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Abstract

Paired associative corticospinal-motoneuronal stimulation (PCMS) induces plasticity at syn-

apses between corticospinal tracts (CSTs) and spinal motoneurons (SMs). We investigated

the effects of peripheral nerve electrical stimulation (PNS) intensity on PCMS-induced plas-

ticity. PCMS consisted of 180 paired stimuli of transcranial magnetic stimulation (TMS) over

the left primary motor cortex with PNS on the right ulnar nerve at the wrist. We compared

effects induced by different PNS intensities: supramaximal, twice and three times sensory

threshold intensities. For evaluating efficacy of the synapse between CSTs and SMs, sin-

gle-pulse TMS was delivered at cervicomedullary junction level, and cervicomedullary

motor-evoked potentials (CMEPs) were recorded from the right first-dorsal interosseous

muscle before and after PCMS. PCMS with the supramaximal PNS intensity increased

CMEP amplitude. The facilitatory effect of PCMS with the supramaximal PNS was larger

than those of PCMS with weaker PNS intensities. Sham TMS with the supramaximal PNS

showed no CMEP changes after the intervention. PNS intensity of PCMS influences the

magnitude of synaptic plasticity induction between the CSTs and SMs at the spinal level,

and the supramaximal intensity is the best for induction of long-term potentiation-like effects.

The PNS intensity may influence the number of activated SMs by axonal backpropagating

pulses with PNS which must overlap with descending volleys induced by TMS.

Introduction

Paired-associative stimulation (PAS) is a popular noninvasive brain stimulation protocol for

inducing synaptic plasticity in humans. By combining transcranial magnetic stimulation

(TMS) over the primary motor cortex (M1) with peripheral nerve electrical stimulation (PNS),
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PAS can induce long-term modulation of sensorimotor cortical excitability [1–4]. The direc-

tion and magnitude of the induced plasticity are dependent on the arrival timings of inputs at

the sensorimotor cortices. Long-term potentiation (LTP)-like effect is induced either by simul-

taneous pre- and postsynaptic activation, or by presynaptic depolarization preceding postsyn-

aptic depolarization within a specific time window [2–4].

Several studies have focused on the induction of plasticity at the synapses between the corti-

cospinal tracts (CSTs) and spinal motoneurons (SMs) in the spinal cord [5–10]. This protocol

is named the paired (associative) corticospinal-motoneuronal stimulation (PCMS), and

descending volleys by TMS over M1 are associated with antidromic inputs from PNS at the

synapses between the CSTs and SMs. LTP-like effects by PCMS improved motor function in

patients with spinal cord injuries [5,11].

Previous PCMS studies used supramaximal intensity for PNS. However, an issue of stimu-

lus intensity of peripheral inputs has not been studied. The PNS at supramaximal intensity

must elicit backpropagation in all the motor neurons. In contrast, PNS at weaker intensities

must elicit it in a part of them. TMS must activate a part of SMs and not all of them. If PNS is

set at the supramaximal intensity, two synaptic association induced by PCMS should occur in

most of the SMs activated by TMS. In contrast, when using weaker PNS intensities, two synap-

tic association must occur in only a part of SMs activated by TMS or no association may occur

in any SMs. We hypothesized that stimulus intensity of PNS is critical for PCMS-induced syn-

aptic plasticity; the supramaximal intensity is the best for the spinal LTP induction. To tackle

this issue, we studied the influences of PNS intensity on the LTP-like effects induced by

PCMS. We showed that the magnitude of plasticity induction is dependent on the PNS

intensity.

Methods

Subjects

A total of 19 right-handed healthy volunteers (five females; mean age ± SD, 26.8 ± 7.2 years)

participated in the study. Handedness was assessed by the Edinburgh Handedness Inventory

[12], and the mean laterality score was 85.8 ± 15.0%. No volunteers took any medication on a

regular basis, nor had any neurological or psychiatric diseases [13]. All participants gave writ-

ten informed consent to participate in this study. This study was approved by the Ethics Com-

mittee of Fukushima Medical University (Approval No. 2657) and conformed to the latest

version of the Declaration of Helsinki. Fourteen subjects participated in multiple experiments

(3 subjects in all Experiments; 2 subjects in Preliminary experiment, Experiment 2, 3, and 5; 5

subjects in Experiment 2, 3, and 5; 4 subjects in Experiment 1 and 4). Five subjects joined in a

single experiment (4 subjects in Experiment 1; a subject in Experiment 5).

Electromyogram recordings

The subjects sat on a comfortable armchair. An electromyogram (EMG) was recorded from

the right first-dorsal interosseous muscle (FDI) using surface Ag/AgCl electrodes placed on

the center of muscle (recording electrode) and the metacarpophalangeal joint of the index fin-

ger (reference electrode). Responses were amplified and bandpass filtered (10 Hz– 3 kHz,

Multi Amplifier 1000, DIGITEX LAB Co. Ltd., Japan). Signals were digitized at 5 kHz and

data were stored in a computer for later offline analyses (MultiStim tracer; Medical Try Sys-

tem, Japan).
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F-wave recordings

PNS was delivered to the right ulnar nerve at the wrist using an EMG machine (MEB-2200;

Nihon Koden, Japan). To elicit the compound muscle action potentials (CMAPs), electric sti-

muli of rectangular pulses (pulse width 0.2 ms) were delivered using Ag electrodes placed on

the skin over the right ulnar nerve 4 cm proximal from the wrist. Supramaximal shocks,

adjusted up to the value of 20% higher than the stimulus eliciting maximum CMAP, were

delivered at 0.5 Hz to record F-waves.

