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The influence of microbiota on host health and disease has attracted adequate attention,
and gut microbiota components and microbiota-derived metabolites affect host immune
homeostasis locally and systematically. Some studies have found that gut dysbiosis,
disturbance of the structure and function of the gut microbiome, disrupts pulmonary
immune homeostasis, thus leading to increased disease susceptibility; the gut-lung axis is
the primary cross-talk for this communication. Gut dysbiosis is involved in carcinogenesis
and the progression of lung cancer through genotoxicity, systemic inflammation, and
defective immunosurveillance. In addition, the gut microbiome harbors the potential to be
a novel biomarker for predicting sensitivity and adverse reactions to immunotherapy in
patients with lung cancer. Probiotics and fecal microbiota transplantation (FMT) can
enhance the efficacy and depress the toxicity of immune checkpoint inhibitors by
regulating the gut microbiota. Although current studies have found that gut microbiota
closely participates in the development and immunotherapy of lung cancer, the
mechanisms require further investigation. Therefore, this review aims to discuss the
underlying mechanisms of gut microbiota influencing carcinogenesis and immunotherapy
in lung cancer and to provide new strategies for governing gut microbiota to enhance the
prevention and treatment of lung cancer.
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INTRODUCTION

The influence of gut microbiota on hosts has aroused intensive research interest. Microorganisms in
the human gastrointestinal tract, counting more than 10 times the number of total host cells, with
millions of whole, nonredundant genes, shape a dynamically balanced and healthy
microenvironment within the body (1). A large number of studies have revealed that the gut
microbiota is not only locally involved in the pathological process of gastrointestinal diseases [such
as gastrointestinal tumors (2) and inflammatory bowel disease (3)] but also closely and
systematically associated with nongastrointestinal diseases such as obesity (4), lung cancer (5),
cardiovascular disease (6) and diabetes (7). It has been found that the gut microbiota affects host
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health homeostasis in many ways, and the gut microbiota and its
related metabolites can disrupt the host’s normal cell cycle,
leading to changes in cell and protein expression that control
cell division, DNA repair, and apoptosis (8, 9). In addition, the
gut microbiota is a major regulator of host inflammation and
immunity, and it has been shown that the gut microbiota can
affect host systemic inflammation and immune homeostasis,
thereby increasing the susceptibility to malignant tumors and
influencing the clinical immunotherapy response of tumors (10–
12). Studies in animal models and humans have found that the
gut microbiome is able to regulate the sensitivity of malignant
solid tumors to immune checkpoint inhibitors (ICIs), such as
programmed cell death receptor-1 (PD-1)/ligand 1 (L1) and
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (10,
13, 14).

Numerous studies have found that the gut microbiota is
closely related to pulmonary pathology. Researchers found that
the composition and function of the gut microbiota in patients
with lung diseases [such as pneumonia (15), lung cancer (16),
asthma (17), and tuberculosis (18)] were significantly changed
compared with those in healthy people, and intervention with
the gut microbiota can enhance the defense and efficacy of lung
tissues against diseases (19, 20). Therefore, scientists have
proposed the theory of the “gut-lung axis” to provide a
reasonable explanation for the communication between the
lung and gut (21, 22). Lung cancer is one of the most common
malignant tumors. According to the latest statistics released by
Globocan, the incidence of lung cancer is 11.4%, and the
mortality rate is 18.0% in 2020; it has become the leading
cause of cancer death (23). Because of the close relationship
between the gut microbiota and lung, researchers have recently
turned their attention to the gut microbiota for a new
breakthrough in lung cancer prevention and treatment. Based
on the current research, we speculate that the gut microbiota may
not only be involved in the carcinogenesis of lung cancer, but can
also affect the effectiveness of immunotherapy in lung cancer.
Researchers found that the structure and function of the gut
microbiota were unbalanced in patients with lung cancer, known
as gut dysbiosis. Such an imbalance of Firmicobacteria and
Bacteroidetes increased the risk of lung cancer (1, 16, 24), and
the diversity of gut microbiota in patients with lung cancer was
positively correlated with the efficacy of immunotherapy (25, 26).
The interaction between gut microbiota and host may be
attributed to its participation in host metabolism and immune
functions. Therefore, a better understanding of the potential
mechanisms by which the gut microbiota affects the occurrence
and development of lung cancer as well as the response to
immunotherapy is the key to forecasting the risk of lung
cancer and improving the efficacy and safety of immunotherapy.

In this review, we summarized the existing research results to
interpret how the composition and function of gut microbiota
account for the carcinogenesis and immunotherapy of lung
cancer. We will discuss how the gut microbiota regulates
health and pathological immune responses through the gut-
lung axis and how this regulation provides new ideas for
effective and safe lung cancer prevention and treatment.
Frontiers in Oncology | www.frontiersin.org 2
GUT-LUNG AXIS

Emerging epidemiological and experimental evidence has
highlighted a main intersection between the gut microbiota
and the lungs, defined as the gut-lung axis (21). Although it
has been shown that the gut-lung axis is a bidirectional
communication channel, we mainly concentrate on the major
direction of the cross-talk occurring from the gut to the lung in
this paper. Numerous studies have shown that gut microbiota
can not only affect lung homeostasis in a variety of ways, thus
leading to increased susceptibility to lung diseases (21, 27, 28),
but also enhance the resistance and recovery ability of the lung
against diseases (29, 30). Changes in gut microorganism
composition and metabolic function caused by the
environment, diet, disease or medical intervention (such as
antibiotics) are related to changes in the immune response and
airway homeostasis (31, 32). Meanwhile, probiotics and fecal
microbiota transplantation (FMT) could be used for the
prevention and therapy of pulmonary diseases with widespread
potential (33, 34).

