
Mansouri et al. eLife 2022;11:e79895. DOI: https://doi.org/10.7554/eLife.79895  1 of 24

Cancer genome and tumor 
microenvironment: Reciprocal crosstalk 
shapes lung cancer plasticity
Siavash Mansouri1,2, Daniel Heylmann3, Thorsten Stiewe2,4,5,6, 
Michael Kracht3,5,6,7*†, Rajkumar Savai1,2,5,6,7,8*†

1Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; 2Institute 
for Lung Health (ILH), Justus Liebig University, Giessen, Germany; 3Rudolf Buchheim 
Institute of Pharmacology, Justus Liebig University, Giessen, Germany; 4Institute 
of Molecular Oncology, Marburg, Germany; 5Member of the German Center for 
Lung Research (DZL), Giessen, Germany; 6Universities of Giessen and Marburg Lung 
Center (UGMLC), Giessen, Germany; 7Member of the Cardio- Pulmonary Institute 
(CPI), Frankfurt, Germany; 8Frankfurt Cancer Institute (FCI), Goethe University 
Frankfurt, Frankfurt, Germany

Abstract Lung cancer classification and treatment has been revolutionized by improving 
our understanding of driver mutations and the introduction of tumor microenvironment (TME)- 
associated immune checkpoint inhibitors. Despite the significant improvement of lung cancer patient 
survival in response to either oncogene- targeted therapy or anticancer immunotherapy, many 
patients show initial or acquired resistance to these new therapies. Recent advances in genome 
sequencing reveal that specific driver mutations favor the development of an immunosuppressive 
TME phenotype, which may result in unfavorable outcomes in lung cancer patients receiving immu-
notherapies. Clinical studies with follow- up after immunotherapy, assessing oncogenic driver muta-
tions and the TME immune profile, not only reveal the underlying potential molecular mechanisms in 
the resistant lung cancer patients but also hold the key to better treatment choices and the future of 
personalized medicine. In this review, we discuss the crosstalk between cancer cell genomic features 
and the TME to reveal the impact of genetic alterations on the TME phenotype. We also provide 
insights into the regulatory role of cellular TME components in defining the genetic landscape of 
cancer cells during tumor development.

Lung cancer
Lung cancer is the most frequently diagnosed cancer which also causes the highest burden of 
mortality amongst all malignant tumors worldwide (Siegel et  al., 2021). Based on their histolog-
ical features, lung tumors are divided into two major groups: (1) small cell lung carcinoma (SCLC), 
which accounts for 15% of all lung cancers, and (2) non- SCLC (NSCLC), which comprises 85% of all 
lung cancers (Travis, 2012). NSCLCs are further subclassified into adenocarcinoma, squamous cell 
carcinoma, and large cell carcinoma (Travis et  al., 2015). The fact that a large group of patients 
has advanced disease stage at time of diagnosis explains the low 5- year survival rate of lung cancer 
patients, which decreases from 56% to only about 6% in the presence of metastasis (Siegel et al., 
2019). This survival rate is the lowest compared with other common (metastatic) cancer types such 
as prostate, breast, and colorectal cancers (Bray et al., 2018). Originating from the global epidemic 
of tobacco consumption in the 20th century, lung cancer was one of the main factors responsible for 
the increase of cancer- associated deaths observed within this period. However, during the last three 
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decades, we have witnessed a significant decline in lung cancer mortality that can be attributed to (i) 
the reduction of smoking, (ii) the promising developments in early diagnosis and (iii) new therapeutic 
modalities (Siegel et al., 2021).

Broader public awareness of lung cancer and its relevant clinical signs as well as the initiation of 
novel screening concepts have proven that the frequency of devastating advanced stage disease can 
be reduced by earlier diagnosis (Jones and Baldwin, 2018). After diagnosis, improved video- assisted 
thoracoscopic surgery procedures to resect the tumors (Jones and Baldwin, 2018), as well as several 
new targeted medicines, including epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors 
or immunotherapies are now available. In conjunction with classical cytotoxic chemotherapies (but 
also as stand- alone medications) these drugs have had a major impact on the reduction of lung cancer 
mortality rates in specific patient cohorts (Malhotra et al., 2017; Minguet et al., 2016).

