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Skin is the largest organ of the human body and plays a key role in protecting the individual
from external insults. The barrier function of the skin is performed primarily by the epi-
dermis, a self-renewing stratified squamous epithelium composed of cells that undergo a
well-characterized and finely tuned process of terminal differentiation. By binding to their
receptors thyroid hormones (TH) regulate epidermal cell proliferation, differentiation, and
homeostasis.Thyroid dysfunction has multiple classical manifestations at skin level. Several
TH-responsive genes, as well as genes critical forTH metabolism and action, are expressed
at epidermal level. The role ofTH in skin is still controversial, although it is generally recog-
nized thatTH signaling is central for skin physiology and homeostasis. Here we review the
data on the epidermis and its function in relation toTH metabolism and regulation of gene
expression. An understanding of the cellular and molecular basis ofTH action in epidermal
cells may lead to the identification of putative therapeutical targets for treatment of skin
disorders.
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INTRODUCTION
Skin plays a key role in protecting the body from dehydra-
tion, mechanical trauma, and microbial insults (Figure 1). The
epidermis is composed of keratinocytes, and to a lesser extent
of resident dendritic cells, T lymphocytes, melanocytes, and
the neuroepithelial sensory Merkel cells. Dendritic cells and T
lymphocytes protect skin from microbial insults, which makes
skin an active immune organ [reviewed in (1)]. The epider-
mis receives nutrients from blood vessels in the underlying der-
mis, which contains several types of cells, including fibroblasts
that produce proteoglycans, collagen, and elastic fibers, as well
as resident dendritic cells, macrophages, mast cells, and lym-
phocytes. Hair follicles (HF) and sebaceous glands, two epi-
dermal appendages, are embedded in the dermis and are sep-
arated from the dermis by the basement membrane, whose
components are secreted by epidermal keratinocytes and dermal
fibroblasts.

Being the largest organ of the human body, skin is also
an important peripheral neuro-endocrine-immune organ that is
closely related to endocrine systems, thus contributing to the main-
tenance of peripheral hormonal homeostasis. Specialized cells in
the skin produce and respond to multiple neurotransmitters, neu-
ropeptides, and hormones thereby making skin a central player in
endocrine homeostasis.

This review focuses on the gene expression programs acti-
vated in the skin, and in particular in the interfollicular epidermis,
during embryogenesis and in adult life in relationship with a spe-
cific class of hormones secreted by the thyroid gland, namely the
triiodothyronine (T3) and thyroxine (T4).

TRANSCRIPTIONAL CONTROL OF EPIDERMAL
DEVELOPMENT AND ESTABLISHMENT OF BARRIER
FUNCTION
The barrier function of the epidermis is established during
embryogenesis and is the result of a complex and coordinated
stratification program. During mouse embryogenesis, cells of the
surface neuroectoderm are committed to an epidermal fate at
embryonic day 8.5 (E8.5), and progressively acquire expression
of basal cell markers. Their commitment is regulated in large part
by cross-regulation between WNT and BMP signaling. WNT sig-
naling suppresses epidermal cell fate in favor of the neural fate
in the dorsal region of the developing embryo, whereas BMP sig-
naling is predominant in the ventral region of the embryo and it
is thought to act as epidermal inducer (2). Given the crucial role
of BMP signaling in skin development, it is interesting to note
that both epidermal cells and dermal fibroblasts express several
BMP ligands and BMP receptors. Treatment of these cell types
with BMP induces cell-type-specific changes in gene expression
programs, which are likely to contribute to the complex effects of
BMPs in the developing skin and in skin homeostasis (3).