Transcranial magnetic stimulation (TMS)

TMS was delivered by a Magstim 200 stimulator (Magstim Co. Ltd, Whitland, Dyfed, UK)

connected to a figure-of-eight coil (outer winding diameters, 70 mm). The current waveform

was monophasic. The stimulation coil was held tangentially on the scalp at an angle of 45˚ to

the mid-sagittal plane with the handle pointing laterally and posteriorly. The center of the coil

junction was placed over the M1 hand area of the left hemisphere. The motor hot spot was

determined as the site where TMS consistently elicited the largest MEPs from the right FDI. At

the hot spot, we determined the stimulus intensity to elicit MEPs of, on average, 1 mV peak-

to-peak amplitude. Then, we determined the resting motor threshold (RMT), the lowest inten-

sity that elicited a response of at least 50 μV in the relaxed FDI in 5 of 10 consecutive trials

[14]. The stimulus intensity was adjusted in steps of 1% of the maximum stimulator output.

MEP-latency was also measured during a brief contraction of the right FDI muscle.

Magnetic stimulation at the cervicomedullary junction

We performed single-pulse cervicomedullary junction stimulation (CMS) as reported previ-

ously [15]. CMS was applied by a Magstim 200 stimulator connected with a double cone coil

(outer winding diameter 110 mm). The coil was placed over the inion, and the coil current flo-

wed downward at the junction region of the coil so that induced current flowed upward in the

brain. Cervicomedullary MEP (CMEP) was recorded from the right FDI muscle. The stimulus

intensity of CMS was adjusted to elicit a CMEP of 1.0 mV peak-to-peak amplitude during

brief contraction of the right FDI.

Paired (associative) corticospinal-motoneuronal stimulation (PCMS)

PCMS consisted of a combination of a single PNS and a single-pulse TMS. TMS over the left

M1 hand area (120% RMT) paired with PNS on the right ulnar nerve at the wrist (supramaxi-

mal intensity or other intensities shown later) was repeated 180 times at 0.2 Hz. The definition

of the interstimulus interval (ISI) between TMS and PNS followed that by Shulga et al. [16].

We subtracted MEP latency from F-wave latency, and the subtracted value was used to adjust

the timing of TMS and PNS. When TMS is given at the subtracted value (ms) later than the

PNS, the descending volley by TMS and antidromic volley from the PNS must arrive at the

motoneurons at the same time. The ISI of 0 ms means that both inputs reach the motoneurons

at the same time. For example, in the case of 20 ms of MEP latency and 27ms of F-wave

latency, the ISI of 0 ms indicates that TMS is given 7 ms later than the ulnar nerve stimulation

(Table 1). We used the MEP-latency in the active condition because this latency must reflect

the timing of the first descending volley reaches spinal motoneurons, and the first volley is the

biggest in several descending volleys.
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Experimental design

Preliminary experiment: Determination of the optimal ISI for PCMS. This study was

conducted to determine the optimal ISI for PCMS to induce the LTP-like plasticity at the spi-

nal cord. Five subjects (one female; mean age ± SD, 28.6 ± 9.7 years) participated in this study.

Four different ISIs were selected: an ISI of +3, in which the initial TMS volley reached the

motoneurons 3 ms before the arrival of antidromic postsynaptic backpropagating inputs, and

ISIs of -4 and -1 ms, in which the antidromic volley derived by PNS reached the SMs in the spi-

nal cord 4 and 1 ms before when the initial descending volley evoked by TMS reached the pre-

synaptic terminal. An ISI of 0 ms means when the antidromic and orthodromic volleys arrive

at the motoneurons simultaneously. To obtain the baseline CMEP, we recorded 10 CMEPs 3

times every 5 min before the PCMS intervention because the excitability of baseline must not

be completely the same for a long time. We used the mean size of all 30 CMEPs as the baseline

CMEP-size. To follow up CMEPs, 10 CMEPs were recorded at 10, 20, 30, 40, 50, and 60 min

after the intervention, and the mean size of 10 CMEPs was used as the post-CMEP size at each

time point. We recorded only 10 CMEPs at one time point after the intervention to exclude

the possibility that CMEP size may change in time when recording 30 CMEPs continuously.

We used a size ratio of the mean CMEP after intervention to the baseline CMEP as a marker of

the effect of PCMS. The average time course of the size ratio was depicted by the time after

intervention as the abscissa, and the average size ratio from all subjects as the ordinate.

Because the time after the PCMS intervention not including the baseline time point did not

affect the size ratio (shown below), we calculated the mean of size ratios at all times after the

intervention as the value representative of the long-term effect induced by PCMS at a certain

TMS-PNS interval, known as the integral size ratio (ISR) at a certain TMS-PNS interval.

Experimental design was shown in Fig 1.

Experiment 1: Induction of LTP-like synaptic plasticity at the spinal level (Fig 1).