Genomic drivers of lung cancer cells
One of the main breakthroughs in cancer biology during the last three decades is related to the iden-
tification of disease- driving changes in proto- oncogenes and tumor suppressor genes. This has been 
accomplished by genome- wide profiling of the mutational landscape of cancer cells. It has also led 
to a reductionist view, in the sense that the central criterion to define a tumor are the genetic alter-
ations found in cancer cells. Accordingly, a malignant tumor mass is (always) caused by genetically 
transformed cancer cells, which by their unlimited proliferation properties, fuel local and systemic 
cancer development and progression (Hanahan and Weinberg, 2000). Subsequently, a large body 
of evidence about key mutations has been obtained by whole genome DNA sequencing which has 
revolutionized our understanding of the genomic landscapes of cancer cells. These insights not only 
expanded lung tumor classification beyond histology, but also revealed that lung cancers belong 
to the most highly mutated tumors (Alexandrov et al., 2013). Specifically, profiling of the mutated 
genes of lung tumors revealed Kirsten rat sarcoma (KRAS), EGFR, anaplastic lymphoma kinase (ALK), 
TP53 and liver kinase B1 (LKB1) as the most commonly mutated genes (Skoulidis and Heymach, 
2019). In numerous clinical studies, the success of specific small- molecule inhibitors directed against 
some of the mutant oncoproteins finally demonstrated the importance of changes in the genetic land-
scape for the classification, pathogenesis and therapy of lung tumors (Skoulidis and Heymach, 2019).

Lung cancer tumor microenvironment
However, the cancer- cell- based classification of any given tumor is too simplistic to explain or predict 
tumor behavior and its clinical response to treatment. A tumor is not just composed of genetically 
transformed cancer cells, but also contains multiple other types such as immune, stromal, and endo-
thelial cells. This creates a unique environment, in which oxygen supply, availability of metabolites 
and pH are subject to tremendous fluctuations (Helmlinger et al., 1997; Brown and Wilson, 2004; 
Carmona- Fontaine et al., 2017; Altea- Manzano et al., 2020). Importantly, the non- transformed cells 
are not just passive bystanders, but have pivotal roles in tumor initiation, progression and metastasis 
(Hanahan and Weinberg, 2011; Baghban et al., 2020). Accordingly, the term tumor microenviron-
ment (TME) has been introduced in the cancer field to indicate that non- transformed immune or 
stromal cells and their crosstalk with cancer cells not only regulate the tumor development at early 
stages of disease but also fulfill critical functions during advanced disease stages and metastasis 
(Binnewies et al., 2018).

The modulation of the TME by the lung cancer cell genomic 
landscape
The TME is a double- edged sword that has anti- tumor activities early on but may promote tumor 
progression at later stages. In this regard, the cellular profile of the TME and its properties are key 
to defining the function of the TME as anti- or pro- tumor (Duan et al., 2020). The cellular TME 
components can be categorized into (i) pro- tumorigenic / immunosuppressive cells including pro- 
tumor M2- macrophages, myeloid- derived suppressor cells (MDSCs), and regulatory T (Treg) cells, 
and (ii) anti- tumorigenic immune effector cells, such as anti- tumor M1- macrophages, cytotoxic CD8+ 

https://doi.org/10.7554/eLife.79895


 Review article Cancer Biology | Immunology and Inflammation

Mansouri et al. eLife 2022;11:e79895. DOI: https://doi.org/10.7554/eLife.79895  3 of 24

