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Protecting the patches from the footprints: 
examining the land use factors associated 
with forest patches in Atewa range forest 
reserve
Williams Agyemang‑Duah1*, Joseph Oduro Appiah2 and Dina Adei1

Abstract 

Background:  Land use practices are noted to contribute to changes in forest landscape composition. However, 
whereas studies have reported the intermix of land uses and forest patches and measured the direct impacts of land 
uses on forest patches, little is known regarding the spatially-explicit association between the most recent forest 
patches and land use footprints in protected areas. In this study, we use methods from GIS, remote sensing, and 
statistics to model the spatial relationship between footprints of land uses and patches of forest cover by drawing on 
geospatial data from the Atewa range forest reserve (ARFR).

Results:  The study finds that forest patches that are within 1 km from agricultural land use footprints (AOR = 86.625, 
C.I. 18.057–415.563, P = 0.000), logging sites (AOR = 55.909, C.I. 12.032–259.804, P = 0.000), mine sites (53.571, C.I. 
11.287–254.255, P = 0.000), access roads (AOR = 24.169, C.I. 5.544–105.357, P = 0.000), and human settlement foot‑
prints (AOR = 7.172, C.I. 1.969–26.128, P = 0.003) are significantly more likely to be less than the mean patch area 
(375,431.87 m2 = 37.54 ha) of forest cover. A ROC statistic of 0.995 achieved in this study suggests a high predictive 
power of the proposed model.

Conclusion:  The study findings suggest that to ensure sustainable land uses and ecological integrity, there is a need 
for land use policies and land management strategies that ensure responsible livelihood activities as well as further 
restrictions on logging and mining in the globally significant biodiversity area.

Keywords:  Forest patches, Land use, Forest reserve, Forest fragmentation, Predictive model, Logistic regression 
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Background
Studies in sub-Saharan Africa as well as those with global 
focus have noted that anthropogenic land use continues 
to threaten forest resources despite efforts being made 
to ensure sustainable land uses in locations where com-
munities are connected to land for their livelihoods. 

Indiscriminate land use in forest areas is likely to acceler-
ate forest cover loss, forest patch fragmentation, loss of 
ecosystem services, and land degradation [1–4]. Thus, 
from a broader perspective, these land use impacts on 
forest resources are indirectly connected to the malfunc-
tioning of the forest ecosystem and contribute to global 
environmental and climate change [5, 6]. Hence, reduc-
ing forest loss and fragmentation has been one of the 
answers to global climate change [7, 8].

Recent studies have identified several anthropo-
genic land uses that contribute to forest loss, forest 
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fragmentation and land degradation [9, 10]. Agriculture 
has been identified as one of the factors contributing to 
forest change, especially in the tropical regions of the 
world [11–16]. Related to agricultural activities is log-
ging, which also involves the removal of forest cover 
[17–19]. In recent times, the rush for gold and other 
mineral resources by local communities and multina-
tional corporations has made mining activities a major 
contributor to the recent forest cover loss and fragmen-
tation [20–24]. Additionally, urban expansion, includ-
ing human settlement development and expansion in 
road networks, also contributes to forest cover loss and 
fragmentation [22, 25]. However, the land use types and 
their legacies in different locations are likely to be influ-
enced by local, national and international dimensions 
and thus, it would be necessary to study land use lega-
cies through the lens of socio-economic, spatial, and 
environmental conditions in many locations.

The Atewa Range Forest Reserve (ARFR) was estab-
lished and designated as a forest reserve in 1926 and 
has also been allocated as a Globally Significant Biodi-
versity Area (GSBA) and an Important Bird Area (IBA) 
[26]. In spite of being a protected area and GSBA, the 
ARFR is a hotspot of anthropogenic activities [27–29]. 
For instance, according to the Ministry of Lands and 
Natural Resources of Ghana [30], the ARFR is seriously 
being threatened by open cast mining and illegal min-
ing (locally called ‘galamsey’). Thus, there is a likelihood 
that the land uses would contribute to forest cover loss, 
forest patch fragmentation and land degradation.