Eleven subjects (four females; mean age ± SD, 26.8 ± 7.2 years) participated in this study. We

used the optimal ISI (0 ms) to induce LTP-like synaptic plasticity based on the above prelimi-

nary experiment. The experimental procedures were the same as the preliminary experiment.

Experiment 2: Effect of PNS intensity on PCMS (Fig 1). This experiment was conducted

to clarify how the intensity of PNS influences synaptic plasticity induction at the spinal cord.

Ten subjects (two females; mean age ± SD, 31.9 ± 7.7 years) participated in this experiment.

The stimulus intensities of PNS were set at three times sensory threshold inducing a small

muscular twitch in the FDI and at two times sensory threshold without any twitches. These

results were compared with those of the supramaximal stimulation intensity in Experiment 1.

Experiment 3: Sham TMS with real PNS (Fig 1). This experiment was performed to con-

firm the necessity of both TMS over M1 and supramaximal PNS for synaptic plasticity induc-

tion. Ten subjects (two females; mean age ± SD, 31.9 ± 7.7 years) participated in this study.

Table 1. MEP and F-wave latencies, values of latency adjustment.

MEP latency F-wave latency Values of latency adjustment

Experiment 1 (n = 11) 20.3 ± 0.8 27.5 ± 1.7 7.2 ± 1.2

Experiment 2 (n = 10)

three times sensory threshold 20.2 ± 0.9 28.2 ± 1.0 8.1 ± 1.0

two times sensory threshold 20.2 ± 0.6 27.7 ± 1.5 7.6 ± 1.3

Experiment 3 (n = 10) 20.0 ± 0.8 28.1 ± 1.1 8.1 ± 1.1

Experiment 4 (n = 7) 20.4 ± 0.7 27.5 ± 1.3 7.1 ± 1.2

Experiment 5 (n = 11) 20.0 ± 0.6 28.1 ± 1.6 8.1 ± 1.4

means ± SD (ms)

https://doi.org/10.1371/journal.pone.0259931.t001
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PNS were delivered to the right ulnar nerve at the wrist. The pulse width was 0.2 ms, and the

stimulus intensity was set at supramaximal intensity. The TMS coil was tilted away from the

scalp at a 90˚ angle with one wing of the figure eight touching for sham stimulation [17]. The

magnetic stimulator was discharged at the same timings used in the Experiment 1 in each sub-

ject. The sham TMS with PNS was repeated 180 times at 0.2 Hz for 15 min. The results of this

experiment were compared with those of the LTP of Experiment 1.

Experiment 4: Effects of PCMS on MEP to TMS over M1 (Fig 1). The aim of this experi-

ment was to confirm that cortical MEPs were also modulated similarly to CMEPs by PCMS at

the supramaximal PNS intensity. This is because the cortical MEP must reflect a combination

of excitability of supraspinal components and that of spinal motoneuronal component,

whereas the CMEP must reflect only spinal motoneuronal excitability. To evaluate the effects

on MEPs, single-pulse TMS was delivered over M1 before and after the PCMS intervention at

the same timings in the Experiment 1. Seven subjects (one female; mean age ± SD, 22.7 ± 0.5

years) participated in this study. Single-pulse TMS was applied to the left M1 hand area and

MEPs were recorded from the active right FDI muscle. The intensity of TMS was set to elicit

approximately 1 mV MEPs in baseline condition. The time course of MEP recording was the

same in the above experiments.

Experiment 5: Effects of PCMS on the peripheral nervous system (Fig 1). This experi-

ment was conducted to investigate effects of PCMS at the supramaximal PNS intensity on the

Fig 1. Experimental design.

https://doi.org/10.1371/journal.pone.0259931.g001
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excitability of the peripheral nervous system. Compound muscle action potentials (CMAPs)

and F-waves were measured before and after the PCMS intervention at the same timings in the

Experiment 1. Eleven subjects (two females; mean age ± SD, 30.8 ± 8.2 years) participated in

this experiment. Both responses were measured before and after PCMS.

Subjects participated in Experiment 1–5 in a randomized order. Any successive interven-

tions were separated by at least one week in the same subject.

Statistical analysis

All statistical analyses were performed by using IBM SPSS Statics version 27 for Windows

software.

The baseline CMEP amplitude and stimulus intensity to elicit 1 mV CMEP were compared

between different experiments using one-way analysis of variance (ANOVA) or an unpaired t-
test.

In Preliminary experiment and Experiments 1–3, the CMEP size ratio at each time point

was used as the marker of the effect. In Preliminary experiment, a two-way repeated measures

ANOVA (rmANOVA) with time not including the baseline time point (post 10–60 min: 6 lev-

els, only those after the intervention) and intervention (ISIs: -4, -1, 0, +3 ms: 4 levels) as the

within-subject factor. To compare the effects of PCMS protocols in Experiments 2 and 3 with

those in Experiment 1, the CMEP size ratio was evaluated by two-way repeated measures

ANOVAs (rmANOVAs) of mixed design with time (post 10–60 min: 6 levels) as the within-

subject factor and intervention (Experiment 2: PCMS at supramaximal intensity vs. PCMS at

three times sensory threshold vs. PCMS at two times sensory threshold: 3 levels; Experiment 3:

PCMS vs. sham TMS-PNS pair: 2 levels) as the between-subject factor. In the case of signifi-

cant main effects or interactions, post-hoc analyses were performed using a one-sample t-test

in Preliminary experiment, and a paired t-test with Bonferroni-correction for multiple com-

parisons in Experiment 2.