Soluble microbial ingredients circulated via the gut-lung axis are
one of the key interconnected manners by which gut microbiota
participate in pulmonary diseases. Microbiota-derived antigens
participate in the host immune response through the gut-lung
axis and thus affect pulmonary immune homeostasis (Figure 1).
Some studies have indicated that gut dysbiosis is common in
patients with asthma, and dysregulation of specific bacterial taxa
seems to be one of the powerful predictors of high asthma risk (17,
35–37). For example, researchers analyzed the gut microbiota of
children with asthma and found that plasma metabolites (such as
g-tocopherol/b-tocopherol) and specific gut microbial taxa, such as
the family Christensenellaceae, were positively related to asthma
and asthma-associated intestinal derivatives (36). Similarly, Huey-
Huey Chua et al. also found that before the appearance of allergic
manifestations, overgrowth of Ruminococcus gnavus (R. gnavus)
was discovered in children with allergic asthma, which means that
R. gnavus could be a biomarker for airway allergies. In addition,
mice presented with airway hyperresponsiveness and had
histologic evidence of respiratory inflammation after treatment
with purified R. gnavus (35). Mechanistically, augmentation of
R. gnavus could stimulate the colon tissues to secrete cytokines
[interleukin [IL]-33, IL-25, and thymic stromal lymphopoietin
(TSLP)], with the result of activating dendritic cells and type 2
innate lymphoid cells to boost differentiation of T-helper 2 cells
and production of their cytokines (IL-4, IL-5, and IL-13), which
cause infiltration of the lung parenchyma by mast cells and
eosinophils (35). In addition, changes in gut microbiota structure
and function were also observed in patients with pulmonary
tuberculosis (PTB). Investigators observed that tuberculosis
patients show dramatic alterations in intestinal microbiota, as
symbolized by striking decreases in microbial diversity and
species populations (18, 38). The main manifestation is that PTB
patients further presented upregulation of the opportunistic
pathogen Enterococcus and the proinflammatory bacteria
Prevotella, as well as a decrease in beneficial bacteria, including
Bifidobacteriaceae, Ruminococcaceae and Prausnitzii, a significant
August 2021 | Volume 11 | Article 720842
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reduction in short-chain fatty acid (SCFA)-producing bacteria as
associated metabolic pathways, and a high pulmonary tuberculosis
rate (18, 38). A study found that intestinal dysbiosis in mice caused
by antibiotics decreased the expression of lungmincle (macrophage
inducible C-type lectin) with subsequent increased survival of
Mycobacterium tuberculosis (Mtb). Furthermore, antibiotics
boosted regulatory T cell (Treg) numbers while restraining the
frequency of effector andmemory T cells in the lungs. Interestingly,
administrating mice Lactobacillus resulted in normalization of the
expression of mincle on pulmonary dendritic cells along with a
concomitant anti-Mtb response (39). Of course, intestinal
Frontiers in Oncology | www.frontiersin.org 3
microbiota can not only lead to the occurrence of pulmonary
diseases by interfering with pulmonary immune homeostasis but
also protect pulmonary homeostasis to a certain extent. Tim J
Schuijt et al. found that microbiota-depleted C57BL/6 mice
infected with S. pneumoniae presented with higher bacterial
dissemination, inflammation, organ damage and mortality than
undepleted C57BL/6 mice. Interestingly, FMT to intestinal
microbiota-exhausted mice miraculously rebounded lung
bacterial counts and IL-10 and TNF-a levels (29).

In addition to recognizing the antigenic components of the
intestinal flora, the host also senses microbiota-associated
FIGURE 1 | Major routes of communications within the gut–lung axis. (1) Ruminococcus gnavus stimulates secretion of IL-25, IL-33, and thymic stromal
lymphopoietin (TSLP) by colon tissues, those cytokines activate DCs and ILC2 to produce cytokines IL-4, IL-5, and IL-13 and travel through the bloodstream to the
lungs and lead to infiltration of the lung parenchyma by eosinophils and mast cells. (2) SCFAs transform macrophage and DC progenitors (MDPs) and their
commitment into Ly6C− monocytes in the bone marrow, which can differentiate into alternatively activated macrophages (AAMs) in the lungs, thus control the
immunopathology caused by infiltrating neutrophils.
August 2021 | Volume 11 | Article 720842
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metabolites that are absorbed by the intestinal mucosa and then
participate in pulmonary immunopathology along with blood
and lymphatic circulation (Figure 1). The most typical example
is SCFAs, including butyric, propionic and acetic acids, which are
primarily sourced from the metabolism of dietary fiber in the
colon and cecum. SCFAs regulate lung homeostasis and
immunity by flowing into the body’s peripheral circulation and
distal organs, such as the bone marrow, where they induce the
differentiation of immune cells in the periphery with subsequent
transportation to the lungs. For example, propionate or butyrate
promotes the conversion of macrophages and DC progenitor
cells (MDPs) into Ly6c- monocytes in the bone marrow, which
are capable of differentiating into alternatively activated
macrophages (AAMs) in the lungs, thus equipping them with
anti-inflammatory and tissue repair abilities by controlling the
immunopathology caused by infiltrating neutrophils (40, 41).
SCFA treatment of dysbiotic mice regulated the activity of
dendritic cells (DCs) and T cells and reduced the levels of
circulating immunoglobulin E (IgE) and IL-4-producing CD4+

