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ABSTRACT Streptomyces are Gram-negative soil bacteria that can degrade lignin
and synthesize antibiotics. Some species cause mycetoma, pneumonitis, and blood-
stream infections. Here, we present the genome sequence of the Streptomyces sp.
strain Mg1 phage Salutena, a siphovirus in the subfamily Arquatrovirinae. The ge-
nome is 51,993 bp, with 90 predicted protein-coding genes.

S treptomyces spp. are Gram-positive, saprotrophic soil bacteria that can degrade lig-
nin and synthesize industrial enzymes and unique antibiotics (1). Streptomyces sp.

strain Mg1 secretes the antibiotic chalcomycin A, which can degrade Bacillus subtilis
colonies (2). Furthermore, certain Streptomyces spp. can cause mycetoma and, in rare
cases, pneumonitis and bloodstream infections (3). Here, we describe a novel phage,
Salutena, that infects Streptomyces sp. Mg1.

Salutena was isolated from a South Jordan, UT, soil sample taken in August 2019 using
the double-overlay agar technique (4). Streptomyces sp. Mg1 (provided by Paul Straight,
Texas A&M University) was used as the host and grown on nutrient broth or agar at 30°C
with 10mM MgCl2, 8mM Ca(NO3)2, and 0.5% glucose. Genomic DNA was purified as pre-
viously described (5) using a Wizard DNA cleanup kit (Promega). A paired-end sequence
library was prepared with 300-bp inserts using the TruSeq Nano kit and was sequenced
by an Illumina iSeq 100 instrument. A total of 367,310 reads were visualized (www
.bioinformatics.babraham.ac.uk/projects/fastqc), manually trimmed with FastX Toolkit
0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/download.html), and assembled by SPAdes
v3.5.0 with 86.8-fold contig coverage (6). Genome closure was confirmed by PCR and
Sanger sequencing (forward primer, 59-GATGTTCGTGGCGTTCAC-39; reverse primer, 59-
ATCTTGAGCTGGCCGTAC-39). Initial gene prediction was performed with GLIMMER v3 (7)
and MetaGeneAnnotator v1.0 (8). The tRNA and rho-independent terminators were
detected with ARAGORN v2.36 (9) and TransTermHP v2.09 (10), respectively. Gene func-
tional predictions were made with InterProScan v5.33 by searching conserved functional
domains (11). BLAST v2.9.0 (12) was used for similarity searches against the NCBI non-
redundant, Swiss-Prot, and TrEMBL databases (13) (accessed 23 April 2020). TMHMM v2.0
predicted transmembrane domains at default settings (14). Whole-genome DNA sequence
similarity was evaluated with progressiveMauve v2.4 (15). All annotation tools were hosted
on the Galaxy platform by the Center for Phage Technology (https://cpt.tamu.edu/galaxy
-pub) (16). HHpred v3.2.0 was used for validating functional annotation based on tertiary
structure predictions of translated proteins (https://toolkit.tuebingen.mpg.de/tools/hhpred)
(17). Default parameters were used for all software unless otherwise specified. After neg-
ative staining of the sample with 2% (wt/vol) uranyl acetate, phage morphology was
evaluated by transmission electron microscopy (TEM) at the Texas A&M University
Microscopy and Imaging Center, and the phage was determined to be a siphovirus (data
not shown).

The Salutena genome is 51,993 bp, with a G1C content of 67.50% and a coding
density of 92.68%. Based on the annotation results, 90 protein-coding genes were
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identified, of which 38 were assigned putative functions. Salutena shared highest nu-
cleotide similarity (71.62%) with Streptomyces platensis MJ1A1 phage BartholomewSD
(GenBank accession no. MK460245.1). Streptomyces azureus NRRL B-5410 phage Omar
(MG593802.1) had the highest number of protein matches (77 proteins). Salutena is
therefore a siphovirus of the subfamily Arquatrovirinae.

Only 1 tRNA and 1 rho-independent terminator were identified. Genes involved in
phage morphogenesis, DNA packaging and replication, lysis, and transcription were also
identified. A tape measure protein gene was found with tail assembly chaperone genes
that are generated with a translational frameshift (18). One lysis protein gene, amidase
endolysin, was identified. A GCN5-related N-acetyltransferase gene was identified by pro-
tein sequence (BLASTp) and predicted structural (HHpred) homology, indicating a poten-
tial regulatory posttranslational modification system through acetylation (19). No introns
were identified. None of the assigned gene functions have been verified experimentally.

Data availability. The genome of Salutena has been deposited in GenBank under
accession number MT708548.1. The associated BioProject, SRA, and BioSample acces-
sion numbers are PRJNA222858, SRR11558352, and SAMN14609629, respectively.
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