The first ectodermal-specific marker expressed as early as E8.5
is the transcription factor p63 is a master regulator of stratified
epithelia (4–8) that continues to be expressed during embryonic
skin development and in the basal proliferative layer in postnatal
life also through a positive autoregulatory loop (4). Studies with
zebrafish demonstrated that p63 is a direct target of BMP signaling
and blocks neural specification (9). A similar role in maintaining
epidermal cell fate has been demonstrated in mammalian cells,
where p63 depletion results in ectopic expression of neural and
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FIGURE 1 |The skin structure. The skin is characterized by two main
components, the epidermis and the dermis, which are separated by a
basement membrane. The epidermis is constituted by an undifferentiated
basal layer (BL) of cells that progressively differentiate in the spinous layer
(SL), granular layer (GL), and the cornified layer (CL). The HF consists of an
outer root sheath (ORS), an inner root sheath (IRS), and a hair shaft (HS).
The epidermal stem cell compartment resides in the BL of the epidermis
and in a specific region of the ORS named bulge. The lower part of the
follicle, the hair bulb, is characterized by proliferating matrix cells (M) and by
the dermal papilla (DP), which is the dermal component of the HF. The
sebaceous glands (SG) are integral part of the pilosebaceous unit. The
major keratins expressed in different compartments are indicated. The
dermis is composed by dense connective tissues in which the fibroblasts
are the main components. Intradermal adipocytes (IA) are abundant in the
lower part of the dermis, above the panniculus carnosus (PC), a layer of
striated muscle cells.

mesenchymal genes (10–12). Interestingly, p63 positively regulates
BMP signaling through direct activation of BMP7 and repression
of SMAD7 (11–13).

During epidermal morphogenesis, p63 expression is followed
by regional expression of keratins K5 and K14 at E9.5 (14). Their
expression is regulated directly by p63 itself (15, 16), and by
other crucial regulators expressed in the early surface ectoderm
including transcription factors of the AP-2 family (14, 17, 18).

Among its multiple functions, p63 plays a crucial role in sus-
taining epidermal progenitor expansion by directly induction of
the fibroblast growth factor receptors Fgrf2 and Fgfr3 (19), and
by suppression of the cell cycle inhibitors p21 (Cdkn1a), INK4a
(Cdkn2a), ARF (Cdkn2d), and the microRNA miR-34a (20–25).
During development, a rapid increase in embryo size is accom-
panied by frequent symmetric divisions of epidermal progeni-
tors thereby increasing surface area. Stratification occurs through
asymmetric cell division starting from E13.5, when the spinous
layer of initially proliferating cells expressing keratins K1 and K10
is formed above the basal layer. Loss of this proliferative capacity is

associated with maturation into spinous cells, which subsequently
undergo further maturation into granular and cornified cells,
and by E17.5 the epidermal barrier is fully formed and the skin
becomes impermeable. Notch signaling is required for induction
of the spinous layer markers, keratins K1 and K10, and involu-
crin (26–28). Cross-talk between the p63 and Notch signaling
pathways has been associated to the commitment of keratinocytes
to undergo terminal differentiation, because p63 represses a sub-
set of Notch functions, whereas Notch signaling suppresses p63
expression (22). Interestingly, p63 depletion inhibits expression
of Notch1 itself and its ligand Jag1 (13, 29). Therefore, during
normal development, Notch is necessary and sufficient to induce
many aspects of differentiation, and the cross-talk between p63
and Notch signaling is essential to control stratification during
development.

Also Irf6, Ikkα, and Klf4 are crucial regulators of epidermal
development and keratinocyte differentiation. Ikkα, a p63 target
gene (30, 31), is required to exit from the basal cell compart-
ment, although its function in the switch between basal and
suprabasal cell fate is not cell-autonomous (32–35). Irf6-deficient
mice have a hyperproliferative epidermis that results in the expan-
sion of the basal and spinous layer, loss of granular layer, and
defective epidermal barrier (36, 37). Interestingly, Irf6 is induced
during differentiation via p63- and Notch-dependent mechanisms
(38–40), whereas Irf6 negatively regulates p63 levels by inducing
proteasome-mediated degradation (40). Granular layer and epi-
dermal barrier formation is also controlled by the transcription
factor Klf4 as revealed by studies in mice lacking or overexpress-
ing Klf4 (41, 42). Thus, these transcription factors orchestrate
the differentiation program during development although their
interconnections have not been fully established.