T cells, thus alleviating increased asthma susceptibility.
Moreover, dendritic cells exposed to SCFAs less weakly
activate T cells with lower responsiveness to CCL19 and
present inhibited capacity to deliver inhaled allergens to
pulmonary draining lymph nodes (42). Another study found
that butyrate-producing gut bacteria can dampen lung group 2
innate lymphoid cell (ILC2) function, thus weakening the
development of airway hyperreactivity in a mouse model (43).
Furthermore, mice treated with SCFAs subsequently activate G
protein-coupled receptor 43 (GPCR43), thus enhancing the
capacity of macrophages to phagocytose invading Klebsiella
pneumoniae (44). In addition to SCFAs, another metabolite
that has also been shown to affect lung immune responses is
bacterial-derived histamine; mice treated with E. coli
BL21_HTW, bacteria that secrete histamine after genetic
modification, showed decreased lung eosinophilia and
depressed ovalbumin (OVA)-sensitized cytokine secretion from
lung cells in an airway inflammation model (45). Other
metabolites derived from gut microorganisms known to
regulate immune homeostasis include indole derivatives
(dietary tryptophan metabolites) (46, 47), niacin (45),
polyamines (L-arginine metabolites) (48, 49), uridine A (50),
pyruvate and lactic acid (51), all of which are thought to be
important for intestinal homeostasis; however, whether these
metabolites affect respiratory health still needs to be confirmed
by numerous studies.

In general, the gut-lung axis is a well-connected cross-talk
between the gut and the lungs, which is essential for shaping the
immune system and maintaining host homeostasis, but the
potential mechanisms through which the gut influences lung
health or disease are only starting to be explored. We speculate
that the gut microbiota and metabolites intruded into the
intestinal mucosa are recognized by antigen-presenting cells
and transferred to mesenteric lymph nodes (MLNs). They then
activate immune cells and immune factors locally, which migrate
through the lymphatic circulation and blood circulation and can
act directly on lung target cells or continue to stimulate other
Frontiers in Oncology | www.frontiersin.org 4
immune cells. In addition, bacterial products or living bacteria
from the gut can also travel through the blood or lymphatics to
the lungs and stimulate the lung immune system. Thus,
depending on tissue prestimulation, type of stimulation, and
local and overall immune status, the gut-lung axis can effectively
remove bacteria or anti-inflammatory activity, produce an
excessive immune response, promote further tissue damage
and disrupt pulmonary homeostasis (Figure 1).
CHARACTERISTICS OF GUT DYSBIOSIS
IN LUNG CANCER

Although few studies have been conducted on the characteristics
of the intestinal flora of patients with lung cancer, similar
acknowledgments have been achieved. The intestinal flora of
patients with lung cancer is mainly characterized by significant
changes in its composition and function, primarily manifested by
a reduction in intestinal microbial diversity and a reduction in
metabolic-related biological activities compared with healthy
subjects (1, 16, 24, 52, 53). Many specific changes in intestinal
bacterial composition (Table 1) and metabolism (Table 2) are
closely related to lung cancer.

Detection of the biological characteristics of the gut
microbiome may be one of the promising methods for early-
screening and prediction of lung cancer in the future. Analysis of
fecal metagenomes found that despite remarkable interindividual
differences, some predominant genera exhibited dramatic varieties
between lung cancer and health. Lung cancer patients had a lower
TABLE 1 | Characteristic of composition in lung cancer patients.

Differential taxa
features

Sample
numbers

Sample type References

Genera: 60 fecal
specimens

He Zhuang et al. (1)

Enterococcus↑
Actinobacteria↓
Bifidobacterium↓
Genera: 46 fecal

specimens
Fang Liu et al. (24)

Bacteroides↑
Prevotella↑
Lachnospiraceae↓
Genera: 181 fecal

specimens
Yajuan Zheng et al. (16)

Ruminococcus↑
Faecalibacteriu↓
Bifidobacterium↓
Veillonella↓
Genera: 82 fecal

specimens
Wei-Quan Zhang et al. (52)