Studies in forest ecosystems, especially in the tropi-
cal forest reserves have mostly focused on forest cover 
change from land uses [28, 31–36]. However, none of 
these studies have downscaled their units of measure-
ment to patch-mosaic level and modelled the associa-
tion between land uses and patches of forest, especially 
in locations where agriculture is a major land use activ-
ity. We fill this knowledge gap by modelling the likeli-
hood of the occurrence of patches of forest that are less 
than the mean patch area within a given distance from 
the land use hotspots using land use and forest patch 
spatial data from the ARFR. The study aims at present-
ing a model that predicts the association between land 
uses and patch size by incorporating the spatial dimen-
sions of land uses and patches of forest. We hypothesise 
that forest cover patches are not likely to be less than 
the mean patch area even if they are within 1 km from 
land use footprints. This hypothesis is built from pre-
vious studies [37, 38], which indicate that 70% of the 
world’s forests are within 1 km of forest edge. Moreo-
ver, most of the forest cover patches are well within the 
range which is made up of different human activities, 
altered microclimate, and nonforest species that are 

likely to influence and degrade forest ecosystems [37, 
38].

We use a state-of-the-art random forest (RF) machine 
learning classification algorithm for processing a Landsat 
image into land use and land cover categories. Moreover, 
we combine the Landsat image with land use data from a 
high-resolution aerial image to reduce the effects of scale 
on the study results. Hence, we present methods from 
geographic information systems (GIS), remote sensing 
and statistics to process geospatial data and show the 
relationship between land uses and forest cover patches. 
A similar approach has been used successfully in a study 
to model forest fragmentation, land use and other factors 
in northeastern China [39]. This study presents impor-
tant information that reflects environmental, social and 
economic conditions and directly informs forest policies 
and management plans about the need to protect forest 
resources and ensure sustainable land uses in and around 
protected landscapes.

Results
The study shows that most of the forest patches are not 
within 1  km of the different land use footprints (see 
Table  1). For instance, the study outcome shows that 
756 forest patches are not within 1  km of the agricul-
tural footprints in the ARFR. Similarly, 723 of the forest 
patches are not found within 1 km as compared to 142 of 
them that are within 1 km from the logging footprint.

The outcome of the multivariate analysis is as follows 
(also see Table  2). First, the analysis reveals that forest 
patches that are within 1  km from agricultural land are 
about 86.625 times significantly more likely to be less 

Table 1  Categorical variables coding and frequencies

Independent variables Frequency Parameter 
coding

Patches within 1 km from human settlement

 No 758 .000

 Yes 107 1.000

Patches within 1 km from access roads

 No 751 .000

 Yes 114 1.000

Patches within 1 km from mine sites

 No 723 .000

 Yes 142 1.000

Patches within 1 km from logging sites

 No 754 .000

 Yes 111 1.000

Patches within 1 km from agricultural land

 No 756 .000

 Yes 109 1.000
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than the MPA of 375,431.87  m2 (37.54  ha). Second, the 
outcome of the analysis shows that forest patches that 
are within 1 km from access roads are about 24.169 times 
significantly more likely to be less than the MPA. Moreo-
ver, the analysis shows that forest patches that are within 
1 km from the mine site footprints are about 53.571 times 
significantly more likely to be less than the MPA. Also, 
the study finds that patches that are within 1  km from 
the logging site footprints are about 55.909 times signifi-
cantly more likely to be less than the MPA. Furthermore, 
the study finds that forest patches that are within 1  km 
from the human settlement footprints are about 7.172 
times significantly more likely to be less than the MPA 
of forest patches in the ARFR. With this study outcome 
regarding the relationship between the area of forest 
cover patches and land uses, we reject the null hypothesis 
that forest cover patches are not likely to be less than the 
MPA even if they are within 1 km from land footprints. 
The standard errors (SEs) (see Table  2) for these esti-
mates of likelihoods range between 0.660 and 0.800.

Model goodness‑of‑fit and model robustness
The robustness of the model has been measured and the 
results are as follows. Firstly, given the set of data, the 
outcome (P > 0.05) of the Hosmer and Lemeshow test 
(see Table  3) shows that the model is a good fit to the 
data. Secondly, the Omnibus Tests of Model Coefficients 
show a significant difference between the based model 
(without explanatory variables) and the current model 
with explanatory variables (P < 0.05). Thirdly, the ROC 
curve shows that there is a near-perfect prediction of 
0.995 (see Fig. 1). Moreover, the overall accuracy for the 
prediction of patches that are less than the MPA and that 

Table 2  Results of analysis showing the relationship between the dependent and independent variables

AL agricultural land, AR access roads, MS mine site, LS logging site, HS human settlement, B coefficients of the models, S.E. standard error, AOR adjusted odds ratio, 
CI confidence interval