STRUCTURE OF MATURE EPIDERMIS
In adult epidermis, keratinocytes undergo a continuous program
of terminal differentiation, starting from the basal layer and mov-
ing outward to form the suprabasal layers. Epidermal cells are
protected from physical trauma by specialized intermediate fil-
aments (IF) and specific cell-basement membrane and cell–cell
junctions. In epidermal keratinocytes, IF are mainly constituted
by keratins and are particularly abundant; in fact, they account
for up to 85% of the total protein content of the cells. Keratin
mutations or depletions cause cells to become fragile and prone to
ruptures [reviewed in (43)]. Keratins K5 and K14 are expressed in
the basal layer of the interfollicular epidermis and of the HF, as well
as in the basal layer of other stratified epithelia. K15 is a less abun-
dant component of the basal IF, and is thought to compensate at
least in part for loss of K14 by assembling with K5 (44). Although
the function of K15 in the skin has not been fully elucidated, it is
an intriguing molecule since it is more abundant in the newborn
interfollicular epidermis and in the adult HF bulge (45) where in
cells with higher proliferative potential and stem cell like prop-
erties. Under physiological conditions, K5/K14 are substituted
by K1/K10 in the spinous layer, whereas under hyperprolifera-
tive conditions, including inflammation, acute injury, psoriasis,
and carcinoma, the HF keratins K6, K16, and K17 are induced
suprabasally in the epidermis [(46) and reference therein]. Beside
its role in the IF, K17 regulates cell growth and size by inducing
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protein synthesis through the Akt/mTOR-dependent pathway
(47). In a more indirect fashion, K17 expression in the epider-
mis is also involved in inflammation-dependent cell proliferation
by inducing an immune response (48).

Basal keratinocytes are anchored to the basement membrane
by integrins and by specialized junctions, hemidesmosomes con-
stituted by integrins, and other proteins that connect them to the
actin cytoskeleton [reviewed in (49)]. Epidermal cells are tightly
packed one to the other by cell–cell junctions, namely desmo-
somes, adherens junctions, and tight junctions [reviewed in (50)].
Adherens junctions are intercellular structures that couple inter-
cellular adhesion to the actin cytoskeleton and are formed by two
cell adhesion receptor complexes, the classical cadherin/catenin
complex and the nectin/afadin complex, both of which can link to
the actin cytoskeleton.

Desmosomes form a robust network among adjacent cells con-
ferring strength and resiliency to the epidermis, with basal and
suprabasal cells expressing different sets of specific desmosomal
proteins [reviewed in (51)]. Desmosomal cadherins are trans-
membrane proteins that form stable associations with desmo-
somal cadherins in adjacent cells and are linked inside the cell
to the keratin cytoskeleton. Interestingly, several components of
hemidesmosomes and desmosomes are under the tight transcrip-
tional control of p63 (29, 52–55). By controlling several adhesion
molecules, p63 is essential for cell adhesion in stratified epithelia
and its absence leads to epidermal fragility (29, 53).

The final step in epidermal differentiation involves the for-
mation of the epidermal barrier, which is characterized by the
formation of cornified cell envelopes constituted by proteins cross-
linked by specific enzymes into a rigid scaffold and by lipids
covalently attached to the exterior surface. The barrier function
of the epidermis is also maintained by tight junctions, and the
first functional evidence that epidermal barrier function requires
a tight junction component came from claudin-1-deficient mice,
which die of massive transepidermal water loss due to impaired
barrier function of the granular layer (56).

THYROID HORMONE ACTION AND METABOLISM
The thyroid hormone (TH) is a key element in the endocrine con-
trol of epidermal development and function [reviewed in (57)].
Clinical evidence (58–63) as well as studies conducted in hypothy-
roid mice and rats (64–66) suggest that TH is involved in epi-
dermal proliferation and differentiation, hair growth, and wound
healing besides affecting the function of dermal fibroblasts. The
importance of TH in skin was first shown in lower vertebrates.
In Amphibian metamorphosis, the skin is transformed from a
bilayered non-keratinized epithelium into a stratified, keratinized
epidermis (67).