In Experiments 1–5, to compare post-PCMS effects with the baseline, the absolute data of

the amplitudes were analyzed using one-way rmANOVA with time (pre, post 10–60 min: 7

levels, including the baseline time point) as the within-subject factor. When a significant main

effect was observed, a post-hoc paired t-test with Bonferroni-correction for multiple compari-

sons was conducted.

To assure no differences in background EMG activity throughout the experiments, inte-

grated EMG (iEMG, mVmsec) amplitudes were calculated in a window from 10 ms before to

the onset of the TMS pulse and analyzed it using one-way rmANOVAs with time (pre, post

10–60 min: 7 levels).

In all tests, a value of P< 0.05 was considered statistically significant. Data were expressed

as the mean ± standard error of the mean.

Results

Preliminary experiment: Determination of the optimal ISI for PCMS

There was no significant difference in the baseline CMEP amplitude among ISIs (F(3,16) =

0.002, P = 1.0).

Fig 2A shows time courses of the average size ratio for PCMS at ISIs of -4, -1, 0, and +3 ms.

A two-way rmANOVA showed a significant main effect of intervention (F(3,12) = 5.020,

P = 0.018) but no significant main effect of time after the intervention not including the base-

line time point (F(5,20) = 0.205, P = 0.956) or interaction (F(15,60) = 1.086, P = 0.388). The ISR

was significantly different among the TMS-PNS intervals. The ISR was significantly greater

than 1.0 at the ISI of 0 ms (P< 0.05) (Fig 2B).
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Hence, the optimal ISI of PCMS was 0 ms for induction of the LTP-like effect. Based on

these results, we used ISI of 0 ms in all the following experiments.

Experiment 1: Induction of LTP-like synaptic plasticity at the spinal level

(PCMS using a supramaximal PNS)

To compare post-PCMS effects with the baseline, a one-way rmANOVA disclosed the signifi-

cant main effect of time (all time points including baseline time point) (F(6,60) = 7.915,

P< 0.001). Post-hoc tests showed that CMEP amplitudes significantly increased after PCMS

(10–60 min, P< 0.05) (Fig 3A and 3B).

This result indicated that PCMS using a supramaximal PNS induced LTP-like plasticity at

the synapses between CSTs and SMs.

Experiment 2: Impact of PNS intensity on PCMS effect

The CMEP amplitude at baseline was not significantly different among all PNS intensities

(F(2,28) = 0.383, P = 0.685).

Fig 3A shows representative waveforms of CMEP at all time points and Fig 3B shows time

courses of the average size ratio for PCMS using three, two times sensory threshold and the

supramaximal PNS. A two-way rmANOVA showed a significant main effect of intervention

(F(2,28) = 29.230, P< 0.001) but no significant main effect of time after the intervention (not

including the baseline time point) (F(5,140) = 0.293, P = 0.916) or interaction (F(10,140) = 0.575,

P = 0.833), suggesting that the ISR was significantly different among the PNS intensities. Post-
hoc comparisons demonstrated that the ISR of PCMS at the supramaximal PNS intensity was

the strongest among the protocols (PCMS at three times sensory threshold, P = 0.03; PCMS at

two times sensory threshold, P< 0.001). The ISR of PCMS at three times sensory threshold

was larger than that of PCMS at two times sensory threshold (P = 0.002) (Fig 3C).

To compare post-PCMS effects with the baseline, a one-way rmANOVA showed a signifi-

cant main effect of time in PCMS at three times sensory threshold (F(6,54) = 3.870, P = 0.003).

A post-hoc comparison showed that CMEP increased after intervention (10–30, 50–60 min,

P< 0.05). No significant main effect of time was observed in PCMS at two times sensory

threshold (F(6,54) = 0.594, P = 0.734) (Fig 3B).

Fig 2. CMEP amplitudes after PCMS in Preliminary experiment. (A) Time courses of the average CMEP size ratio from 10 to 60 min after PCMS using a

supramaximal PNS at ISIs of -4, -1, 0, and +3 ms. CMEP amplitude increased after PCMS with an ISI of 0 ms. (B) The integral size ratio (ISR) at various estimated ISIs at

motoneurons (TMS-PNS interval). The ISR increased significantly at the ISI of 0 ms. � P< 0.05. All data are mean and standard-error values.

https://doi.org/10.1371/journal.pone.0259931.g002
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This result suggested that PNS intensity had an influence on the ISR in a dose-dependent

manner. Namely, the supramaximal PNS may be needed to induce a stable PCMS effect.

Experiment 3: Sham TMS with real PNS

We compared the effects between PCMS in Experiment 1 and the sham TMS-PNS pair in

Experiment 3 using the CMEP size ratios at time points after the intervention not including

the baseline data. A two-way rmANOVA revealed a significant main effect of intervention

(F(1,19) = 39.198, P< 0.001) but no significant main effect of time (F(5,95) = 0.618, P = 0.687)

nor interaction (F(5,95) = 0.040, P = 0.999).

For the time course of the sham TMS with real PNS, a one-way rmANOVA using the raw

CMEP data showed no significant effect of time (F(6,54) = 0.239, P = 0.962), indicating that the

repeated sham TMS-PNS pair had no effect on CMEP sizes (Fig 4A and 4B).