Bacteroides↑
Veillonella↑
Fusobacterium↑
Fecalibacterium↓
August 2021 |
↑, Microbiota increases in cases compared to controls; ↓, Microbiota decrease in cases
compared to controls.
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abundance of Escherichia-Shigella, Kluyvera, Fecalibacterium,
Enterobacter, and Dialister but a higher abundance of
Bacteroides, Veillonella, and Fusobacterium than healthy controls
(52). Diversity and biomarkers of the gut microbiota for lung
cancer were analyzed using next-generation sequencing. Increased
abundance of Enterococcus yet decreased levels of the bacterial
phylum Actinobacteria and genus Bifidobacterium were found in
lung cancer patients compared to controls; the composition (beta
diversity) differed remarkably between patients and controls, while
the microbial diversity (alpha diversity) showed insignificant
decline in lung cancer patients (1). In addition, the functional
composition of 24 intestinal microbiota metabolic pathways was
significantly depressed in lung cancer via a functional predictive
analysis by COG (cluster of ortholog genes) functional annotation,
especially those that participated in RNA processing and
modification and chromatin structure and dynamics (1).
Similarly, an imbalanced microbial ecosystem was observed in
lung cancer, reflected as the elimination, low density, and loss of
bacterial diversity microbial community featuring higher
abundances of special pathogen microbiomes, including
Prevotella, Enterobacteriaceae, Streptococcus, and lower probiotic
genera, such as Lachnospiraceae, Bifidobacterium, Blautia and
Coprococcus, versus healthy objects despite the interindividual
complexity and diversity of the bacterial structures at the family
and genus levels (24). Pathway comparisons via COG and KEGG
Frontiers in Oncology | www.frontiersin.org 5
(Kyoto Encyclopedia of Genes and Genomes) demonstrated that
the functional abundance spectrum was broadly similar in lung
cancer compared to healthy controls, while the microbiome
exhibited less frequency in pathways involved in ABC-type
(ATP-binding cassette type) transport and energy metabolism in
lung cancer patients (24). One recent study not only identified
imperfections in intestinal microbial diversity and metabolic
pathways in lung cancer patients but also found that the specific
intestinal microbial signature may be associated with lung cancer
subtypes and metastatic status. The different subtypes present with
distinctive microbiome profiles, and several lung cancer-associated
bacteria, including Blautia obeum, Lactobacillus salivarius,
Akkermansia muciniphila and an uncharacterized genus of
family Coriobacteriaceae were overgrown in only three
metastatic patients (16).

In summary, we found that the common characteristics of the
intestinal flora in lung cancer patients are the decreased numbers
of probiotics, increased conditional pathogenic bacteria
populations, increased abundance of the genus Bacteroidetes
and decreased abundance of the genus Firmicutes, resulting in
a lower ratio of Firmicutes/Bacteroidetes. The reduced ratio of
Firmicutes/Bacteroidetes in the gastrointestinal tract may lead to
decreased circulating SCFAs (54, 55), and SCFAs can not only be
induced by lung cancer cell apoptosis and cell cycle arrest (56),
but also play an important role in host immunity and systemic
inflammation (55, 57). However, contradictory results have also
been found in those studies. Wei-quan Zhang et al. found an
increase in the abundance of the genus Veillonella in lung cancer
patients, while Yajuan Zheng et al. showed a decrease in its
abundance (16, 52). This phenomenon can be explained by the
difficulty in determining whether the specific species or strains
are involved in carcinogenesis. The content may be too small to
produce significant pathological results on its own, and the same
species may also play protective or harmful roles depending on
their lived environment. Therefore, more large-scale animal
models and clinical patient studies are needed, and a deeper
understanding of how the gut microbiota influences lung cancer
and the underlying mechanism is needed before it can be used as
a lung cancer biomarker or incorporated into treatment.
POSSIBLE MECHANISMS OF GUT
MICROBIOTA CAUSING LUNG CANCER

Metabolism-Related Genotoxicity
Metabolites produced by some intestinal microbiota may be
genotoxic and can directly induce DNA damage of host cells
or modulate the basic host cell signaling pathways involved in
cell proliferation and apoptosis. These interactions may lead to
genetic and epigenetic modifications, thus endowing protumoral
genome instability, which is most often caused by bacterial
protein toxins that trigger host cell double-strand DNA breaks
(DSBs), such as cytolethal distending toxin (CDT) (58, 59),
cytotoxic necrotizing factor (CNF) (60, 61) and colibactin (62,
63). For example, researchers found that the human intestinal
bacterial genotoxin colibactin alkylates DNA and thus shows a
TABLE 2 | Metabolic characteristics of gut microbiota in lung cancer.

Related metabolic pathway Sample
numbers

Sample
type

References

RNA processing and
modification↓

60 fecal
specimens

He Zhuang et al. (1)

Chromatin structure and
dynamics↓
extracellular structures↑
energy metabolism↓ 46 fecal

specimens
Fang Liu et al. (24)

ABC-type transport↓
cellular antigens↑ 181 fecal

specimens
Yajuan Zheng et al. (16)

steroid biosynthesi↑
ubiquitin system↑
transcription-related proteins↑
bile secretion↑
fatty acid elongation in
mitochondria↑
bacterial motility proteins↓
bacterial chemotaxi↓
flavonol biosynthesis
apoptosis and G protein-
coupled receptors↓
dodecane↑ 19 fecal

specimens
Pamela Vernocchi
et al. (53)

2,6-dimethyl-4 heptanone
methyl
isobutyl ketone↑
aldehydes↓
ketones↓
terpenes ↓
p-cresol↓
↑, Metabolism increases in cases compared to controls; ↓, Metabolism decrease in cases
compared to controls.
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carcinogenic effect (62). In addition, certain bacterial toxins,
such as Bacteroides fragilis toxin, contribute to cancer
development or progression by altering major cell signaling
pathways involved in cell proliferation and cell death (64–66).
Andrew C Goodwin et al. found that B. fragilis toxin could also
augment spermine oxidase, a polyamine catabolic enzyme, and
subsequently result in the creation of reactive oxygen species
(ROS) and DNA damage (67). Furthermore, bacteria can
accelerate host cell transformation through protein virulence
factors such as avirulence protein A (AvrA) (68, 69) and
Fusobacterium nucleatum adhesion A (FadA) (70).