T cells and natural killer (NK) cells (Duan et al., 2020; Zheng et al., 2017). The relevance of the 
interactions between these cell types and the tumor is evident from the remarkable anti- tumor 
effects of immune checkpoint inhibitors (ICIs). These therapeutic antibodies disrupt the negative 
regulation of T cell activity by cancer cells which is mediated by the interaction of programmed cell 
death ligand 1 (PD- L1, upregulated on cancer cells) with programmed cell death protein 1 (PD- 1, 
(up)regulated on T cells) within the TME (Iwai et al., 2017). Although ICIs showed promising clin-
ical outcomes in cancer patients, often only a subgroup of patients respond effectively (Robert, 
2020). Therefore, there must be further mechanisms by which cancer cells not only suppress or 
hijack the TME antitumor functions but also impact the TME in a pro- tumor manner. Given the 
distinct genomic profile of cancer cells, it is plausible that the genetic landscape of cancer cells will 
impact on the TME phenotype and vice versa. Focusing on lung cancer, we will discuss new findings 
regarding the interplay of the genetic landscape of tumor cells and how it shapes the TME pheno-
type. We will also evaluate the crosstalk between the tumor genetic landscape and TME phenotype 
from a clinical point of view, addressing its potential application as a prognostic and/or therapeutic 
tool in lung cancer patients.

From the genetic point of view, the TME is a heterogeneous niche that contains a mixture of 
differentially mutated cancer cells, which give rise to the distinct cancer cell populations (clones) with 
their unique genomic landscapes (McGranahan and Swanton, 2017). Darwinian selection will lead 
to the preferential survival of clones with fitter phenotypes (Merlo et al., 2006). However, this type 
of selection can also be viewed as a ‘tragedy of the commons’ which shows how individuals driven 
by self- interest can be detrimental for the resource of the overall population. Based on this idea, the 
short- term interest of the selfish propagation in a distinct population (in this case a cancer cell clone 
with specific mutations) can be of ‘individual’ benefit. However, in the long term, it may also damage 
the cohabitants (in this case the TME with other clones and stroma / immune cells) and will finally lead 
to the destruction of the cohabitants and the extinction of the whole population (including cancer 
cells) (Hardin, 1968). Therefore, the fitness of selected clones cannot be solely defined from the 
perspective of cell autonomous growth as a consequence of the mutational landscape of cancer cells.

Interactions between organisms (i.e. cells) can be viewed as a game with multiple players and evolu-
tionary game theory has been used to investigate the consequences of their interactions. According 
to the evolutionary game theory, the fitness of the selected cancer cell clones within the dynamic, 
complex and heterogeneous TME is not only associated with the individual cancer cell benefit but also 
essentially depends on the crosstalk of clones with other clones and cellular components of the TME 
(Archetti and Pienta, 2019).

By applying the crosstalk scenario, we can advance the successive clonal evolution model of Peter 
Nowell, which did not fully consider the association of the non- genetic variability of immune / stroma 
cells and the potential functional crosstalk between clones and TME components (Figure 1; Janisze-
wska and Polyak, 2015; Nowell, 1976). A tumor arises in a multistep process, starting from a prolif-
erating single- cell harboring genomic mutations and showing chromosomal and genetic instability 
within a unique normal microenvironment (NME), in which tissue homeostasis is tightly controlled 
through cellular crosstalk to maintain the balance of cell proliferation and death (Nelson and Bissell, 
2006).

During the clonal evolution of the initial cancer cells, some of the daughter cells acquire stepwise 
additional somatic mutations. The sequential, subclonal selection not only favors cells with better 
autonomous proliferation capacities, but also selects cancer cells with the ability to transform the 
normal into a tumor microenvironment by reprogramming residential stroma or immune cells as well as 
newly recruited immune cells (Sun et al., 2018). Normally, immune or stromal cells of the NME impose 
protective constraints to prevent any disturbances in the balance of cell proliferation and death within 
the NME (Joyce and Pollard, 2009). Tumor growth will eventually depend on the success of cancer 
cells to alter the NME. If selected clones with specific TME- programming mutations can overcome the 
protective barriers of the NME, the tumor will eventually progress (O’Toole et al., 2014; Schietinger 
et al., 2016; Casanova- Acebes et al., 2021; Figure 1).