To exert its functions, TH must overcome several check-
points, namely TH transporters, TH-metabolizing enzymes (deio-
dinases), TH receptors (TRs), and their interactions with co-
repressors and co-activators [reviewed in (68)]. In the blood-
stream, the steady-state level of TH concentration is regulated
by the hypothalamic-pituitary-thyroid (HPT) axis. Hypothalamic
thyroid releasing-hormone (TRH) stimulates thyrotrophic cells in
the anterior pituitary to produce thyroid stimulating-hormone
(TSH). In turn, TSH induces the production of pro-hormone

thyroxine (T4) and – to a lesser extent – the active form triiodothy-
ronine (T3) by the thyroid gland. Unexpectedly the expression
of fully functional proteins typical of the HPT axis, and in par-
ticularly of the TSH receptor, the TRH and the THR receptor
has been found in human skin and in the HF (58, 69–72). Both,
TRH and TSH exert several regulatory effects on skin-specific gene
expression and various elements of the HPT axis are transcribed
by human skin cell populations (69, 73) suggesting that normal
human skin might represent a source and extrathyroidal target of
TRH and TSH. Epidermal expression of TSH is up-regulated by
TRH and repressed by THs, demonstrating that intraepidermal
TSH expression is regulated by the classical endocrine controls
that determine the systemic HPT axis. Moreover, TSH treatment
of organ-cultured human skin induces expression epidermal dif-
ferentiation markers, namely involucrin, loricrin, and keratins 5
and 14 (69). Among other functions, TSH or TRH treatments of
scalp human skin ex vivo up-regulate mitochondria biogenesis
(74, 75). In addition, TSH stimulation up-regulates the tran-
scription of classical TSH target genes thyroglobulin and thyroid
transcription factor-1 (Nkx2.1) and enhances cAMP production
into the culture medium (58), documenting that the TSH recep-
tor expressed by normal human scalp HF in situ is functionally
active. Behind the canonical TSH-dependent regulation, recently
it has been demonstrated that the TSHR can also be activated by a
newly discovered glycoprotein hormone, known as thyrostimulin
(76). This hormone is composed of a dimer of unique α 2 and
β 5 subunits. Interestingly, both subunits have been documented
to be expressed in different tissues including the skin, suggesting a
functional role for TSHR signaling via locally produced thyrostim-
ulin in the skin (77). Collectively, these data identify non-classical
functions of TRH and TSH-mediated signaling in skin, suggesting
that these hormones represent novel players in skin physiology
and in human epithelial cell biology and encourage new studies to
reveal molecular mechanisms underlying TH action in skin and
its appendages.

Once TH enters the bloodstream, a low amount of TH, not
bound to circulating transport proteins, is free to act on target cells.
The initial step in the activation of TH is its transport across the cell
membrane that is mediated by different types of TH-transporting
proteins (78–80). These transporters are differentially expressed
in tissues in a developmental and cell-type-specific fashion and,
while most of them accept a variety of ligands, others have elevated
substrate specificity (81, 82). The latter include monocarboxylate
transporters 8 and 10 (MCT8 and MCT10) (83, 84), organic anion
transporters 2 and 3 (Oatp2 and Oatp3), and l-type amino acid
transporters (Lat1 and Lat2). At present, little is known about
TH-transporter expression in skin and/or epidermis. The uptake
of T3 and T4 is much lower in skin fibroblasts from patients with
a MCT8 mutation than in controls, which indicates that MCT8 is
expressed in these cells (85).

Within target cells, TH is metabolized by the action of deio-
dinases, three thioredoxin fold-containing selenoenzymes. These
enzymes metabolize TH in a stage- and tissue-specific manner
by a mono-deiodination reaction that involves two distinct path-
ways. Type I and II deiodinases (D1 and D2) convert the inactive
pro-hormone T4 to the active form T3 – a process that increases
circulating T3 levels and the availability of the active hormone for
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nuclear receptors [reviewed in (86)]. D1 regulates circulating T3
levels, whereas D2 acts essentially at the intracellular level (87).

