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Abstract Metformin, which is a drug commonly pre-

scribed to treat type 2 diabetes, has anti-proliferative

effects in cancer cells; however, the molecular mechanisms

underlying this effect remain largely unknown. The aim is

to investigate the role of tristetraprolin (TTP), an AU-rich

element-binding protein, in anti-proliferative effects of

metformin in cancer cells. p53 wild-type and p53 mutant

breast cancer cells were treated with metformin, and

expression of TTP and c-Myc was analyzed by semi-

quantitative RT-PCR, Western blots, and promoter activity

assay. Breast cancer cells were transfected with siRNA

against TTP to inhibit TTP expression or c-Myc and, after

metformin treatment, analyzed for cell proliferation by

MTS assay. Metformin induces the expression of triste-

traprolin (TTP) in breast cancer cells in a p53-independent

manner. Importantly, inhibition of TTP abrogated the anti-

proliferation effect of metformin. We observed that met-

formin decreased c-Myc levels, and ectopic expression of

c-Myc blocked the effect of metformin on TTP expression

and cell proliferation. Our data indicate that metformin

induces TTP expression by reducing the expression of c-

Myc, suggesting a new model whereby TTP acts as a

mediator of metformin’s anti-proliferative activity in can-

cer cells.
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Introduction

Metformin is a first-line hypoglycemizing agent used for

the treatment of type 2 diabetes (T2D) [1]. Recently,

metformin has received increased attention because of its

potential anti-tumorigenic effects [2–4]. Metformin exerts

its effects by disrupting mitochondrial respiratory chain 1,

which leads to decreased ATP synthesis and increased

AMP associated with AMPK, ultimately leading to AMPK

activation [5]. This regulation of AMPK by metformin

leads to its anti-proliferative effects due to subsequent

modification of the activity of mammalian target of rapa-

mycin (mTOR) [6, 7] and p53 [8]. On the other hand,

synthetic AMPK agonists provide a proliferative advantage

to the cells [9], and there is emerging evidence to suggest

that metformin can arrest cell proliferation in an AMPK-

independent manner [9–15]. Specifically, metformin has

been reported to affect several other intracellular pathways

in tumor cells including HER1/HER2, Src, S6K1, c-Myc,

and STAT3 [8, 16–19] and is also able to overcome dietary

restriction resistance in cancer cells [20]. Overall, however,

the mechanistic aspects of metformin action with respect to

its anti-proliferative functions remain ill-defined.

AU-rich elements (AREs) post-transcriptionally regulate

the expression of a variety of short-lived mRNAs such as

cytokines and proto-oncogenes [21]. The stability of ARE-

containing mRNAs is regulated by ARE-binding proteins

[22]. One of the best-characterized ARE-binding proteins

is tristetraprolin (TTP, ZFP36), which promotes the

degradation of ARE-containing transcripts [23, 24]. TTP

expression is significantly decreased in various cancers
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[25], which correlates with increased expression of proto-

oncogenes and may contribute to cancer processes. Like-

wise, re-expression of TTP has a growth inhibitory effect

[26–28]. The expression of TTP in cancer cells is induced

by p53 [29] but inhibited by Myc [30]. However, nearly all

types of cancers have abnormalities in the p53 pathway

[31]. Furthermore, c-Myc is often activated in human

cancers [32]. Together, these features may lead to a

widespread decrease in the expression of TTP in human

cancers.

We show here for the first time that metformin induces

the expression of TTP in a p53-independent manner, and

also that TTP mediates the anti-proliferative effect of

metformin in both p53 wild-type and p53 mutant cancer

cells. Specifically, metformin decreased the expression of

c-Myc and increased the expression of TTP in both p53

wild-type and p53 mutant cells. Ectopic expression of c-

Myc abrogated the effects of metformin with respect to

TTP induction, while siRNA-mediated inhibition of TTP

attenuated the anti-proliferative effects of metformin.

Together, these studies identify a novel signaling pathway

by which metformin induces TTP expression in a p53-in-

dependent manner, representing a possible novel pharma-

cological approach to treat p53 mutant cancer cells.