Chronic Systemic Inflammation
At present, many studies have shown that the intestinal flora is
closely associated with many diseases featuring chronic systemic
inflammation (71–73). Intestinal bacteria not only influence
immune and inflammatory responses at the local mucosal level
but also lead to chronic pulmonary inflammation via gut-lung
axis communication (52, 74). Gut dysbiosis can lead to damage
to intestinal mucosal barrier function and increase intestinal
mucosal permeability (75, 76); invading microorganisms and
metabolites can cause local and systematic inflammation.
Chronic inflammation is doubtlessly related to the occurrence
and development of lung cancer (77–79). Therefore, we speculate
that the disturbance of intestinal microbes and metabolites may
lead to chronic systemic inflammation and then participate in
the occurrence and development of lung cancer.

The gut microbiota is an inexhaustible source of microbial-
associated molecular patterns (MAMPs) and pathogen-
associated molecular patterns (PAMPs) that can be recognized
by nucleoside binding receptors (NODs) and Toll-like
receptors (TLRs) on host cells. Direct contact with the lumen
of TLRs exists not only in intestinal epithelial cells (IECs) but
also in immune cells in the lamina propria, such as stromal cells,
dendritic cells, macrophages, B cells and T cells. Microorganisms
and their products entering the intestinal mucosa activate TLRs
to produce inflammatory mediators and inflammatory factors,
which participate in the pulmonary inflammatory process
through lymphatic and blood circulation (Figure 2). For
example, Stephen Wedgwood et al. found that gut dysbiosis
characterized by a significant increase in Enterobacteriaceae
activates TLR4 in the intestine and causes inflammation,
increases the level of IL-1b in peripheral circulation,
transduces inflammatory signals to the lungs, and activates the
NF-kB pathway, leading to pulmonary inflammation (74).
Similarly, Jia Tang et al. found that intestinal microbiota
dysbiosis could modulate the TLR4/NF-kB signaling pathway
in pulmonary immunity, subsequently motivating oxidative
stress and inflammation to be involved in lung pathology by
regulating the intestinal barrier (80).

In addition, some specific species have been shown to be
closely related to the levels of systemic inflammatory factors in
lung cancer. Enterobacter and Escherichia-Shigella were found to
be significantly associated with serum neutrophil-to-lymphocyte
ratio (NLR) levels, while Dialister was negatively associated with
serum NLR and platelet-to-lymphocyte ratio (PLR) levels.
Furthermore, serum CTLA-4 and IL-12 levels were correlated
Frontiers in Oncology | www.frontiersin.org 6
with Dialister (52). Jie Chen et al. found that the abundances of
the genera Enterococcus and Helicobacter were strongly
correlated with IL-6 levels (81). Another study found that
enrichment of fecal microbial communities with the families
Lachnospiraceae and Ruminococcaceae was correlated with
increased concentrations of lung TNF-a and IL-17 (82).
Antibiotic interventions in mice were found to lead to a
significant decrease in the bacterial population and diversity, as
well as a significant upregulation in the release of IL-6 in
bronchoalveolar lavage fluid (BALF) (83).

Of course, gut microbiota-associated metabolites can also
influence pulmonary inflammatory balance. Recent research
has shown that human gut bacteria can produce other
metabolites with proinflammatory potential, such as 12,13-
diHOME (37) and bile acid (BA) (84). Mice intraperitoneally
administered 12,13-DiHome presented with enhanced
pulmonary inflammation and a suppressed population of Treg
cells in the lungs, thus endowing them with a higher asthma
susceptibility due to impedient immune tolerance, and 12,13-
diHOME was capable of altering the expression of PPARg-
regulated genes of human dendritic cells and decreasing the
secretion of anti-inflammatory cytokines and the count of Treg
cells in vitro (37). In addition, the total BA concentration mainly
produced by the gut microbiota was significantly associated with
several inflammatory markers, such as IL-1b, IL-6 and IL-8, in
bronchoalveolar lavage fluid (BALF) samples of cystic fibrosis
patients (84). Of course, as mentioned above, intestinal flora
metabolites represented by SCFAs also display powerful anti-
inflammatory ability. However, a decrease in SCFA-producing
bacteria and serum SCFAs is common in lung cancer patients,
highlighting the complexity of gut microbiota-derived
inflammation regulation.