**Relationship is statistically significant if P < 0.05 at a 95% confidence interval

Independent variable B S.E Sig AOR 95% C.I. for AOR

Lower Upper

Patches within 1 km from AL (No) 1 (ref)

Patches within 1 km from AL (Yes) 4.462 .800 .000** 86.625 18.057 415.563

Patches within 1 km from AR (No) 1 (ref)

Patches within 1 km from AR (Yes) 3.185 .751 .000** 24.169 5.544 105.357

Patches within 1 km from MS (No) 1 (ref)

Patches within 1 km from MS (Yes) 3.981 .795 .000** 53.571 11.287 254.255

Patches within 1 km from LS (No) 1 (ref)

Patches within 1 km from LS (Yes) 4.024 .784 .000** 55.909 12.032 259.804

Patches within 1 km from HS (No) 1 (ref)

Patches within 1 km from HS (Yes) 1.970 .660 .003** 7.172 1.969 26.128

Constant − 8.204 1.288 .000 12,304.784

Table 3  Omnibus tests of model coefficients

***For the omnibus tests of model coefficient, P < 0.05, and, hence results are 
statistically significant

Chi-square df Sig

Step 435.161 5 .000***

Block 435.161 5 .000***

Model 435.161 5 .000***

Fig. 1  The receiver operating characteristics (ROC) curve showing 
the predictive capability of the model (MPA mean patch area of 
forest cover). This figure was created by authors during the statistical 
analysis of the relationship between the area of forest cover patches 
and land uses
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of those that are less than the predicted accuracy is 90.5% 
and 99.2%, respectively (see Table  4). Furthermore, the 
pseudo R2 (Nagelkerke R Square) shows that the inde-
pendent variables explain about 89.3% of the variation in 
the model’s dependent variable.

Discussion
This study examines the association between spatially-
explicit land use factors and the most recent forest 
patches on the landscape. We present a model that shows 
a significant relationship between the forest patches and 
the land use factors. Whereas relative measures have 
been used to show the robustness of similar models in 
previous studies [40–42], we used the area under the 
curve or the ROC and other measures to determine the 
robustness of the model. The ROC statistic of 0.995 sug-
gests a near-perfect model fit [43], and thus, the resultant 
model achieved in the modelling process is not a result of 
a random chance. However, the use of a different distance 
threshold of a spatial relationship between land use types 
and forest cover patches in other forest areas would likely 
produce a different ROC statistic. Similar to the ROC sta-
tistic result, other measures such as the Omnibus Tests 
of Model Coefficients, the Hosmer and Lemeshow test, 
and the R2 indicate that the model is robust and thus the 
model fits the dataset used in the analysis. The uncertain-
ties in the classification of the forest cover patches using 
the RF machine learning algorithm would likely impact 
the results. For instance, the size of the forest patches 
would likely be overestimated or underestimated due 
to the imperfections associated with the current state-
of-the-art machine learning classification algorithm. 
Specific spatially-explicit land use variables and their 
relationship with the mean patch area have been dis-
cussed as follows.

The spatially-explicit model demonstrates significantly 
different levels of associations between land uses and 
recent patches of forest cover. All the spatially-explicit 
land use factors are significantly related to the forest 
patch sizes and thus, adequately explain the area of forest 

patches in the ARFR. Generally, the study findings sug-
gest that forest patches are likely to be smaller than the 
mean patch area if they are found near the land use foot-
prints, implying that forest patches farther away from 
land use footprints are less likely to be smaller than the 
mean patch area of patches on the landscape. That is, the 
part of the forest patches, especially at the fringes of the 
reserve where human influences are high are more likely 
to have patches less than the mean patch area. This study 
outcome supports the assertion [44] and findings from 
KwaZulu–Natal midlands-South Africa [45], Midwest of 
the United States [46] that human-dominated landscapes 
are more likely to have smaller patches.