One argument supporting this concept is the observation that tumor doubling times (around 
60–200 days) is orders of magnitude slower than cancer cell doubling times (around 1–2 days). This 
argues for a suppressive function of the NME and as a result the majority of cancer cells usually die 
before they can divide and establish a tumor mass (Klein, 2009; Greaves and Maley, 2012).

https://doi.org/10.7554/eLife.79895
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One of the key clinical observations in support of the relation between the genomic landscape 
of lung cancer cells and the TME is the association with tumor mutational burden (TMB), defined as 
the number of non- synonymous somatic mutations per megabase of tumor DNA, and the outcomes 
in patients treated with immunotherapy (Litchfield et al., 2021; Snyder et al., 2014). Recognition 
of cancer cells by immune cells mainly relies on presentation of tumor- specific antigens by the major 
histocompatibility complex (MHC) molecules on the surface of cancer cells which prime and activate 
the immune cells that can ultimately trigger cancer cell death (Schreiber et al., 2011).

Neo- antigens mostly originate from non- synonymous mutations. Despite the fact that not all 
somatic mutations will lead to neoantigens, TMB can serves as an indicator of neoantigen load of a 
tumor (Zou et al., 2021). In addition, common lung tumor mutations, including KRAS and TP53, are 
characterized by a high TMB and numerous somatic mutations, which are associated with increased 
tumor immunogenicity (Dong et  al., 2017b; Gao et  al., 2020). Thus, high TMB correlates with a 
greater probability of harboring neoantigens and cancer cell driver mutations (Chan et al., 2019). 
High TMB in turn will boost tumor immunogenicity, because more neoantigens are recognized by 
cytotoxic T cells, which promote the antitumor immune response (Rizvi et al., 2015). Given the central 
role of antigen/neoantigen for T cell activation, it is plausible that the TMB can guide immunotherapy- 
based strategies that rely on the activation of adaptive immunity (Sui et al., 2018).

Several retrospective studies indicated that tumor TMB is associated with the efficacy of immune 
checkpoint blockade and with clinical outcomes in lung cancer patients. In the KEYNOTE- 158 study, 

Figure 1. The genomic landscape of cancer cell defines the tumor microenvironment phenotype. Tumors contain various types of cancer cell clones 
during their development, which is depicted by different colored tumor cells (C1, C2, C3, and C4) to show the genetically distinct landscape. In 
the initial phase of tumor growth, the tumor microenvironment (TME) has a tumor- suppressive phenotype including mainly anti- tumor immune cells 
including M1- like TAMs and CD8+ T cells. During tumor progression, the TME phenotype reaches a steady state in which the population of anti- tumor 
and pro- tumor components (e.g. M2- like TAMs and CD4+ T cells) is in equilibrium. Based on evolutionary selection, the cancer cell clone with a unique 
genomic landscape and higher fitness (light gray clone) starts to re- shape the TME to enhance pro- tumor TME components that in turn support its 
growth and proliferation. In this process, the other less fitted clones are targeted by the anti- tumor TME elements and consequently depleted during 
tumor progression.
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tumor TMB- high status characterized a subgroup of patients with advanced solid tumors who showed 
a significant tumor remission in response to the anti- PD- 1 monoclonal antibody pembrolizumab 
(Marabelle et al., 2020). In the CHECKMATE- 026 study, the NSCLC patients were categorized in 
three groups based on TMB status (low TMB: 0 and 100 mutations, medium TMB: 100–242 mutations 
and high TMB: >243 mutations). High TMB patients treated with the anti PD- 1 antibody nivolumab 
showed a longer progression- free survival (PFS; 9.7 vs 5.8 months; HR  = 0.62, 95% CI: 0.38–1.00) 
and higher response rates (47 vs 28%) than patients with the same TMB receiving chemotherapy. 
Moreover, patients with both high TMB and PD- L1 expression in more than 50% of the tumor cells 
had a higher response rate (75%) compared to patients with only one of these factors (32% among 
patients with a high tumor- mutation burden only and 34% among those with a PD- L1 expression level 
of ≥50% only; Carbone et al., 2016). In the CHECKMATE- 227 study, patients with advanced NSCLC 
and a TMB status of at least 10 mutations per megabase, the combined treatment with nivolumab 
plus ipilimumab, an antibody targeting the global negative T cell regulator Cytotoxic T lymphocyte- 
Associated antigen (CTLA- 4), resulted in a longer PFS compared to the chemotherapy group (7.2 vs 
5.5 months; HR  = 0.58, 97.5% CI: 0.41–0.81, p < 0.001) (Hellmann et al., 2018).