In contrast, type III deiodinase (D3) inactivates TH by con-
verting T4 and T3 to the inactive metabolites reverse T3 (rT3)
and T2, respectively. All three deiodinases are integral membrane
proteins that share a conserved region ∼15 amino acids long
within the active center that encodes a selenocysteine that enables
the deiodinases to exert enzymatic activity. The subcellular local-
ization differs among the three enzymes, and this affects their
systemic versus cellular contributions to TH homeostasis (88).
Notably, the combined actions of D2 and D3 are viewed as a
cell-autonomous pre-receptoral mechanism that controls TH sig-
naling in a time- and tissue-specific manner without affecting
serum hormone concentrations (89, 90). Often the activities of
the D2 and D3 enzymes are finely tuned and oppositely regulated
in different cell contexts to ensure the correct balance between the
activating/inactivating deiodinases (91, 92); Histone H3 demethy-
lating enzyme (LSD-1) and Foxo3 are critical regulators of this
balance in muscle (93), while their role in skin has not been
established.

Rat skin was the first organ shown to be an active site for the
inner ring mono-deiodination of thyroxine to T3 (94). Subse-
quently, it was discovered that newborn and adult human epider-
mal keratinocytes in culture are able to convert T4 to T3 by D2
(94, 95), which suggests that a finely regulated TH metabolism is
present at skin level. In addition, various studies showed that D3
protein is present in both mouse and human skin. D3 is abundant
in murine epidermis and its expression is finely regulated dur-
ing murine cutaneous development (96, 97). D3 expression first
appears in the mouse epidermis at E13.5 just before stratification,
and it is highly expressed in the epidermal layers and in the HF at
E17.5 and at P0. Moreover,D3 expression is elevated in the growing
phase of the HF cycle in the most external portion of the follicle,
while it is less detectable in the regressing and resting phases of the
HF cycle (96). This is in agreement with the sustained expression
of D3 observed in various cancers, including basal cell carcinoma
(BCC) and colon cancers, in which D3 is required to facilitate the
proliferation of neoplastic cells (9, 90, 96). D2 and D3 transcripts

are expressed also in whole human skin biopsies, and in epidermal
and dermal cells, although it remains to be established how these
genes are transcriptionally regulated in these cells (63, 72). These
findings strongly suggest that the D2 and D3 deiodinases are cru-
cial components in the control of intracellular TH in skin, whereas
D1 is not expressed in skin (Figure 2).

Once the active hormone T3 is present inside the cells, it can
enter the nucleus and reach the TRs, a family of ligand-dependent
transcription factors that enhance or inhibit the expression of tar-
get genes by binding to specific DNA sequences, known as TH
response elements (TREs). Thyroid hormone receptors exist in
two isoforms, TRα and TRβ, which are encoded by the THRA
and THRB genes, respectively [reviewed in (68, 98)]. Also TR
expression is specifically modulated and both isoforms express
several splicing products that are differently expressed in develop-
ment and in adult tissues (99) (Figure 2). The TR-TH complex
occurs often as a homodimer but also as a heterodimer with the
retinoid-X receptor (RXR) (100–102). The ligand availability and
concentration of the TR complex in the nucleus ultimately define
the level of TR transcription activity. In the classical model of tran-
scriptional regulation by TH, nuclear receptor co-repressors (e.g.,
NCoR-SMRT) are bound to the TR complex in the unliganded
state (68, 98). The binding of T3 to TR induces structural changes,
and the co-repressors are released and replaced by co-activators
(e.g., SRC/p160 or TRAP/DRIP complex) that modify chromatin
structures. This complex ultimately recruits RNA polymerase II
and leads to transcriptional activation of responsive genes (68).
According to a debated non-classical mechanism of TH action, T3
and T4 exerts also a non-genomic effect. Specifically, TH signaling
results from the binding of T3 and T4 to a membrane integrin,
αvβ3, which leads to activation of the PI3K and MAPK trans-
duction pathways and in turn increases target gene transcription
[reviewed in (103)].