In general, the gut microbiota, directly or indirectly through
its metabolites and other components, actively participates in
lung inflammation through microbial-cytokine regulatory
interactions, both in the gut and systemically, leading
to enhanced proinflammatory effects, weakened anti-
inflammatory effects and chronic systemic inflammation, thus
forming a microenvironment prone to the occurrence and
development of lung cancer. Therefore, the regulation of
intestinal flora will provide a new and promising treatment
method for maintaining host homeostasis and preventing
lung cancer.

Immune Response
The intestinal microbiota is a significant factor contributing to
the establishment of host pulmonary immune homeostasis,
which affects the pulmonary immune response by regulating
innate immunity and adaptive immunity. Gut dysbiosis can
destroy the delicate balance between lung immune activation
and immune tolerance, lead to tumorigenic inflammation due to
excessive immune response, or lead to decreased antitumor
ability due to defective immune surveillance function, thus
forming a microenvironment conducive to the development of
lung cancer cells (Figure 2).

Although we hypothesized that the antigenic components of
gut microbiota may be transported to the lungs via the gut-lung
August 2021 | Volume 11 | Article 720842
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axis and then directly participate in pulmonary immunity, few
studies have been conducted in this area. The main mechanism is
that the intestinal flora activates immunity in the intestine, and
then these activated immune cells migrate to the lungs and
participate in pulmonary immunity. However, how do intestinal
immune cells migrate to the lungs through the gut-lung axis?
This lung-selective trafficking of lymphocytes may be mainly due
to chemokine-induced homing of lymphocytes (Figure 2). For
example, Jerilyn Gray et al. found that intestinal congenital
lymphocytes are closely related to pulmonary homeostasis, and
Frontiers in Oncology | www.frontiersin.org 7
intestinal flora mediates this tissue selective transport by
increasing the high expression of the group 3 innate lymphoid
cell (ILC2) homing receptor CCR4 but has no correlation with
the proliferation or apoptosis of ILC3s (85). CCR4 is a
chemokine receptor that is commonly identified as a biological
signal for transporting T cells and Treg cells into the lungs (86).
CCL17 is a ligand for CCR4 expressed on the lung epithelium
with the capacity to activate the CCR4 receptor and promote
ILC3 entry into the lungs (85). In addition, CD11c+ and CD8+

cells in the lungs of mice were found to be able to bind antigens
FIGURE 2 | Gut dysbiosis regulates lung inflammation and immunity. (1) Gut dysbiosis causes damage to the intestinal mucosal barrier, invading gut bacteria and
metabolites affect the host’s inflammation and immunity locally and systematically which in turn leads to the carcinogensis of lung cancer. Bile acid (BA) stimulates
inflammatory markers such as IL-1b、IL-6 and IL-8 in the lung. (2) 12,13-diHOME decreases the number of regulatory T (Treg) cells in the lungs resulting in a
reduced anti-inflammatory effect. (3) Bacteria-derived antigens activates TLR4 in the intestine immune cells, which increases the level of IL-1b in peripheral circulation
that activates NF-kB pathway, leading to pulmonary inflammation. (4) SFB-induced gut Th17 cells are preferentially recruited to lung due to robust expression in the
lung of CCL20. (5) Gut dysbiosis leads to a decrease in the expression of ICAM-1, which decreases the number of activated and effective CD8+ T cells in tumors.
August 2021 | Volume 11 | Article 720842
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from the intestinal microbiome. CD11c+ cells expressing CD8
are antigen-presenting cells equipped with the activity to shuttle
between diverse tissues, and this effect may be related to the
sufficient expression of TLR4 in CD11c+ cells in the lungs (87).
In addition, C. Pierce Bradley et al. found that segmented
fi lamentous bacter ia (SFB) can induce pulmonary
autoantibodies, and the Th17 cell response is necessary for
SFB-dependent pulmonary pathology. SFB-induced intestinal
Th17 cells are preferentially recruited to the pulmonary over
spleen, accounting for strong expression in the lung of CCL20,
the Th17 chemoattractant (88), and a ligand of CCR6 expressed
on Th17 cells with the function of lymphatic tissue specific
transportation. Studies have proven that it preferentially recruits
Th17 cells to the inflammatory microenvironment of the central
nervous system (89, 90). Additionally, dual T cell receptor
(TCR)-expressing Th17 cells were selectively amplified by SFB,
thus boosting autoimmune inflammation by identifying self-
antigens and SFB epitopes in peripheral tissues (88).

In the case of immune response deficiency, Samir V Jenkins
et al. showed that antibiotic-induced dysbiosis leads to faster
progression of B16-F10 melanoma and Lewis lung cancer in
mice. This progression is mediated by a decrease in local and
systemic TNF-a levels, leading to a decrease in the expression of
tumor endothelial adhesion molecules, especially intercellular
adhesion molecule-1 (ICAM-1), and weakened leukocyte
trafficking into the tumor, followed by a lower population of
activated and effective CD8+T cells in tumors (91). In addition,
Rodrigue Dessein et al. found that gut dysbiosis induces
extensive cellular immunosuppression in the lung, reduces the
circulating hematopoietic cytokine Fms-related tyrosine kinase 3
ligand (Flt3-Ligand), and suppresses dendritic cell bone marrow
progenitors; pulmonary tissue manifested a noteworthy decline
in macrophages, NKs, iNKT cells, gd-T cells, cDC2, neutrophils
and inflammatory monocytes due to extensive suppression of
pulmonary cellular immunity by antibiotics under cell
population analysis (92). Shikha Negi et al. found that
intestinal microbiota imbalance decreased the expression of
pulmonary macrophage inducible C-type lectin (mincle). In
addition, antibiotics could reduce the number of effector and
memory T cells (39).
IMMUNOTHERAPY