It has been argued that in the human-dominated land-
scapes (e.g., the corn belt of the midwestern United 
States, rural landscapes in Africa and the Latin Ameri-
can Amazonia), where human activities and impacts on 
the environment are on the rise, there is an opportunity 
to preserve aspects of the landscape pattern and ensure 
sustainable land uses that take care of the livelihoods 
of the present as well as future generations [46–48]. In 
the ARFR where farmer encroachment along the forest 
reserve fringes is on the rise [28], better land preservation 
measures will be needed. Thus, in the ARFR, the chal-
lenge will be about how to maintain land uses and still 
maintain the protected area status of the reserve. How-
ever, lessons can be learnt from other locations where 
a better reconciliation between land uses and environ-
mental protection has resulted in a ‘win–win’ situation. 
For instance, in the Wolong Nature Reserve in Sichuan 
province of China, where 90% of the local inhabitants are 
farmers, there has been a better reconciliation of ecologi-
cal and socio-economic objectives by providing non-agri-
cultural employment opportunities for local populations 
to ensure improvement in local livelihoods [49]. Conse-
quently, this management strategy around the reserve has 
reduced anthropogenic pressure on the reserve, specifi-
cally, through reduced fuelwood collection and agricul-
tural activities [49].

As expected in the ARFR, an area surrounded by an 
agrarian landscape, agricultural footprints are the most 
relevant factor influencing the area of forest patches. 
In relating the footprints of agricultural activities to the 
patches of forest, the outcome of the analysis implies 
that the forest patches area would likely be larger if they 
are found beyond 1 km from the agricultural footprints. 
Thus, this study finding suggests that forest patches that 
are closer to the farmlands are more likely to be smaller 
as compared to the patches that are farther away from 
the farmlands. This study outcome is related to the find-
ing from previous studies in KwaZulu–Natal midlands, 
South Africa and the Eastern North American agricul-
tural landscape that assert that cropland and pasture 

Table 4  Summary of the observed and predicted outcome

MPA is the mean patch area

Observed Predicted

Less than MPA Percentage 
correct

No Yes

Less than MPA

 No 785 6 99.2

 Yes 7 67 90.5

Overall percentage 98.5
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appear to impede the expansion of forest patches [45, 50]. 
The onus is on land managers to meet the ever-increasing 
demand for agricultural land for food production without 
compromising the biodiversity and many ecosystem ser-
vices provided by forests. For instance, a previous study 
in the ARFR in Ghana has noted that the ARFR serves 
as a watershed for important river systems, namely, the 
Densu, Ayensu, and Birim [51]. Hence, the continuous 
indiscriminate encroachment by farmers at the forest 
reserve fringes would likely threaten the sustainability of 
the rivers and the services they provide for the surround-
ing communities that depend on these river systems for 
water. Land managers could ensure socio-ecological sus-
tainability by allowing farming activities provided farm-
ers are willing to mix their crops with tree seedlings 
meant to reforest the degraded patches of forest cover.

Additionally, the study finds that forest patches that 
are within 1 km from logging sites are significantly more 
likely to be less than the mean patch area of forest. This 
implies that those patches that are not closer to the log-
ging sites are likely to be larger as compared to those that 
are closer to the logging sites. As indicated in the odds 
ratios of the model, logging sites appear to be the sec-
ond most important factor to associate with the patches. 
Generally, logging activities in forest landscapes pro-
duced patterns characterized by high patch and edge 
densities and small patch areas [44, 52]. For instance, in 
a related study in Indonesia, Gabon, Democratic Repub-
lic of Congo, Republic of Congo, Suriname, and Mexico, 
Putz et  al. [53] found that the proportion of intact for-
est decreases with an increase in the harvest in the access 
portions of logging blocks. Thus, based on this finding 
and that of our study, forest management activities could 
ensure that logging activities are not overly dispersed 
across the landscape to contribute to patch area reduc-
tion and subsequent fragmentation. Commercial logging 
activities should be done taking into consideration the 
spatial context of spreading forest patch fragmentation 
and land degradation.

Forest patches, from the multivariate analysis, are more 
likely to be less than the MPA if they are found within 
proximity to mine sites in the ARFR. This finding implies 
that forest patches would likely be larger when they are 
far away from the mine sites as compared to patches that 
are close to the mine sites. Whereas not directly related 
to the findings of this study, previous studies in forested 
landscapes in East Jaintia Hills-India, Brazilian Atlantic 
Forest and ridgetop biota of Appalachian forests have 
shown that reduced forest cover is mostly associated with 
mine sites [54–56] and thus, it is likely that forest patches 
are reduced or lost as a result of mining activities in such 
landscapes. Also, clearing of forest for mining activities 
would likely create room for other activities (e.g., road 

construction and human settlement development) and 
access to other parts of the forest cover. Hence, we argue 
that there might be other factors accounting for the for-
est patch area on the landscape and there is the need to 
always consider multiple variables in determining the 
forest patch pattern. However, such consideration is 
dependent on the availability of data for the variables.