Methods and materials

Cell culture

The human MCF7 and MDA-MB-231 breast cancer cell

lines were purchased from the Korean Cell Line Bank

(Seoul, Korea). Cells were cultured in RPMI 1640 media

supplemented with 10 % heat-inactivated fetal bovine

serum (FBS) (Welgene, Korea) and were maintained at

37 �C in a humidified 5 % CO2 atmosphere. To investigate

the induction of TTP, cells were treated with metformin

(D150959 Sigma) in the presence or absence of 20 lM

compound C (P5499 Sigma). Cells were harvested at the

indicated length of time and analyzed for mRNA by RT-

PCR, protein by Western blotting, and cell viability by

MTS assay.

Cell viability/proliferation

For the MTS cell proliferation assay, cells were plated in

triplicate at 1.0 9 104 cells/well in 96-well culture plates

in culture media. At 24 h after plating, CellTiter 96�

AQueous One Solution reagent (Promega) was added to

each well according to the manufacturer’s instructions, and

absorbance at 490 nm was determined for each well using

a Victor 1420 Multilabel Counter (EG&G Wallac, Turku,

Finland).

Plasmids, small interfering RNAs, transfections,

and dual-luciferase assay

The pcDNA6/V5-TTP containing full-length ORF of

human TTP [33] and the pGL3/TTPp-1343 containing

human TTP promoter [29] were described previously. The

pcDNA3-cMyc vector was purchased from Addgene.

For luciferase assays, cells were co-transfected with a

pGL3/TTPp-1343-luciferase reporter construct and pRL-

SV40 Renilla luciferase construct using TurboFectTM

in vitro transfection reagent (Fermentas). Transfected cells

were lysed with lysis buffer and mixed with luciferase

assay reagent (Promega). The chemiluminescent signal was

measured using a SpectraMax L Microplate (Molecular

Devices, Sunnyvale, CA, USA). Firefly luciferase was

normalized to Renilla luciferase in each sample. All luci-

ferase assays reported in this study represent at least three

independent experiments, each consisting of three wells per

transfection.

Small interfering RNAs (siRNAs) against human TTP

(TTP-siRNA, sc-36761), human c-Myc (c-Myc-siRNA, sc-

29226), and control siRNA [scrambled siRNA (scRNA),

sc-37007] were purchased from Santa Cruz Biotechnology

(Santa Cruz). Cells were transfected 24 h after plating

using LipofectamineTM RNAiMAX (Invitrogen) and were

harvested at 48 h after transfection. The expression levels

of TTP or c-Myc mRNA and protein were analyzed by RT-

PCR and Western blotting, respectively.

SDS–PAGE analysis and immunoblotting

Proteins were resolved by SDS–PAGE, transferred onto

Hybond-P membranes (Amersham Biosciences Inc.), and

probed with appropriate dilutions of the following anti-

bodies: rabbit anti-human TTP (T5327, Sigma), anti-hu-

man c-Myc (sc-40, Santa Cruz), anti-p53 (1026-1,

Epitomics), anti-phospho-p53 (#9284, Cell Signaling),

anti-AMPK (#2603, Cell Signaling), anti-phospho-AMPK

(#2535, Cell Signaling), anti-STAT3 (#12640, Cell Sig-

naling), anti-phospho-STAT3 (#9134, Cell Signaling), and

anti-b-actin (A2228, Sigma). Immunoreactivity was

detected using an ECL detection system (Amersham Bio-

sciences Inc.). Films were exposed at multiple time points

to ensure that the images were not saturated.

Quantitative real-time PCR and semi-qRT-PCR

DNase I-treated total RNA (3 mg) was reverse transcribed

using oligo-dT and Superscript II reverse transcriptase (In-

vitrogen) according to the manufacturer’s instructions. qRT-

PCR was performed by real-time monitoring of the increase

in fluorescence of SYBR Green dye (QIAGEN, Hilden,

Germany) using a StepOnePlusTM real-time PCR system
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(Applied Biosystems). Semi-qRT-PCR was performed

using Taq polymerase (Solgent, Daejeon, Korea). The PCR

primer pairs were as follows: TTP: 50-CGCTACAA-

GACTGAGCTAT-30, 50-GAGGTAGAACTTGTGACAG

A-30; c-Myc: 50- ACAGCATACATCCTGTCCGTCCAA-

30, 50-TGTTCTCGTCGTTTCCGCAACAAG-30; GAPDH:

50-ACATCAAGAAGGTGGTGAAG-30, 50-CTGTTGCTG

TAGCCAAATTC-30.