TH receptors are expressed in skin (104–106) and play a func-
tional role as demonstrated by the phenotype of the double TRα

and TRβ deficient mice (107). Epidermal cell proliferation and
cyclin D1 expression is reduced in the interfollicular epidermis
of mice lacking both TRα and TRβ under basal conditions and

FIGURE 2 | Relative expression profiles ofTH regulators and effectors in normal human tissues. Forty-two normal human tissues were analyzed for TH
regulators and effectors using a custom high-density microarrays (GEO accession: GSE14938) (126). Results are expressed as heat map of fold changes (log10
ratio) relative to the pool of tissues.
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upon treatment with the phorbol ester TPA or with retinoic acid
(107, 108). In parallel with reduced epidermal cell proliferation,
expression of proinflammatory cytokines coupled with signs of
skin inflammation is induced in double TRα and TRβ deficient
skin. Further investigation, possibly with conditional mouse mod-
els, are required to determine whether reduced cell proliferation
in the epidermis is a cell-autonomous phenotype.

REGULATION OF GENE EXPRESSION BY THYROID HORMONE
IN THE SKIN UNDER PHYSIOLOGICAL AND PATHOLOGICAL
CONDITIONS
In humans, thyroid dysfunction is associated with alterations in
skin architecture and homeostasis [reviewed in (62)]. In hyper-
thyroid individuals, skin often presents with some of the following
symptoms: softness, perspiration, heat, itching, generalized pruri-
tus, chronic urticaria, vitiligo, and diffuse skin pigmentation (109,
110). In addition, the epidermis is usually thinner than normal. In
hypothyroid subjects, the skin is dry, cold, and rough. The epider-
mis is hyperkeratotic, alopecia may develop, and there is diffuse
myxedema (110).

The molecular mechanisms at the basis of these cutaneous
symptoms have not been clarified, but there is evidence implicat-
ing TH in the molecular control of epidermal differentiation and
barrier formation during development (111, 112), hair growth,
sebum production, keratinocyte proliferation, and keratin gene
expression (62, 111–113). Indeed, TH action is crucial for the
balance between proliferation and differentiation in normal and

pathological conditions, including epidermal regeneration (65)
and cutaneous cancer (96).

Many keratins have been identified as TH-responsive genes
[reviewed in (61)]. In amphibian metamorphosis, TH is required
for skin changes and correlates with the expression of adult ker-
atins and the loss of embryonic keratins (114). In mammalian
epidermis and in the HF, TH regulates a number of keratins,
including K5, K14, K6, K16, and K17 (63, 64, 113, 115, 116). Sim-
ilarly, TRα and TRβ can regulate either positively or negatively
the expression of selected keratins in cultured cells (61, 117–119).
Another TH-responsive keratin is K15; in fact, its promoter activity
is significantly induced by the presence of T3 (119), and physiolog-
ical concentrations of TH induce its expression in epithelial stem
cells of adult human scalp HFs (120).

Various studies suggest that TH is also a key regulator of several
ubiquitously expressed genes involved in keratinocyte prolifer-
ation and differentiation, although TH function is skin is still
controversial. The TH analog (TRIAC) stimulates epidermal thick-
ening in mice and promotes human keratinocyte proliferation by
activating cyclin D1 expression and promoting entry into the S
phase of the cell cycle (121). Hair matrix keratinocytes treated with
TRH and T4 show increased proliferation and inhibited apop-
tosis (63, 71). In contrast, Tiede et al. demonstrated that THs
reduce proliferation, cyclin D1 expression, and induce apoptosis
of isolated K15-positive HF stem cells (120).

An anti-proliferative function of THs in the skin has been
shown also in mouse keratinocytes and in BCC, the most frequent

Table 1 | Regulation of gene expression byTH in skin cells.

Keratin genes TH regulation Cellular system Reference

K5 ↓ Normal human epidermal keratinocytes (115)

K14 ↓ Normal human epidermal keratinocytes, human HFs (63, 115)

K6 ↑ Human epidermal keratinocytes (HaCat), human HFs (63, 64)

K16 ↑ Human epidermal keratinocytes (HaCat) (64)

K17 ↓, ↑ Human epidermal keratinocytes (HaCat) (64, 115)

K15 ↑ Human epithelial HF stem cells (119, 120)

Other (TH-responsive) genes

Cyclin D1 ↑, ↓ Mouse/human epidermal keratinocytes, human epithelial HF stem cells (96, 107, 120, 121)