Aneuploidy, the presence of an abnormal number of chromosomes in cancer cells (Holland and 
Cleveland, 2009), should also be considered, as a modulator of the TME immune- phenotype. Aneu-
ploidy has been shown to be positively correlated with the number of mutations in the most types of 
cancer including lung tumor (Taylor et al., 2018). Three groups independently indicated that tumor 
aneuploidy negatively correlates with markers of immune evasion and number of tumor- infiltrating 
leukocytes (Davoli et  al., 2017; Xian et  al., 2021; Taylor et  al., 2018). Davoli et al. reported a 
significantly reduced expression of genes associated with adaptive immunity, high cytotoxic activity 
mediated by CD8+ T cells and pathways related to the presence of pro- inflammatory cytokines in 
high aneuploid tumors. Moreover, they found highly aneuploid tumors to be associated with poorer 
survival of patients (Davoli et al., 2017). Xian et al., also showed that aneuploidy negatively correlated 
with immune- mediated cytotoxicity in most cancer types. The effect may be mediated by non- cell 
autonomous effects on immune cells including macrophages and T cells. Implicated in this process 
are polarized macrophages that support an immune suppressive phenotype and negatively regulate T 
cells during activation (Xian et al., 2021). Finally, Taylor et al., suggested that the negative correlation 
between aneuploidy and leukocyte infiltrates may explain the down- regulation of genes associated 
with immune signatures in high aneuploidy tumors.

These clinical studies provide evidence that the immune profile of the TME correlates with the 
genomic landscape of the lung tumor and suggest that future immune therapeutic strategies may be 
designed and applied in line with the TMB and aneuploidy. Although the correlation between tumor 
mutation load and immune therapy outcomes does not prove causality, clinical studies and new exper-
imental evidence (see below) foster the idea that the cancer cell genomic landscape and the TME 
phenotype interact with each other.

How the lung cancer cell mutational landscape shapes the 
TME phenotype
In the following, we will focus on specific lung cancer mutations in proto- oncogenes (KRAS, EGFR, 
ALK, MYC) and tumor suppressor genes (p53, LKB1) and how they relate to alterations in the TME. 
KRAS mutations are the most frequent oncogenic driver mutations in human lung cancer cells (Cancer 
Genome Atlas Research, 2014; Jordan et al., 2017; Skoulidis et al., 2015). Until very recently, no 
drugs were available to treat mutant KRAS- driven lung cancer (Huang et al., 2021). KRAS mutations 
not only cause cell autonomous proliferation and survival of cancer cells but also impact on the lung 
TME phenotype by non- cell autonomous modulation of immune cells (Dias Carvalho et al., 2018). 
Specifically, in lung cancer positive for oncogenic KRAS mutations, a pro- tumorigenic, immunosup-
pressed TME enriched in pro- tumor M2 macrophages, MDSCs, interleukin (IL)–17- producing T helper 
(Th)17 cells and CD4+FoxP3+ Treg cells has been found (Cullis et al., 2018). This raises the question of 
the molecular links between KRAS and the altered TME.