Statistical analysis

For statistical comparisons, p values were determined using

Student’s t test.

Results

Metformin induces tristetraprolin expression

in both p53 wild-type and p53 mutant breast cancer

cells

We previously reported that p53 is required for TTP

induction in cancer cells [29]. In addition, metformin can

enhance p53 activity [8], suggesting the possibility that

metformin can induce TTP expression in p53 wild-type

cancer cells. To evaluate this possibility, we treated p53

wild-type MCF7 breast cancer cells with metformin. As

expected, treatment with metformin increased the mRNA

and protein levels of TTP in MCF7 cells in a dose- (Fig. 1a)

and time-dependent (Fig. 1b) manner. Metformin treatment

enhanced TTP promoter activity (Fig. 1c), indicating that

metformin enhances TTP gene expression in MCF7 cells. To

test whether p53 activity is required for TTP induction by

metformin, we treated MDA-MB-231 breast cancer cells,

which have a mutant p53 status, with metformin and ana-

lyzed the induction of TTP. We confirmed that, while met-

formin increased phosphorylation of p53 in MCF7 cells, it

did not do so in MDA-MB-231 cells (Fig. 1d). Unexpect-

edly, we found that metformin treatment also increased the

mRNA and protein levels of TTP in MDA-MB-231 cells in

a dose-(Fig. 1e) and time-(Fig. 1f) dependent manner., as

well as promoter activity (Fig. 1g). Together, these data

suggest that metformin can induce TTP expression in breast

cancer cells in a p53-independent manner.

TTP mediates metformin’s anti-proliferative

function

Previously metformin has been reported to exert anti-tu-

morigenic effect [2–4]. To confirm whether metformin

shows anti-proliferative effect on MCF7 and MDA-MB-

231 cells, we incubated these cells in the presence of dif-

ferent concentration of metformin for 24 and 48 h and

analyzed the cell proliferation using MTS assay. Consistent

with previous reports [2–4], metformin treatment signifi-

cantly inhibited the growth of both MCF7 and MDA-MB-

231 cells in a dose-dependent (Fig. 2a, b) and time-de-

pendent manner (Fig. 2c, d). Since incubation of both

MCF7 and MDA-MB-231 cells with 6 mM metformin for

24 h induced TTP expression (Fig. 1a, e, f) and showed

anti-proliferative effect (Fig. 2a–d), we conducted further

experiment under conditions of incubating cells with 6 mM

metformin for 24 h. Ectopic expression of TTP has been

reported to inhibit cancer cell growth [26–28], and we

confirmed that overexpression of TTP (Fig. 2e) inhibited

cell proliferation in both MCF7 (Fig. 2g) and MDA-MB-

231 cells (Fig. 2h). We next tested whether TTP is required

for the anti-proliferative activity of metformin. To this end,

we inhibited the expression of TTP using siRNA (Fig. 2f)

and examined the effects of TTP knock-down on the anti-

proliferative activity of metformin in MCF7 and MDA-

MB-231 cells. Importantly, treatment of cells with siRNA

against TTP (TTP-siRNA) but not scRNA attenuated the

inhibitory effects of metformin on the growth of both

MCF7 (Fig. 2g) and MDA-MB-231 cells (Fig. 2h) These

results strongly suggested that TTP mediates the anti-pro-

liferative functions of metformin in breast cancer cells.