Moreover, the study outcome shows that forest patches 
that are within 1  km from the access roads are more 
likely to be less than the MPA. This study outcome sug-
gests that the forest patches would likely be larger in 
an area far away from the access roads as compared to 
patches that are closer to the access roads. In a similar 
study in northeastern China [39], it was found that for-
est patches that are closer to roads (highways) are more 
likely to be smaller as compared to the patches that are 
far away from the roads. Moreover, the outcome of our 
study corroborates a related study from tropical forest 
environments (Indonesia, Gabon, Democratic Republic 
of Congo, Republic of Congo, Suriname, and Mexico) 
which shows that more forests are left intact in areas 
farther from roads away as compared to forest patches 
that are within proximity to roads [53]. Global forest 
landscape analysis and studies from Addis Ababa-Ethi-
opia and eastern Germany have used large patch size as 
a measure of forest intactness, ecological integrity, and 
ecosystem functioning [57–59]. Thus, in the ARFR, forest 
patches would likely be of high ecological integrity if they 
are large and not within 1  km from access roads. With 
that being implied, access roads, are also likely to facili-
tate other land uses and contribute to forest loss [60]. For 
instance, Sahana et al. [61] in a study in the Song Water-
shed in India have found that human intervention along 
access roads has contributed to forest degradation, one of 
the resultant attributes of forest fragmentation. However, 
Kaczan [62] in a study in India found that access road 
development contributes to forest transition (both losses 
and gains). Therefore, there should be management initi-
atives and policies to harness the positive aspect of access 
roads while mitigating impacts to ensure long term sus-
tainable land uses.

Furthermore, from the study, it is observed that for-
est patches that are within 1  km from human settle-
ments are more likely to be less than the MPA of forest 
patches on the landscape. This study result suggests that 
it is more likely that smaller patches would be found 
near footprints of human settlements. In a related study 
from northeastern China, it was found that forest cover 
patches reduced with distance to human abodes, includ-
ing cities [39]. Bar-Massada, Radeloff, and Stewart [63] in 
a review of literature on studies from different locations 
(e.g., South Africa, NewZealand, and the United States) 
identified human settlement interface and intermix with 
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wilderness as a mode of forest habitat fragmentation, 
including reduced forest fragments for habitats and eco-
system processes. Also, Sahana et  al. [61] have found 
that demand for land for human settlement development 
reduces the amount of forests and contributes to the for-
mation of a mix of forest patches and land uses. Thus, the 
natural area-land use interface is likely to contribute to 
the creation of smaller patches of forests. Since human 
settlement development facilitates other land uses (e.g., 
agriculture), forest management strategies and policies 
should be multidimensional in outlook, encompassing 
many proactive and ad-hoc ways of managing the factors 
that are likely to influence the forest cover patches in pro-
tected areas.

The results from this study would likely be applicable 
for forest and land use management purposes in other 
locations, especially in tropical forests and other forest 
areas in Ghana and beyond where anthropogenic activi-
ties such as logging, mining, agricultural activities, crea-
tion of access roads, human settlement development are 
on the rise for socio-economic reasons. For instance, in 
the Latin American Amazon, East African, and South 
Africa forest areas, the land use characteristics are simi-
lar to that of ARFR. These forest areas are characterised 
by activities such as logging, mining, and agricultural 
activities [24, 64–67]. Thus, in the light of these human 
activities, climate change concerns and the findings from 
our study in the ARFR, forest cover patches in the tropi-
cal forests and other forest regions would need protec-
tion to preserve biodiversity and ensure sustainable land 
uses.

Conclusion
Our study aimed at modelling land uses and the area 
of patches that are less than the mean patch area of 
the forest using remote sensing and GIS data from the 
Atewa Range Forest Reserve. We provide a model that 
explains the relationship between land uses and forest 
cover patches, and thus we advance previous studies that 
focused mainly on how land uses contribute to the frag-
mentation of the forest cover patches. The study finds 
that the forest patches are within 1  km from the agri-
cultural land are significantly more likely to be less than 
the mean patch area of forest cover. This study outcome 
is expected in a protected area surrounded by agrar-
ian landscapes where previous studies have reported 
encroachment due to expansion in agricultural land. 
Moreover, the study finds that patches of forest that are 
within 1 km from the logging site are significantly more 
likely to be less than the mean patch area of forest. Fur-
thermore, we find that forest patches that are within 1 km 
from mine sites are significantly more likely to be less 
than the mean patch area of forest cover. The proposed 

model is deemed fit and that the variables in the models 
could be adjusted for different locations to reflect bio-
physical and socio-economic characteristics.