KRAS is a small GTPase and an activator of MAPK pathways (Joneson et al., 1996). It has also 
long been known that mutant RAS proteins activate the nuclear factor of kappa light polypeptide 
gene enhancer of the B- cells (NF-κB) pathway in cancer cells (Cullis et al., 2018; Finco et al., 1997; 
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Kim et al., 2002). The NF-κB family of transcription factors comprises five proteins whose homo- or 
heterodimers play important roles in regulating gene expression in many systems, including innate 
and adaptive immunity (Zhang et al., 2017). In most tissues, the nuclear activity of NF-κB subunits 
is tightly controlled by cytoplasmic retention through the binding to inhibitor of NF-κB (IκB) proteins 
(Oeckinghaus and Ghosh, 2009). In many tumors, the tight cytoplasmic control of NF-κB is relaxed, 
the pathway becomes constitutively (or chronically) activated and elevated levels of nuclear activity 
are observed (Taniguchi and Karin, 2018).

As NF-κB- binding sites are found in the enhancers and promoters of numerous immunoregulatory 
genes (Natoli et al., 2005), it is not surprising that NF-κB plays a pivotal role in cancer by fueling 
a pro- tumorigenic inflammatory environment through the induction of classical NF-κB target genes 
(Baud and Karin, 2009; DiDonato et al., 2012). These genes comprise a plethora of cytokines and 
chemokines, including IL6, tumor necrosis factor α (TNFα), IL- 1α/β, CXCL1, 2, 5, and 8, monocyte 
chemoattractant protein 1 (MCP- 1) / CCL2, and intracellular adhesion molecule 1 (ICAM1) as well as 
regulatory cell cycle and anti- apoptotic proteins (Baud and Karin, 2009; Eluard et al., 2020). The 
same factors are also upregulated in lung cancer and NF-κB is discussed for its role in driving the 
major hallmarks of NSCLC (Dimitrakopoulos et  al., 2020; Figure 2). In the following, we discuss 
pivotal findings concerning KRAS- driven cytokine and chemokine networks in lung cancer.

By secreting IL- 6, mutant KRAS cancer cells can activate Janus activated kinase 1 (JAK1) to induce 
the phosphorylation of the transcription factor signal transducer and activator of transcription 3 
(STAT3) which is found in immune components such as macrophages of the TME (reviewed in Chonov 
et al., 2019). Studies in preclinical mouse models showed that the pharmacological blockade of IL- 6 
suppresses progression of KRAS- mutant positive lung cancer, inhibits STAT3 activation and more 
importantly diminishes the number of pro- tumor M2 macrophages, MDSCs and Treg cells while the 
CD8+ T- cell responses increases (Caetano et al., 2016, Figure 2A).

Figure 2. Common driver mutations impact on the TME in lung tumor. (A) KRAS mutations induce a pro- tumorigenic, immunosuppressed TME enriched 
in pro- tumor M2 macrophages and pro- tumor CD4+ T cells. KRAS activated intrinsic inflammatory signaling via the NF-κB pathway leads to increased 
secretion of inflammatory cytokines, including TNFα, IL- 1α/β, and CXCL8, which in turn enforce the induction of a pro- inflammatory TME by polarization, 
and recruitment of immunosuppressive immune cells. (B) TP53 mutations shape an inflamed and immunosuppressive TME via cell- autonomous 
activation of the NF-κB pathway in cancer cells and enhance the secretion of inflammatory cytokines such as interferon γ (IFNγ). Moreover, TP53/KRAS 
co mutated tumors express higher levels of PD- L1 and show higher CD8+ T cell infiltration. (C) EGFR mutated cancer cells have a lower mutational load. 
This unique genetic feature together with low level of PD- L1 expression and CD8+ tumor infiltrating T cells mark a unique immunosuppressive and cold 
TME phenotype, which can explain the resistance to immune- checkpoint therapies of lung cancer patients with EGFR mutation. (D) LKB1 inactivation 
can lead to increased uptake of specific metabolites such as serine, which support immune cell activation and polarization. This can result in the 
extracellular depletion of immune regulatory metabolites and favor an immunosuppressive TME phenotype. LKB1/KRAS co- mutated tumors are further 
characterized by a pro- inflammatory cytokine milieu.