Metformin induces TTP expression in a c-Myc-

dependent manner

We previously reported that TTP expression is induced by

STAT3 in LPS-stimulated macrophages [34]. However, it

is unlikely that STAT3 mediates the induction of TTP

expression by metformin in breast cancer cells, since

metformin decreased STAT3 phosphorylation (Fig. 3a). It

has been reported that metformin decreases c-Myc levels in

an AMPK-dependent manner [18] and also that c-Myc

suppresses TTP expression [30]. Consistently, we found

that metformin treatment increased phosphorylation of

AMPK and decreased c-Myc levels in a time-dependent

manner in both MCF7 (Fig. 3a, left) and MDA-MB-231

cells (Fig. 3a, right). In addition, siRNA-mediated inhibi-

tion of c-Myc increased TTP promoter activity (Fig. 3b, c)

in the absence of metformin in both MCF7 and MDA-MB-

231 cells (Fig. 3b, c). These results suggest that down-

regulation of c-Myc level by metformin induces TTP

expression. However, it is not likely that, in MDA-MB-231

cells, down-regulation of c-Myc is the only mechanism for

the metformin-induced TTP expression, since metformin

further increased the TTP promoter activity in c-Myc-de-

pleted MDA-MB-231 cells (Fig. 3c). These results indicate

that while metformin induces TTP expression in c-Myc-

dependent manner in MCF7 cells, it induces TTP expres-

sion through both c-Myc-dependent and c-Myc-indepen-

dent manner in MDA-MB-231 cells.
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We next tested whether metformin induces TTP

expression in an AMPK-dependent manner. We treated

MCF7 and MDA-MB-231 cells with 6 mM metformin in

the presence or absence of AMPK inhibitor compound C

for 24 h and analyzed the effect of compound C on the

metformin-induced TTP expression. The compound C

inhibited AMPK phosphorylation and blocked metformin-

mediated induction of TTP in both MCF7 and MDA-MB-

231 cells (Fig. 3d), indicating that AMPK phosphorylation

is required for metformin-induced TTP expression. We

next tested whether overexpression of c-Myc could block

the effect of metformin on the induction of TTP expression

in cancer cells. Specifically, we transfected MCF7 and

MDA-MB-231 cells with c-Myc (Fig. 3e) and analyzed the

extent of TTP induction by real-time PCR (Fig. 3f) and cell

proliferation by MTS assay (Fig. 3g, h) after treatment of

the cells with metformin. Cells transfected with pcDNA3

empty vector were used as controls. Metformin treatment

increased TTP expression (Fig. 3f) and inhibited cell pro-

liferation in both pcDNA3-transfected MCF7 (Fig. 3g) and

MDA-MB-231 cells (Fig. 3h). However, in cells over-ex-

pressing c-Myc, metformin failed to induce TTP

Fig. 1 Metformin induces expression of TTP in both p53 wild-type

and p53 mutant breast cancer cells. a, b Metformin increases TTP

levels in p53 wild-type human breast cancer MCF7 cells. MCF7 cells

were treated a with the indicated concentrations of metformin for

24 h or b with 6 mM metformin for the indicated length of time. The

levels of TTP were measured by semi-qRT-PCR (a, b, top) and

Western blotting (a, b, bottom). c Metformin induces TTP promoter

activity in p53 wild-type MCF7 cells. MCF7 cells were transfected

with pGL3/TTPp-1343 containing the TTP promoter. After treatment

with 6 mM metformin for 24 h, luciferase activity was measured. The

expression levels obtained from pGL3-transfected cells without

metformin treatment were set to 1. Data are presented as the

mean ± SD (n = 3). ***p\ 0.001. d Metformin induces p53

phosphorylation in p53 wild-type MCF7 cells but not p53 mutant

MDA-MB-231 cells. MCF7 and MDA-MB-231 cells were treated

with 6 mM metformin for the indicated length of time. The levels of

p53 and phospho-p53 (p-p53) were measured by Western blotting. e,

f Metformin increases TTP levels in p53 mutant human breast cancer

MDA-MB-231 cells. MDA-MB-231 cells were treated e with the

indicated concentrations of metformin for 24 h or f with 6 mM

metformin for the indicated length of time. The levels of TTP were

measured by semi-qRT-PCR (e, f; top) and Western blotting (e, f;
bottom). g Metformin induces TTP promoter activity in MDA-MB-