The outcome of the study suggests that forest patches 
that are within the 1 km from spatially-explicit land use 
factors, as specified in the model, are more likely to be 
less than the mean patch area of forest cover. How-
ever, this study outcome can differ in other landscapes 
depending on the biophysical characteristics of the 
land and the prevalent land uses. Thus, this presents 
unique land management problems in different loca-
tions depending on the socio-economic characteris-
tics. Despite the need for proactive location-specific 
land management programmes to address the growing 
pressure on forest patches, the basic tenets of the pro-
grammes should focus on the need to reconcile the socio-
economic needs of local communities with the ecological 
needs of the forest ecosystem. Furthermore, land use and 
forest management programmes should be supported by 
a robust landscape pattern assessment overtime to pro-
vide insights into the rate at which the forest landscape 
quality is deteriorating or improving. For instance, land-
scape pattern assessment could include the use of widely 
accepted landscape measurement approaches [68, 69], 
which have been used in previous studies e.g., [70–74].

Even though choosing a distance threshold for the 
land uses was based on extensive analysis from differ-
ent continents, an adjustment of the distance threshold 
could change the study results. Thus, choosing a distance 
threshold is likely to be arbitrary and can bias the study 
results if it is not theoretically grounded in the litera-
ture. However, continuously testing the 1  km threshold 
in different locations would likely help to determine its 
robustness and ensure a universal application. Another 
limitation is the detection of forest patches using remote 
sensing classification, the RF machine learning algo-
rithm. For instance, a number of the patches from the 
study area would likely be as a result of the commission 
and omission errors measured. However, to reduce these 
uncertainties, different classification algorithms such as 
support vector machine [75] and artificial neural net-
works [76] can be tested and used depending on the algo-
rithm’s performance. Additionally, more efforts should 
be made to reduce the effects of scale on classification 
results during satellite image processing.

Methods
Study area—profile of the Atewa range forest reserve 
and its surroundings
The study area, ARFR is in the East Akim Municipal area 
in the eastern region of Ghana (see Fig.  2). The forest 
reserve lies within a semi-deciduous forest area. The size 
of the forest reserve is 263 km2 [77]. Whereas the area is 
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typically undulating in nature, some areas are as high as 
between 240 and 300 m above sea level. Additionally, the 
forest reserve can be found in the west semi-equatorial 
zone, an area that has two main rainy seasons. The first 
starts from May to June and the second from September 
to October [78]. The mean annual rainfall is between 125 
and 175 mm. Following the rainy seasons is a dry season 
that starts in November and ends in late February. These 
weather dynamics facilitate plant growth and support 
most of the rain-fed farming activities at the fringes of 
the forest reserve.

The major economic activity in the East Akim munici-
pality is farming as about 65% of the population are 
active farmers. Farmers engage in the planting of impor-
tant cash crops such as Cocoa and Coffee as well as sta-
ple foodstuff, including cassava, maize, plantain, oil palm 
and banana [78]. Thus, encroachments by farmers at the 
fringes of the forest reserve are likely to reduce forest 
cover and the patches of forest. The study location has 

been designated as a reserve and a GSBA, but it is sub-
ject to unmanaged logging, uncontrolled hunting, artisa-
nal gold and in recent times bauxite surface mining [77]. 
These activities are likely to result in forest cover loss and 
forest patch fragmentation and thus, threaten the rich 
biodiversity in the forest reserve. Some of the prominent 
communities or townships at the fringes of the ARFR are 
Kyebi, Amafrom, Sagyimase, and Ankwadum.

Data
The most recent footprints of land use were extracted 
from February 2020 high-resolution aerial images 
(1–1.5 m resolution) through digitising at a scale ranging 
between 1:5000 and 1:15,000 (see Fig.  3). These images 
were from the Environmental System Research Institute 
(ESRI) ArcGIS desktop and Google Earth Pro (GEP). 
These images were also used as ancillary information 
for identifying land classes during Landsat image clas-
sification. Furthermore, we collected 550 ground-truth 

Fig. 2  The study area location and some notable communities. The study area boundary and the  Ghana country boundary were created by 
authors with the aid of Environmental Systems Research Institute ArcGIS 10 desktop basemaps
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reference samples from the high-resolution aerial images 
and used them for assessing the accuracy of the classified 
Landsat image.