Experiment 4: Effects of PCMS on MEP to TMS over M1

A one-way rmANOVA showed a significant main effect of time (F(6,36) = 2.516, P = 0.039).

The post-hoc analysis showed the increments of the MEP amplitudes after PCMS for 60 min

(10–60 min, P< 0.05) (Fig 4C and 4D).

Fig 3. Normalized CMEP amplitudes after PCMS in Experiment 1 and influences of PNS intensity on PCMS effects in Experiment 2. (A) Representative CMEP

waveforms before and after the intervention. (B) Time courses of the average CMEP size ratio from 10 to 60 min after PCMS at supramaximal PNS intensity, three times

the sensory threshold, and two times the sensory threshold. CMEP increased after PCMS at supramaximal PNS intensity and at three times the sensory threshold, while

PCMS at two times the sensory threshold showed no significant changes. (C) The ISR of PCMS. The ISR of PCMS at the supramaximal PNS was the greatest among the

protocols. The ISR of PCMS at three times the sensory threshold was larger than that of PCMS at two times the sensory threshold. � P< 0.05, �� P< 0.01, ��� P< 0.001.

All data are mean and standard-error values.

https://doi.org/10.1371/journal.pone.0259931.g003
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Experiment 5: Effects of PCMS on the peripheral nervous system

One-way rmANOVAs showed no significant effect of time on CMAP (F(6,60) = 0.414,

P = 0.867) or on the F/M ratio (F(6,60) = 0.350, P = 0.907) (Fig 4E and 4F).

Background EMG activity

There was no significant effect of time on the background iEMG in Preliminary experiment

and Experiments 1–3 (F< 1.3, P> 0.3, Table 2).

Discussion

The present study investigated the synaptic plasticity induction at the synapses between CSTs

and SMs at the spinal cord level following the rule of paired associative plasticity. The facilita-

tory effects of PCMS with the supramaximal PNS was much stronger than those of PCMS with

Fig 4. Time courses of PCMS effect in Experiment 3–5. (A) Representative CMEP waveforms before and after sham TMS-PNS pairs. (B) Repeated sham TMS-PNS pairs

induced no significant changes in CMEP amplitudes. (C) Representative MEP waveforms before and after PCMS. (D) Cortical MEP amplitudes significantly increased

after PCMS compared to the baseline. (E) CMAP amplitudes remained unchanged after PCMS. (F) PCMS did not affect the F/M ratio. � P< 0.05. All data are mean and

standard-error values.

https://doi.org/10.1371/journal.pone.0259931.g004
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weaker PNS, indicating that PNS intensity has a great influence on the magnitude of induced

plasticity.

Timing of TMS and PNS in PCMS

Previous PCMS studies suggested that the LTP-like plasticity is induced when corticospinal

volleys arrive at the corticomotoneuronal synapses 1–2 ms prior to antidromic inputs of post-

synaptic motoneurons [5,8,18]. Other studies reported that the LTP-like effects are successfully

induced when initial descending volley from TMS and the antidromic inputs by PNS reach

spinal motoneurons at the same time [7,11,16]. The present results are consistent with the lat-

ter idea. Theoretically, stimulus timing is essential for inducing synaptic plasticity in a rule of

the associative plasticity (spike timing-dependent plasticity). Much evidence confirms that the

LTP is induced on presynaptic spike preceding the postsynaptic spike within a narrow time

window, or on simultaneous presynaptic and postsynaptic depolarization [19]. We speculate

that the setting of ISI within 1–2 or 0 ms was not critically different for inducing the LTP-like

effects by PCMS from our results.

Site of action in PCMS

In the present study, PCMS increased CMEP and did not affect CMAP nor F/M ratio. These

findings suggest that PCMS should induce plasticity at the synapses between CSTs and SMs

but not on the peripheral nervous system, which are consistent with a previous report [5].

Both TMS over M1 and PNS are needed for the effect shown here, because sham TMS with

real PNS had no effects on CMEPs in the present results and TMS only showed no MEP

changes in the previous study [7]. These results are consistent with previous reports [5,8]. In

addition, PCMS increased the MEP amplitudes elicited by single-pulse TMS over the contra-

lateral M1. This result is in line with previous reports [7,16,20], and probably due to spinal

LTP and not cortical LTP.

The LTP is induced if a pair of presynaptic and postsynaptic depolarizations is evoked

simultaneously or within a narrow time range. Supramaximal stimulus of peripheral nerve

directly activates all motor neurons antidromically, and TMS produces burst firing of SMs by

descending volleys through several mechanisms [21]. SM bursting and depolarization duration

of the SM membrane potential play important roles in determining the timing for the direc-

tion of synaptic plasticity induction. LTP may be induced at the time when both effects should

be associated in time at the synapses, especially when both inputs arrive at the SM at the same

time (the interval of 0 ms).

Table 2. Results of one-way rmANOVAs in background iEMG.