231 cells. MDA-MB-231 cells were transfected with pGL3/TTPp-

1343 containing the TTP promoter. After treatment with 6 mM

metformin for 24 h, luciferase activity was measured. The expression

levels obtained from pGL3-transfected cells without metformin

treatment were set to 1. Data are presented as the mean ± SD

(n = 3). ***p\ 0.001
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Fig. 2 TTP mediates the anti-

proliferative function of

metformin in both p53 wild-

type and p53 mutant breast

cancer cells. a–d Metformin

inhibits proliferation of both

p53 wild-type MCF7 cells and

p53 mutant MDA-MB-231

cells. a, c MCF7 and b, d MDA-

MB-231 cells were treated (a,

b) with the indicated

concentrations of metformin for

24 h and (c, d) with 6 mM

metformin for 24 and 48 h. Cell

viability was assessed by

measuring absorbance at

490 nm using an MTS cell

proliferation assay. The values

obtained with mock-treated

cells were set to 100. Values are

the mean ± SD (n = 3).

*p\ 0.05, **p\ 0.01,

***p\ 0.001. e–h Inhibition of

TTP attenuates the anti-

proliferative effects of

metformin in both MCF7 and

MDA-MB-231 cells. MCF7 and

MDA-MB-231 cells were

transfected with e, g, h
pcDNA6/TTP or f, g, h TTP-

specific siRNA (TTP-siRNA).

scRNA and pcDNA6 were used

as negative controls. After

treatment with 6 mM metformin

for 24 h, cell viability was

assessed by measuring the

absorbance at 490 nm using an

MTS cell proliferation assay.

The values obtained with mock-

treated cells were set to 100.

Values are the mean ± SD

(n = 3). *p\ 0.05, **p\ 0.01,

***p\ 0.001. ns not significant
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expression (Fig. 3f) and did not show anti-proliferative

effect in both MCF7 (Fig. 3g) and MDA-MB-231 cells

(Fig. 3h). Taken together, these data suggested that

metformin induces TTP expression by down-regulating

c-Myc and also that TTP mediates metformin’s anti-pro-

liferative function in breast cancer cells.

Fig. 3 Metformin induces TTP expression through down-regulation

of c-Myc. a Metformin treatment increases phospho-AMPK

(pAMPK) but decreases c-Myc and phospho-STAT3 (pSTAT3) in

MCF7 and MDA-MB-231 cells. MCF7 and MDA-MB-231 cells were

treated with 6 mM metformin for the indicated length of time, and the

levels of TTP, STAT3, pSTAT3, AMPK, pAMPK, and c-Myc were

measured by Western blotting. b, c inhibition of c-Myc by siRNA

enhances TTP promoter activity in MCF7 and MDA-MB-231 cells.

b MCF7 and c MDA-MB-231 cells were transfected with pGL3/

TTPp-1343 containing the TTP promoter. After treatment with 6 mM

metformin for 24 h, luciferase activity was measured. The expression

levels obtained from pGL3-transfected cells without metformin

treatment were set to 1. Data are presented as the mean ± SD

(n = 3). *p\ 0.05, **p\ 0.01, ***p\ 0.001. d Metformin

increases TTP expression in an AMPK-dependent manner. MCF7

and MDA-MB-231 cells were treated with 6 mM metformin with or

without 20 lM Compound C for 24 h. The levels of TTP, AMPK, and

pAMPK were measured by Western blotting. e, f Overexpression of

c-Myc blocks the effect of metformin on TTP induction. MDA-MB-

231 cells were transfected with pcDNA3/c-Myc or control pcDNA3.

Cells were treated with 6 mM metformin for 24 h. e c-Myc and f TTP
levels were measured by quantitative RT-PCR. The values obtained

with pcDNA-transfected and mock-treated cells were set to 1. Data

are presented as the mean ± SD (n = 3). ***p\ 0.001. ns not

significant. g, h Overexpression of c-Myc attenuates the anti-

proliferative effect of metformin in MCF7 and MDA-MB-231 cells.

g MCF7 and h MDA-MB-231 cells were transfected with pcDNA3/c-

Myc or control pcDNA3. Cells were treated with 6 mM metformin

for 24 h. Cell viability was assessed by measuring the absorbance at

490 nm using an MTS cell proliferation assay. The values obtained

with mock-treated cells were set to 100. Data are presented as the

mean ± SD (n = 3). **p\ 0.01, ***p\ 0.001. ns not significant
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Discussion

Metformin, a first-line drug for type 2 diabetes, has

recently received increased attention because of its anti-

proliferative effects in cancer cells [2–4]. However, the

mechanisms underlying the anti-proliferative effects of

metformin remain unclear. Here, we describe a role for

TTP in mediating metformin’s anti-proliferative effect in

cancer cells. Specifically, we found that metformin

increased expression level of TTP in cancer cells in an

AMPK-dependent manner and also that down-regulation of

TTP by siRNA attenuated the anti-proliferative effect of

metformin. Thus, our data indicate that TTP induction is

required for the anti-proliferative activity of metformin in

cancer cells.