We used a 30 m by 30 m resolution Landsat image from 
Landsat 8 Operational Land Imager/Thermal Infrared 
Sensor (OLI/TIRS). The Landsat image was acquired 
from the United States Geological Survey (USGS). The 
image is from WRS_PATH = 193, WRS_ROW = 56. The 
image used is a tier-one surface reflectance image which 
has been corrected geometrically and radiometrically. 
The image was captured by the Landsat satellite on 2020-
02-03. We used a Landsat image from 2020 to be able to 
extract one of the most recent forest patches on the land-
scape of the ARFR.

Landsat image classification and accuracy assessment
We composited bands 2–7 of the Landsat image and used 
Random Forest (RF) machine learning classification algo-
rithm to classify the Landsat image into forest cover, agri-
cultural land, developed land water. RF, a non-parametric 
classifier is noted for its high accuracy power in classifying 
objects and the ability to deal with non-normal and com-
plex relationships among predictor variables [79–81]. RF 
uses an ensemble of decision trees predictors to produce 
repeated multiple classifications of the same data [82]. 

Predicted classes are combined from the decision trees 
using the maximum votes rule to generate the classes. In 
this study, training samples of forest (200), agricultural 
land (100), developed land (100), and water (100) were 
selected evenly from the Landsat image to train the RF 
classifier. The number of trees used in this study is 500 (by 
default) because according to Breiman and Cutler [83], 
there is no significant difference in the classification out-
come for trees above the default selection.

The classes of land generated from the RF classifica-
tion method are forest (mostly semi-deciduous trees), 
agricultural land (cropland, herbs and bushes), devel-
oped land (mine grounds, built-up area, roads and 
logging sites), and water (intermittent and permanent 
rivers, streams, lakes and other stagnant water) (see 
Fig.  4). The accuracy of these land categories classi-
fied from the Landsat image was assessed using the 
550 randomly collected ground-truth samples. These 
ground-truth samples were pixels of land cover col-
lected in February 2020 using a hand-held global posi-
tioning system (GPS) device. The GPS device used 
in the ground truth samples collection is the Garmin 
GPSMap 78 s, and the errors associated with the sam-
ple reference data collection range between 2 and 3 m. 
Despite difficulties we had in accessing the ARFR, we 

Fig. 3  Examples of land use footprints (features) digitised from the high-resolution aerial images. This figure was created by authors with the aid of 
Google Earth Pro high-resolution images
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still made effort to collect pixels of land cover propor-
tionate to the classes of land on the landscape of the 
study area while also making sure that the number of 
pixels collected for the rare land class (water) is not 
underrepresented. First, for the forest class, which is 
the largest land class (87.3%), we collected 186 pixels 
from the field. Second, for the agricultural land (sec-
ond largest land class = 6.4%), we sampled 135 pix-
els, Third, for the developed land which is 6.2% of the 
total land, we sampled 128 pixels. Last, for the water 
class (0.1%), we sampled 101 pixels. We compared 
the land classes (see Fig.  4) predicted by the RF clas-
sification algorithm to the ground-truth samples col-
lected from the field in the ARFR. The agreement and 
disagreement between the two sets of land classes are 
summarised in Appendix. An overall accuracy level of 
96.36% was achieved in the Landsat image classifica-
tion process (see Table  5 for details of the accuracy 
assessment results). Even though we achieved a high 
accuracy level (96.36%) with the reference data col-
lected using a hand-held GPS, Congalton, Russell and 
Green [84] have noted that sample reference points 
collected with a GPS would still have some positional 
inaccuracies, including uncertainties about whether or 
not a reference point location acquired with a GPS is 
equivalent to a pixel. Positional inaccuracies are not 
avoidable, and thus, reference locations are biased due 

to vegetation and terrain interference with satellite 
signals needed to acquire accurate location data [85]. 
Furthermore, despite the GPS error of 2–3  m being 
low and within an acceptable range [84], the amount 
of error is likely to negatively affect the accuracy of the 
ground-truth samples and consequently impact the 
accuracy assessment of the classified Landsat image.

