally, we only
performed force-plate measurements, and more accurate data may have been obtained
using an accelerometer and a 3D tracking system. The test groups included almost equal
numbers of males and females, and we did not address gender differences in terms of
postural sway. We also could not rule out subjects in the early stages of other forms of
cognitive dysfunction (but with the same MRI and clinical characteristics as subjects with
vascular-origin MCI) using our methods. Knowing the prevalence of previous and, more
importantly, future falls could add key information to the clinical application of our
findings.

CONCLUSION
In conclusion, we examined how a visual dynamic scene influences postural stability in
elderly subjects with MCI and age-matched controls. We found that the dynamic visual
scene caused MCI patients to have more pronounced postural reactions that allowed them
to maintain postural stability within safe boundaries. The most striking difference between
the healthy controls and the MCI patients occurred during the post-stimulus period after
the cessation of the visual stimulation. There are several possible explanations for this
phenomenon. The most likely is the subjects’ decreased abilities to habituate to aberrant
visual perception and to rapidly assess sensory information source reliability. This means
that patients were more dependent on dominant sensory information, even when it was
incorrect. Therefore, continuous sensory illusions can cause destabilisation and even falls
in MCI patients.
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