https://doi.org/10.7554/eLife.79895
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CXCL8  /IL- 8 is as chemokine that attracts polymorphonuclear inflammatory leukocytes to sites 
of tissue injury by acting on the chemokine receptors CXCR1/2 (Baggiolini, 1998; Harada et  al., 
1994; Russo et al., 2014). Tumors very frequently coopt the production of this chemokine to execute 
different pro- tumoral functions, including angiogenesis, survival signaling, and attraction of myeloid 
suppressor cells (Alfaro et al., 2017). Seminal work by Bar- Sagi et al. showed that mutant KRASG12V 
transcriptionally induces CXCL8 through the RAF- MAPK, PI3K and NF-κB signaling pathways (Spar-
mann and Bar- Sagi, 2004). Using a mouse xenograft tumor model, a neutralizing anti- CXCL8 anti-
body was shown to attenuate survival and neo- angiogenesis in a non- cell- autonomous manner and 
to reduce the infiltration of inflammatory immune cells (Sparmann and Bar- Sagi, 2004). This study 
demonstrated chemokine induced oncogenic activation of tumor cells that serves to regulate the 
TME. Likewise, the lung tissues derived from the KrasG12D LA1 lung adenocarcinoma mouse model 
showed higher concentrations of the CXCL8 functional homologues KC and MIP- 2 (Wislez et  al., 
2006). The reduced frequency and progression of lung tumors following antibody- based blockade 
of the CXCR2 receptor is further evidence for the role CXCL8 plays in tumorigenesis (Wislez et al., 
2006).

IL- 6, CXCL8 and multiple other chemokines (e.g. CXCL1, 2, 3, 5, CCL20, CCL2) are under complex 
control of ‘master cytokines’ such as IL- 1α or IL- 1β, which can induce the transcriptional and post- 
transcriptional expression of all of these factors simultaneously through a network of signaling path-
ways and transcription factors (including the NF-κB system) in multiple normal as well as cancer cells 
from both mice or humans (Gaestel et al., 2009; Jurida et al., 2015; Weber et al., 2010; Wolter 
et al., 2008; Ziesché et al., 2013). The IL- 1 system can be successfully pharmacologically targeted 
in a range of chronic inflammatory conditions by the (i) IL- 1 receptor antagonist (IL- 1RA), (ii) the fully 
human anti IL- 1β antibody canakinumab, or (iii) a recombinant IL- 1 receptor IgG fusion protein called 
rilonacept (Dinarello et al., 2012; Mantovani et al., 2019a). Of note, the IL- 1RA is equally effective in 
suppressing IL- 1α and IL- 1β, while canakinumab is IL- 1β-specific (Dinarello et al., 2012).

IL- 1α/β have also long been considered as crucial cytokines in cancer, however often contradictory 
pro- or anti- tumorigenic roles were found in different tumor models or clinical studies (Garlanda and 
Mantovani, 2021). While both cytokines activate the same IL- 1 receptor heterodimer, composed 
of IL- 1R1 and IL- 1R3 (also called IL- 1R accessory protein, IL- 1RAcP), and are supposed to initiate 
the same downstream gene- regulatory effects (see above), they differ in their post- transcriptional 
processing and release mechanisms. The IL- 1α precursor can function intracellularly as an active 
nuclear transcriptional regulator and the processed mature IL- 1α is primarily membrane- associated 
or released locally from severely damaged, necrotic cells (Kim et al., 2013; Malik and Kanneganti, 
2018; Rider et al., 2013; Werman et al., 2004). In contrast, the inactive IL- 1β precursor requires 
processing by the inflammasome complexes as well as secretion to induce local but also systemic 
inflammation (Mangan et al., 2018). The Apte lab systematically studied the role of IL- 1α or IL- 1β in 
tumor initiation and progression using several genetically engineered mouse models. They showed 
that nuclear IL- 1α acts as a signal for genotoxic stress and binds to sites of DNA damage and thereby 
regulates tissue inflammation (Cohen et al., 2015). They also assessed the role of IL- 1β and IL- 17, 
an IL- 1- inducible T cell cytokine, in a model of experimental lung metastasis. Using IL- 1β or IL- 1RA- 
deficient mice, they found that lack of IL- 1β or excess of IL- 1 activity (by lack of IL- 1RA) in the lung TME 
both resulted in reduced T cell activity and a poor prognosis. IL- 1β-deficient mice showed increased 
Treg numbers and activities whereas in IL- 1RA- deficient mice enhanced accumulation and activity of 
myeloid- derived suppressor cells were found, both resulting in suppressed antitumor immunity. In 
mice lacking IL- 17, the study showed reduced tumor progression along with improved T cell function. 
These data provided evidence for a critical and unique role of IL- 1 in upregulating cytokines (e.g. 
IL- 17) and in determining the balance between inflammation and antitumor immunity in specific tumor 
microenvironments such as in the lung (Carmi et al., 2011).