Variables and analytical framework
Dependent variable
Forest cover patches were extracted from the classi-
fied Landsat image (see Fig.  5). Overall, a total of 865 
patches of forest cover were extracted from the Febru-
ary 2020 classified Landsat image and all of them were 
used in the analysis. Whereas the largest forest patch 
is 315,004,261  m2 (31,500.43  ha), the smallest patch is 
575  m2 (0.0575  ha). Also, the mean patch area of forest 
cover is 375431.87 m2 (37.54 ha). The majority of the for-
est patches (785) are less than the mean patch area, and 
this is an indication that most of these patches are not 
maximally aggregated or contiguous. Here, we select a 
dependent variable as the occurrence of patches that are 
less than the mean patch area (MPA) of 375,431.87  m2 
(37.54 ha). Thus, we generate a binary of 1 and 0, where 1 
means a forest patch is less than the MPA, and 0 means a 
forest patch is not less than the MPA (i.e., 1 = Yes, 0 = No).

Explanatory variables
The predictor or explanatory variables are nearness to 
agricultural land [1 = Yes, 0 = No], nearness to access 
roads [1 = Yes, 0 = No], nearness to mine sites [1 = Yes, 
0 = No], nearness to logging sites [1 = Yes, 0 = No], and 
nearness to human settlement [1 = Yes, 0 = No], where 
nearness is determined by the likelihood of the forest 
patch being within or beyond 1  km distance from land 
use footprints or land use-induced land cover. As noted 
earlier, Haddad et al. [37] have indicated that 70% of the 
remaining forest is within 1 km from forest edge where 
human activities, including a variety of land uses, are 
taking place. A similar threshold distance within which 
human activities are concentrated in forest areas has 
been reported in the Brazilian Amazon [38]. However, 
much attention has not been given to the spatial relation-
ship between the footprints of land uses and the most 
recent forest patch area. Thus, in this study, we selected 
this distance threshold based on previous study findings 
[37] to test the spatial relationship between the most 
recent forest patches and the footprint of land uses.

Spatially‑explicit modelling and measure of model fitness
In this study, we employed a spatially-explicit logistic 
regression equation to model the relationship between 

Fig. 4  Land use land cover classes in the Atewa range forest reserve. 
This figure was created by authors using a Landsat image from the 
United States Geological Survey. Also, the high-resolution image in 
the figure is from Environmental Systems Research Institute’s ArcGIS 
10 desktop basemap
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the most recent forest patches (dependent variable) and 
footprints of land uses (predictor variables) in the study 
area. Turner [44] has recommended the inclusion of 
multiple factors in a spatially-explicit landscape model 
in explaining aspects of landscape patterns. Here, we 
include multiple spatially-explicit land use factors in pre-
dicting forest patches in a GSBA. Based on the theoreti-
cal framework designed by Berkson [86] and Gujarati and 
Porter [87], we propose a full or saturated multivariate 
model to define the relationship between forest patches 
and footprints of land uses. The probability P1 of a forest 
patch area (PA) being less than the MPA of forest patches 
in the ARFR is given by

where X0 is the model intercept; X1, X2, X3, X4, and X5 are 
the regression model coefficients; AL = Agricultural Land, 
AR = access roads, MS = mine sites, LS = logging sites, 
HS = human settlement, and e is the stochastic error term.

The robustness of the model was tested as follows. 
First, we used the Hosmer and Lemeshow Test [88]. For 
the Hosmer and Lemeshow Test, the model is robust 
if P > 0.05. Second, we used the omnibus tests of model 
coefficients to do another test of model fitness. The 

(1)PA =

(

P1

1− P1

)

= Xo+X1AL1km+X2AR1km+X3MS1km+X4LS1km+X5HS1km+ e

omnibus test is a likelihood-ratio Chi-square test of the 
significant difference in the current model and the null 
(in this case, the intercept) model, the model with no 
independent variables. The significance value of less 
than 0.05 indicates that the current model outperforms 
the null model. This test is particularly important to test 
whether a regression model fit a dataset used in run-
ning the model [89]. Finally, we used the area under the 
curve (AUC) receiver operating characteristics (ROC), a 
well-known and widely-accepted measure used on meas-
uring model performance [90]. The ROC value ranges 
between 0.5 and 1, where 0.5 and 1 show random and 
perfect model fit, respectively [43]. Previous studies that 

have reconciled methods from GIS, remote sensing and 
statistics have used the ROC to measure the robustness 
of models [90, 91].
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