In recent years, immunotherapy has led to a new upsurge in
tumor therapy. Many studies have investigated the intestinal
flora as a novel biomarker that is closely related to the antitumor
effects of ICIs, including CTLA-4 and PD-1/PD-L1 (10, 93–95).
The diversity and stability of intestinal flora seem to be a
biological signature for the sensitivity of anti-PD-1
immunotherapy in NSCLC patients, and some specific species
seem to predict patients’ effectiveness to immunotherapy. In the
Checkmete 078 and Checkmete 870 studies of 37 patients with
advanced NSCLC treated with navumab, investigators found that
patients who responded to PD-1 had higher intestinal
microbiome diversity at the beginning of treatment, more
Frontiers in Oncology | www.frontiersin.org 8
stable intestinal microbiome composition during treatment,
and significantly prolonged progression-free survival (PFS).
The enrichment of Bifidobacterium longum, Alistipes putredinis
and Prevotella copri was associated with better ICI efficacy (25).
In addition, Peng Song et al. found that higher b-diversity in the
intestinal flora of lung cancer patients treated with PD-1
blockade predicted longer PFS, and Parabacteroides and
Methanobrevibacter predicted better cancer control (96).
Another study found that bacteria-depleted or antibiotic-
treated mice transplanted with the fecal microbiota from
cancer patients who responded to ICIs showed higher
ameliorated antitumor activities to PD-1 inhibitors than mice
transplanted with nonresponder feces. Metagenomics of patient
fecal samples demonstrated that Akkermansia muciniphila levels
were associated with clinical benefits to ICIs. Interestingly,
administration of Akkermansia muciniphila to mice after fecal
transfer with nonresponder stools rebounded the anti-PD-1
efficacy, which was attributed to the enhanced migration of
CCR9+CXCR3+CD4+ T lymphocytes into the mouse tumor
microenvironment in an IL-12-dependent manner (10). Ayelet
Sivan et al. found that mice administered Bifidobacterium
presented enhanced dendritic cell function and concomitant
intensified accumulation of CD8(+) T cells in the tumor beds;
thus, they alone exhibited antitumor capacity to the same degree
as PD-L1 inhibitor, and combination treatment almost
eliminated tumor outgrowth (94). These results indicate that
manipulating the intestinal flora has the potential to be used as
one means to enhance the efficacy of immunotherapy in
lung cancer.

Despite the obvious advantages of ICIs, we should not ignore
the adverse reactions associated with immunotherapy. Although
anti-CTLA 4 and anti-PD-1/PD-L1 antibodies have become the
first-line treatment used against a wide variety of tumor types,
due to the use of ICIs increasing T cell activity and eliminating
the immune system from nature and “braking”, these drugs may
be associated with immune-related adverse events (irAEs),
especially when used in combination. Studies have issued that
the incidence of irAEs, including diarrhea, colitis, fatigue, rash/
itching, mucositis and pneumonia, ranges from 15 to 90%, with
estimates of severe irAEs ranging from 0.5 to 13% (97). Yun-bin
Zhang et al. found that the mechanism of tuberculosis induced
by anti-PD-1 treatment may be related to a hypersensitivity
response similar to immune reconstructive inflammatory
syndrome (IRIS). Pembrolizumab induced substantial CD38
expression in Th17 cells and significantly increased intestinal
microbiota diversity in response to the pembrolizumab
treatment cycle, suggesting that pembrolizumab may trigger
Th17-phenotypic airway inflammation through microbiota
interactions along the gut-lung axis (98). Another study
examined stool samples taken from 26 patients with advanced
lung cancer before they were first given anti-PD-1 antibodies and
found that immune-related diarrhea patients were characterized
by a lower abundance of Phascolarctobacterium belonging to the
Firmicutes phylum and Parabacteroides and Bacteroides of the
Bacteroidetes phylum and a higher abundance of Veillonella of
the Proteobacteria phylum (99).
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In addition, researchers suggest that antibiotic-induced
imbalance of the gut microbiota may affect the clinical benefit
of ICIs in NSCLC patients (100–102). A meta-analysis evaluating
the influence of antibiotic use on survival in NSCLC patients
treated with PD-1/PD-L1 blockades revealed that patients
exposed to antibiotics before ICI treatment had obviously
decreased survival, as reflected by the median OS being
decreased by an average of 6.7 months (103). However, in
some cases, antibiotics have to be used during immunotherapy.
How does this affect the efficacy of ICIs? Giulia Galli et al.
defined the antibiotic-immunotherapy exposure ratio (AIER) as
“days of antibiotic/days of IO” during the whole immunotherapy
period (WIOP) and found that NSCLC patients with a higher
AIER had shorter PFS and OS than the others (104).