Experiment df Error F P
Preliminary experiment

ISI of -4 ms 6 24 0.576 0.746

ISI of -1 ms 6 24 0.357 0.899

ISI of 0 ms 6 24 0.427 0.853

ISI of +3 ms 6 24 1.224 0.329

Experiment 1 6 60 1.087 0.381

Experiment 2

three times sensory threshold 6 54 0.799 0.575

two times sensory threshold 6 54 0.294 0.937

Experiment 3 6 54 0.724 0.632

https://doi.org/10.1371/journal.pone.0259931.t002

PLOS ONE Synaptic plasticity induction at spinal motoneurons

PLOS ONE | https://doi.org/10.1371/journal.pone.0259931 November 18, 2021 10 / 13

https://doi.org/10.1371/journal.pone.0259931.t002
https://doi.org/10.1371/journal.pone.0259931


In the present experimental setting, PNS should evoke motor axonal backfiring, which

induces depolarization and action potential of SMs. TMS elicits multiple descending volleys in

CSTs which contribute to the bursting of SMs. The first descending volley is the biggest in sev-

eral volleys and the timing can be estimated by the MEP-latency in the active condition. The

best timing for LTP is when both effects arrive at the same time and the strongest association

must occur at the latency of MEP in active condition. This speculation is consistent with our

present result that ISI of 0 ms is good for LTP.

PNS intensity and plasticity induction by PCMS

The present study, for the first time, demonstrated that the intensity of PNS has an impact on

the magnitude of the induced plasticity. An antidromic impulse induced by PNS arrives at the

axon hillock of the SMs. However, the majority of SMs is not always activated even by PNS

with supramaximal intensity because of an impedance mismatch at the axon hillock [22].

PCMS can induce strong LTP-like effects at the synapses between CSTs and SMs only when

activation of many SMs by PNS at supramaximal intensity overlaps with TMS-induced

descending volleys. On the other hand, because PNS at weaker intensity may activate only a

small number of SMs antidromically, two synaptic association induced by PCMS may occur in

a part of SMs or may not occur in any SMs. Small degree of LTP-like effects induced by PCMS

at three times sensory threshold could be explained by that two synaptic association might

occur in a part of SMs. No induction of synaptic plasticity by PCMS at two times sensory

threshold might explain no synaptic association in the SMs. Whichever the mechanisms for

small plasticity induction, our conclusion is still correct that the supramaximal PNS is neces-

sary for inducing the LTP-like effects by PCMS.

Study limitations

Similar to other non-invasive brain stimulation protocols [23–25], the interindividual variabil-

ity should be considered in PCMS [26]. The number of subjects was relatively small and the

population of subjects was not identical among experiments in the present study. These factors

might possibly explain the difference in the aftereffects between the different intensity PCMSs

in the present investigation. To make a firm conclusion about this factor, we need future stud-

ies of the variability in effects of PCMS in greater number of subjects.

In conclusion, PCMS could successfully increase excitability at the synapses between CSTs

and SMs at the spinal level. The magnitude of the induced plasticity is dependent on the PNS

intensity, which may reflect the number of the antidromically activated SMs by PNS. Induc-

tion of synaptic plasticity by PCMS is associated with improvement of motor functions [5,11],

and PCMS will have potentials to develop as a nonpharmacological therapeutic application for

patients with spinal cord diseases.

Acknowledgments

The authors thank Dr Fang-Yu Chang, Dr Eiichi Ito, Dr Suguru Kadowaki, Dr Nozomu Mat-

suda, and Dr Kenji Yoshida for helping with electrophysiological recordings.

Author Contributions

Conceptualization: Takenobu Murakami, Yoshikazu Ugawa.

Data curation: Takenobu Murakami.

Formal analysis: Takenobu Murakami.

PLOS ONE Synaptic plasticity induction at spinal motoneurons

PLOS ONE | https://doi.org/10.1371/journal.pone.0259931 November 18, 2021 11 / 13

https://doi.org/10.1371/journal.pone.0259931


Funding acquisition: Yoshikazu Ugawa.

Investigation: Akira Yamashita, Takenobu Murakami.

Methodology: Takenobu Murakami.

Project administration: Takenobu Murakami, Yoshikazu Ugawa.

Supervision: Yoshikazu Ugawa.

Validation: Takenobu Murakami.

Visualization: Akira Yamashita.

Writing – original draft: Akira Yamashita, Takenobu Murakami.

Writing – review & editing: Takenobu Murakami, Noriaki Hattori, Ichiro Miyai, Yoshikazu

Ugawa.

References
1. Murakami T, Sakuma K, Nomura T, Uemura Y, Hashimoto I, Nakashima K. Changes in somatosen-

sory-evoked potentials and high-frequency oscillations after paired-associative stimulation. Exp Brain

Res. 2008; 184(3): 339–347. https://doi.org/10.1007/s00221-007-1103-0 PMID: 17724581

2. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cor-

tex by paired associative stimulation. Brain. 2000; 123(Pt 3): 572–584. https://doi.org/10.1093/brain/

123.3.572 PMID: 10686179

3. Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, et al. A temporally asymmet-

ric Hebbian rule govering plasticity in the human motor cortex. J Neurophysiol. 2003; 89(5): 2339–

2345. https://doi.org/10.1152/jn.00900.2002 PMID: 12612033

4. Wolters A, Schmidt A, Schramm A, Zeller D, Naumann M, Kunesch E, et al. Timing-dependent plasticity

in human primary somatosensory cortex. J Physiol. 2005; 565(Pt 3): 1039–1052. https://doi.org/10.