TTP can inhibit the growth of cancer cells by down-

regulating expression of oncogenes [26, 35, 36]. However,

a significant decrease in the expression of TTP has been

observed in many cancer cells [25, 26, 33]. Thus, we

hypothesized that induction of TTP in cancer cells may

lead to an inhibition of growth. In this study, we found that

TTP expression was induced by metformin in breast cancer

cells. Metformin enhanced TTP promoter activity, indi-

cating that this regulation occurs at the level of

transcription.

We previously reported that activation of p53 increases

TTP transcription in cancer cells [29]. Furthermore, Met-

formin can activate p53 in an AMPK-dependent manner [8,

37]. Thus, we considered the possibility that metformin

may induce the expression of TTP through p53. Consis-

tently, we found that metformin increased TTP expression

level in an AMPK-dependent manner. However, consid-

ering the abnormalities in the p53 pathway in nearly all

types of cancers [31], if metformin induces TTP expression

through p53 pathway, TTP induction by metformin would

be limited to only a small portion of cancer cells containing

with an intact p53 signaling pathway. Indeed, it is unlikely

that p53 is essential for TTP induction by metformin, since

metformin induced the expression of TTP in p53 mutant

cells as well as p53 wild-type cancer cells as indicated by

MDA-MB-231 and MCF7 cells in this study, respectively.

However, we found that, in p53 mutant MDA-MB-231

cells, TTP protein increased at high concentration of met-

formin and to less extend compared with p53 wild-type

MCF7 cells. These results suggest the possibility that p53

may be involved in the induction of TTP expression by

metformin.

What would be the p53-independent mechanism of TTP

induction by metformin in cancer cells? It has been

reported that c-Myc acts as a negative regulator of TTP

expression [30]. The induction of TTP by metformin is

likely the result of inhibition of c-Myc. In this study, we

obtained strong evidence in support of this hypothesis:

inhibition of c-Myc increased TTP expression level; met-

formin decreased the expression of c-Myc; and ectopic

expression of c-Myc abrogated the effects of metformin

with respect to induction of TTP. Metformin has been

reported to decrease c-Myc expression via the AMPK

pathway [18]. If metformin induces TTP expression

through inhibition of c-Myc, TTP induction by metformin

would depend on AMPK activity. Consistently, we found

that metformin induced TTP expression in an AMPK-de-

pendent manner. However, the transcription factors acting

as positive regulators for TTP induction by metformin

remain elusive. Thus, further investigation into the specific

transcription factors required for TTP induction will reveal

the mechanisms underlying how metformin induces TTP

expression.

In conclusion, we identified TTP as a down-stream

target of metformin and a mediator of the anti-proliferative

effects of metformin in cancer cells. Specifically, met-

formin induced TTP expression by down-regulating

c-Myc, a negative regulator of TTP expression [30].

Importantly, our study provides a molecular basis for the

anti-proliferative effects of metformin in cancer cells. Our

finding that TTP is induced by metformin in both p53 wild-

type and p53 mutant cancer cells and mediates the anti-

proliferative effect of metformin further highlights the

important role of TTP in human cancer cells. Metformin

showed only modest anti-proliferative effect on cancer

cells used in this study. However, since the mechanism of

action of metformin is unique compared with that of other

chemotherapeutic agents, metformin in combination with

other chemotherapeutic agents may trigger significant

tumor growth inhibition in vivo. Given the emerging evi-

dence supporting the anti-proliferative effects of metformin

in various types of cancer cells [2–4], it will be of interest

to explore whether the regulatory mechanisms described

here are relevant to other types of cancers.
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