In general, gut microbiota may affect the efficacy of lung
cancer immunotherapy and immunorelated toxicity and side
effects to a certain extent; thus, artificial intervention of intestinal
flora is likely to improve the efficacy and attenuate the toxicity of
immunotherapy. In addition, we should be careful to use
antibiotics to avoid affecting the efficacy of immunotherapy for
lung cancer.
PROBIOTICS: A DOUBLE-EDGED SWORD

In recent years, probiotics conferring health benefits to hosts have
attracted widespread interest. It has been shown that human
intervention with probiotics can promote lung health, reduce
the severity of lung diseases, and increase resistance to diseases.
Remote regulation of pulmonary homeostasis using probiotics
underlies the concept of immunomodulatory regulation by
beneficial bacteria via gut-lung crosstalk. Lactobacillus
plantarum CIRM653 alleviated the lung inflammatory response
in mouse models infected with Klebsiella pneumoniae by reducing
the counts of lung innate immune cells, such as macrophages and
neutrophils, and cytokines, including mouse keratinocyte-derived
chemokines TNF-a and IL-6, as well as triggering an
immunosuppressive Treg cell response in the lungs (105). In
addition, treatment of mice with the recombinant probiotic
Lactobacillus rhamnosus GR-1 restricted the augmentation of
respiratory total cell populations, lymphocyte populations and
lung IL-1b levels, thus contributing to lower airway
hyperreactivity (19). Other probiotics that regulate immune
homeostasis in the lungs, including Clostridium butyricum (106),
Lactobacillus rhamnosus GG (107, 108), Bifidobacterium longum
(109, 110), Saccharomyces cerevisiae UFMG A-905 (111) and
Akkermansia muciniphila (112), are thought to play a major role
in lung health. However, although probiotics are increasingly
widely used with outstanding overall security, adverse events
remain a potential concern. A study observed that nearly half of
the 65 isolated Bacillus spp. strains from commercial probiotic
products harbor the potential to create hazardous toxins, and mice
infected with the representative isolates present with intestinal
inflammation, sepsis and liver injury (113). Moreover, multiple
antimicrobial resistance genes and mobile genetic elements were
sheltered in these strains (113). Overall, Bacillus probiotics may
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have a potential risk for health due to their ability to generate
multiple toxins and harbor mobile antimicrobial resistance genes.

Collectively, the ability of probiotics to produce a variety of
toxins and carry ambulate antimicrobial resistance genes while
enhancing the health of the host indicates a potential health risk
and suggests caution in the use of probiotics. A recent study
showed that the transient colonization of probiotic strains in the
human lower digestive tract is highly variable, with some people
allowing colonization and others resisting it. In addition, there
were significant individual differences in human pathways
affected by these probiotic strains (114). The uncertainty of
whether microbes will survive and function in recipients will
be removed by using standardized doses of purified microbial
ingredients, thus endowing them with stronger potential than
probiotics themselves.
CONCLUSIONS AND PERSPECTIVES

Lung cancer is the leading cause of cancer death worldwide, and
smoking, chronic obstructive pulmonary disease (COPD) or
emphysema are part of the recognized risk factors for the
development of lung cancer. Recent studies have suggested that
gut microbiota may influence the susceptibility to malignancy and
clinical immunotherapy response. Therefore, we hypothesize that
the gut microbiota may be involved in the development of lung
cancer and the effectiveness of immunotherapy. Recent efforts to
explore the important role of the gut-lung axis in lung disease have
also revealed the correlation between specific components of the
gut microbiota and their derived metabolites and carcinogenesis
and metastasis of lung cancer, as well as lung immunotherapy
response. These interactions include gene instability caused by
intestinal flora and metabolites, chronic systemic inflammation,
disruption of immune homeostasis, and deficiency of immune
surveillance. Recent studies have shown that gut microbiota affects
the efficacy of ICIs in lung cancer patients and have also
demonstrated that probiotics and FMT may be one of the
methods to increase the efficacy and reduce the toxicity of
immunotherapy. In addition, the use of antibiotics before or
during immunotherapy can lead to gut dysbiosis, which in turn
affects the efficacy of immunotherapy.

Because of the widespread use of NGS and 16S RNA, most
studies have focused on the bacterial components of the gut
microbiome. However, the gut microbiome is a large and
complex library of microbial signals. The roles of fungi,
protozoa, worms, viruses, and bacteriophages may be equally
important. Fungi and viruses may also influence pulmonary
homeostasis through the gut-lung axis, but little is known about
this. In addition, although some studies have shown that certain
microorganisms and derivatives can affect and regulate the
development of lung cancer and the ICI curative effect, some of
the flora were not advantageous bacterial groups. In other words,
the content is relatively too small, the effect is still questionable,
and separate microbiota may be observed with the change of
environment and show different biological function. The present
study is only at the qualitative level, and thus more research is
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necessary to reach a quantitative breakthrough. A better analysis of
the association between gut microbiome composition, efficacy and
toxicity of antibiotic therapy and ICIs, as well as dynamic
monitoring of gut microbiome evolution, can lead to this
conclusion and support the use of probiotics or microbial agents
to regulate the gut microbiome to improve the prevention and
treatment of lung cancer.
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