1113/jphysiol.2005.084954 PMID: 15845584

5. Bunday KL, Perez MA. Motor recovery after spinal cord injury enhanced by strengthening corticospinal

synaptic transmission. Curr Biol. 2012; 22(24): 2355–2361. https://doi.org/10.1016/j.cub.2012.10.046

PMID: 23200989

6. Cortes M, Thickbroom GW, Valls-Sole J, Pascual-Leone A, Edwards DJ. Spinal associative stimulation:

a non-invasive stimulation paradigm to modulate spinal excitability. Clin Neurophysiol. 2011; 122(11):

2254–2259. https://doi.org/10.1016/j.clinph.2011.02.038 PMID: 21524606

7. Shulga A, Zubareva A, Lioumis P, Makela JP. Paired Associative Stimulation with High-Frequency

Peripheral Component Leads to Enhancement of Corticospinal Transmission at Wide Range of Inter-

stimulus Intervals. Front Hum Neurosci. 2016; 10: 470. https://doi.org/10.3389/fnhum.2016.00470

PMID: 27721747

8. Taylor JL, Martin PG. Voluntary motor output is altered by spike-timing-dependent changes in the

human corticospinal pathway. J Neurosci. 2009; 29(37): 11708–11716. https://doi.org/10.1523/

JNEUROSCI.2217-09.2009 PMID: 19759317

9. Leukel C, Taube W, Beck S, Schubert M. Pathway-specific plasticity in the human spinal cord. Eur J

Neurosci. 2012; 35(10): 1622–1629. https://doi.org/10.1111/j.1460-9568.2012.08067.x PMID:

22487124

10. Fitzpatrick SC, Luu BL, Butler JE, Taylor JL. More conditioning stimuli enhance synaptic plasticity in the

human spinal cord. Clin Neurophysiol. 2016; 127(1): 724–731. https://doi.org/10.1016/j.clinph.2015.03.

013 PMID: 25912336

11. Tolmacheva A, Savolainen S, Kirveskari E, Lioumis P, Kuusela L, Brandstack N, et al. Long-Term

Paired Associative Stimulation Enhances Motor Output of the Tetraplegic Hand. J Neurotrauma. 2017;

34(18): 2668–2674. https://doi.org/10.1089/neu.2017.4996 PMID: 28635523

12. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia.

1971; 9(1): 97–113. https://doi.org/10.1016/0028-3932(71)90067-4 PMID: 5146491

13. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guide-

lines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol.

2009; 120(12): 2008–2039. https://doi.org/10.1016/j.clinph.2009.08.016 PMID: 19833552

PLOS ONE Synaptic plasticity induction at spinal motoneurons

PLOS ONE | https://doi.org/10.1371/journal.pone.0259931 November 18, 2021 12 / 13

https://doi.org/10.1007/s00221-007-1103-0
http://www.ncbi.nlm.nih.gov/pubmed/17724581
https://doi.org/10.1093/brain/123.3.572
https://doi.org/10.1093/brain/123.3.572
http://www.ncbi.nlm.nih.gov/pubmed/10686179
https://doi.org/10.1152/jn.00900.2002
http://www.ncbi.nlm.nih.gov/pubmed/12612033
https://doi.org/10.1113/jphysiol.2005.084954
https://doi.org/10.1113/jphysiol.2005.084954
http://www.ncbi.nlm.nih.gov/pubmed/15845584
https://doi.org/10.1016/j.cub.2012.10.046
http://www.ncbi.nlm.nih.gov/pubmed/23200989
https://doi.org/10.1016/j.clinph.2011.02.038
http://www.ncbi.nlm.nih.gov/pubmed/21524606
https://doi.org/10.3389/fnhum.2016.00470
http://www.ncbi.nlm.nih.gov/pubmed/27721747
https://doi.org/10.1523/JNEUROSCI.2217-09.2009
https://doi.org/10.1523/JNEUROSCI.2217-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19759317
https://doi.org/10.1111/j.1460-9568.2012.08067.x
http://www.ncbi.nlm.nih.gov/pubmed/22487124
https://doi.org/10.1016/j.clinph.2015.03.013
https://doi.org/10.1016/j.clinph.2015.03.013
http://www.ncbi.nlm.nih.gov/pubmed/25912336
https://doi.org/10.1089/neu.2017.4996
http://www.ncbi.nlm.nih.gov/pubmed/28635523
https://doi.org/10.1016/0028-3932%2871%2990067-4
http://www.ncbi.nlm.nih.gov/pubmed/5146491
https://doi.org/10.1016/j.clinph.2009.08.016
http://www.ncbi.nlm.nih.gov/pubmed/19833552
https://doi.org/10.1371/journal.pone.0259931


14. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and

magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and proce-

dures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin

Neurophysiol. 2015; 126(6): 1071–1107. https://doi.org/10.1016/j.clinph.2015.02.001 PMID: 25797650

15. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation of corticospinal pathways

at the foramen magnum level in humans. Ann Neurol. 1994; 36(4): 618–624. https://doi.org/10.1002/

ana.410360410 PMID: 7944293

16. Shulga A, Lioumis P, Kirveskari E, Savolainen S, Makela JP, Ylinen A. The use of F-response in defin-

ing interstimulus intervals appropriate for LTP-like plasticity induction in lower limb spinal paired asso-

ciative stimulation. J Neurosci Methods. 2015; 242: 112–117. https://doi.org/10.1016/j.jneumeth.2015.