P19, p27 ↑ Mouse epidermal keratinocytes (107)

AP1, NF-KB, STAT3 ↓ Mouse epidermal keratinocytes (107)

TGF-β2 ↓ Mouse epidermal keratinocytes (107)

AKR ↑ Human skin fibroblasts (123)

RAB3B ↑ Human skin fibroblasts (123)

COLVIA3-COLVIIIA1 ↑ Human skin fibroblasts (123)

ENO1 ↑ Human skin fibroblasts (123)

HIF-1α ↑ Human skin fibroblasts (123)

ENO1 ↑ Human skin fibroblasts (123)

ZAKI 4α ↑ Human skin fibroblasts (123)

GLUT-1 ↑ Human skin fibroblasts (123)

FGF7 ↓ Human skin fibroblasts (123)

ADH1B ↓ Human skin fibroblasts (123)

HAS2 ↓ Dermal cells (124)

Integrin β4 ↓ Human epidermal keratinocytes (125)

Plectin ↓ Human epidermal keratinocytes (125)

COLXVII ↓ Human epidermal keratinocytes (125)
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human cancer, which originates from epidermal stem cell com-
partment in response to aberrant constitutive activation of the
Sonic Hedgehog (Shh) pathway (122). Shh, through the tran-
scriptional factor Gli2, directly induces local inactivation of TH
by up-regulation of D3 (the TH action terminator) in proliferat-
ing keratinocytes and in mouse and human BCCs, thus resulting
in increased cyclin D1 and keratinocyte proliferation. Consis-
tently, D3 knockdown in BCC cells causes a drastic reduction
of cellular proliferation and a reduction in the growth of BCC
xenografts in nude mice in vivo (96). On the other hand, Hedge-
hog signaling promotes reduction of the TH signaling by D2
degradation (the principal TH activator) via the E3 ubiquitin
ligase adaptor (WSB-1) in embryonic structures during chicken
development (96).

Several gene expression profiling studies have identified TH-
responsive genes in human skin fibroblasts and in dermal cells
(Table 1). For instance, members of the aldo-keto reductase
(AKR) family, a member of the RAS oncogene family (RAB3B),
PFKP, collagen (COLVIA3-COLVIIIA1), solute carrier family 16
member 3 (SLC16A3), enolase 1 (ENO1), the hypoxia-inducible
factor (HIF)-1α, a calcineurin inhibitor ZAKI 4α (also known
as Down syndrome critical region 1 L1), and glucose trans-
porter 1 (GLUT1) are all increased in human skin fibroblasts
treated with T3 (123). In the same condition, TH mediates the
down-regulation of fibroblast growth factor 7 (FGF7), a potent

stimulator of epidermal proliferation, and alcohol dehydrogenase
1B (ADH1B) (123). In dermal cells, T3 inhibits the synthesis
of hyaluronate (HA), which is a type of glycosaminoglycan, by
down-regulating HA synthase 2 (HAS2) (124). All these TH-
responsive genes exert a variety of regulatory functions in devel-
opment and metabolism. Lastly, a set of genes associated with
cell-basement membrane cell adhesion (integrin beta4, plectin,
and collagen XVII) is suppressed in T3-treated human epidermal
keratinocytes (125).

In conclusion, we provide an overview of recent data about
the intricate mechanisms controlling intracellular TH action in
skin and in particular in the epidermal compartment. We focus
particularly on the role of TH metabolism and deiodinases in
pathophysiological settings. Despite progress in our understand-
ing of the function of these enzymes, much more remains to be
discovered. In particular, the tissue-specific deletion of individ-
ual, and combined, deiodinases at epidermal level will certainly
shed light on their role in the epidermal compartment in nor-
mal and pathological conditions. The concept that a finely tuned
TH concentration is essential in the control of proliferation ver-
sus differentiation raises the possibility of interfering with such
mechanisms for therapeutic purposes. Unraveling these complex
interactive mechanisms is an exciting challenge for the future and
a promising source of information to determine how to regulate
TH action in skin.
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