01.012 PMID: 25597909

17. Lisanby SH, Gutman D, Luber B, Schroeder C, Sackeim HA. Sham TMS: intracerebral measurement of

the induced electrical field and the induction of motor-evoked potentials. Biol Psychiatry. 2001; 49(5):

460–463. https://doi.org/10.1016/s0006-3223(00)01110-0 PMID: 11274658

18. Christiansen L, Urbin MA, Mitchell GS, Perez MA. Acute intermittent hypoxia enhances corticospinal

synaptic plasticity in humans. eLife. 2018; 7. https://doi.org/10.7554/eLife.34304 PMID: 29688171

19. Dan Y, Poo MM. Spike timing-dependent plasticity of neural circuits. Neuron. 2004; 44(1): 23–30.

https://doi.org/10.1016/j.neuron.2004.09.007 PMID: 15450157

20. Urbin MA, Ozdemir RA, Tazoe T, Perez MA. Spike-timing-dependent plasticity in lower-limb motoneu-

rons after human spinal cord injury. J Neurophysiol. 2017; 118(4): 2171–2180. https://doi.org/10.1152/

jn.00111.2017 PMID: 28468994

21. Ugawa Y, Rothwell JC, Paulus W. Possible role of backpropagating action potentials in corticospinal

neurons in I-wave periodicity following a TMS pulse. Neurosci Res. 2020; 156: 234–236. https://doi.

org/10.1016/j.neures.2019.10.005 PMID: 31672603

22. Yates SK, Brown WF. Characteristics of the F response: a single motor unit study. J Neurol Neurosurg

Psychiatry 1979; 42(2): 161–170. https://doi.org/10.1136/jnnp.42.2.161 PMID: 422964

23. Tiksnadi A, Murakami T, Wiratman W, Matsumoto H, Ugawa Y. Direct comparison of efficacy of the

motor cortical plasticity induction and the interindividual variability between TBS and QPS. Brain Stimul.

2020; 13(6): 1824–1833. https://doi.org/10.1016/j.brs.2020.10.014 PMID: 33144269

24. Nakamura K, Groiss SJ, Hamada M, Enomoto H, Kadowaki S, Abe M, et al. Variability in Response to

Quadripulse Stimulation of the Motor Cortex. Brain Stimul. 2016; 9(6): 859–866. https://doi.org/10.

1016/j.brs.2016.01.008 PMID: 27692928

25. Hamada M, Terao Y, Hanajima R, Shirota Y, Nakatani-Enomoto S, Furubayashi T, et al. Bidirectional

long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stim-

ulation. J Physiol. 2008; 586(16): 3927–3947. https://doi.org/10.1113/jphysiol.2008.152793 PMID:

18599542

26. Bunday KL, Urbin MA, Perez MA. Potentiating paired corticospinal-motoneuronal plasticity after spinal

cord injury. Brain Stimul. 2018; 11(5): 1083–1092. https://doi.org/10.1016/j.brs.2018.05.006 PMID:

29848448

PLOS ONE Synaptic plasticity induction at spinal motoneurons

PLOS ONE | https://doi.org/10.1371/journal.pone.0259931 November 18, 2021 13 / 13

https://doi.org/10.1016/j.clinph.2015.02.001
http://www.ncbi.nlm.nih.gov/pubmed/25797650
https://doi.org/10.1002/ana.410360410
https://doi.org/10.1002/ana.410360410
http://www.ncbi.nlm.nih.gov/pubmed/7944293
https://doi.org/10.1016/j.jneumeth.2015.01.012
https://doi.org/10.1016/j.jneumeth.2015.01.012
http://www.ncbi.nlm.nih.gov/pubmed/25597909
https://doi.org/10.1016/s0006-3223%2800%2901110-0
http://www.ncbi.nlm.nih.gov/pubmed/11274658
https://doi.org/10.7554/eLife.34304
http://www.ncbi.nlm.nih.gov/pubmed/29688171
https://doi.org/10.1016/j.neuron.2004.09.007
http://www.ncbi.nlm.nih.gov/pubmed/15450157
https://doi.org/10.1152/jn.00111.2017
https://doi.org/10.1152/jn.00111.2017
http://www.ncbi.nlm.nih.gov/pubmed/28468994
https://doi.org/10.1016/j.neures.2019.10.005
https://doi.org/10.1016/j.neures.2019.10.005
http://www.ncbi.nlm.nih.gov/pubmed/31672603
https://doi.org/10.1136/jnnp.42.2.161
http://www.ncbi.nlm.nih.gov/pubmed/422964
https://doi.org/10.1016/j.brs.2020.10.014
http://www.ncbi.nlm.nih.gov/pubmed/33144269
https://doi.org/10.1016/j.brs.2016.01.008
https://doi.org/10.1016/j.brs.2016.01.008
http://www.ncbi.nlm.nih.gov/pubmed/27692928
https://doi.org/10.1113/jphysiol.2008.152793
http://www.ncbi.nlm.nih.gov/pubmed/18599542
https://doi.org/10.1016/j.brs.2018.05.006
http://www.ncbi.nlm.nih.gov/pubmed/29848448
https://doi.org/10.1371/journal.pone.0259931