Further studies corroborate the importance of the IL- 1/IL- 17 axis also for KRAS- driven lung cancer. 
KRAS mutations in lung epithelial cells lead to the recruitment of Th17 cells and increased IL- 17 
production, both of which are associated with lung tumorigenesis (Chang et al., 2014). IL- 17 secreted 
from tumor- infiltrating Th17 lymphocytes can induce the epithelial- mesenchymal transition (EMT) 
gene- regulatory events in lung cancer cells, thereby promoting tumor cell migration, intravasation, 
and metastasis (Salazar et al., 2020). Accordingly and in line with the results from Apte et al., the 
blockade of IL- 17 in mouse cancer models results in a reduction of lung tumor metastasis and the 
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genetic ablation of IL- 17C in a KrasG12D lung cancer mouse model improved the response to anti- PD1 
treatment (Ritzmann et  al., 2019), (Chang et  al., 2014; Salazar et  al., 2020; Figure 2A). More-
over, the numbers of Th17 lymphocytes in patients with lung cancer negatively correlate with overall 
survival (Salazar et al., 2020).

Based on their own results and observations from other studies, Apte et al. concluded that IL- 1α 
and IL- 1β play opposing roles in the malignant process. While the membrane- associated IL- 1α is mainly 
immunostimulatory, IL- 1β that is secreted into the TME is mainly pro- inflammatory and promotes 
tumorigenesis, tumor invasiveness, and immunosuppression. These distinct functions of the two IL- 1 
agonists are important in early stages of tumor development and contribute to tumor progression 
according to their expression patterns within the TME (Voronov and Apte, 2017). New data provide 
further support for this concept. In a murine breast cancer model, IL- 1β-deficiency resulted in IL- 12 
secretion by CD11b+ dendritic cells (DCs) cells and supported antitumor immunity by activated CD8+ 
lymphocytes expressing IFNγ, TNFα, and granzyme B. These T cells infiltrated tumors and induced 
their regression. Treating mice first with anti- IL- 1β antibodies followed by anti- PD- 1 antibodies 
completely abrogated tumor progression. These data define microenvironmental IL- 1β as a master 
cytokine in tumor progression whose suppression also facilitates successful therapeutic checkpoint 
inhibition (Kaplanov et al., 2019).

These pre- clinical observations gained new importance with results emerging from the Canaki-
numab Anti- inflammatory Thrombosis Outcomes Study (CANTOS) trial (Ridker et al., 2017a). The 
CANTOS trial recruited 10,061 patients who had a previous myocardial infarction and some type of low 
level, smoldering inflammation (baseline CRP levels of ≥2 mg/L). Patients were treated with optimal 
medical and lipid- lowering therapy, and randomized to receive canakinumab or placebo (Ridker 
et al., 2017a). The CANTOS trial was designed to proof the concept that targeting IL- 1β-mediated 
chronic inflammation can reduce cardiovascular events. Unexpectedly, the prespecified safety analysis 
of the trial data also revealed that treatment with canakinumab was associated with a dose- dependent 
reduction in lung cancer incidence (HR = 0.33; 95% CI, 0.18–0.59; p<0.0001 for the canakinumab 
300 mg group compared with placebo) as well as lung cancer mortality (HR = 0.23; 95% CI, 0.10–0.54; 
p<0.0002 for canakinumab 300 mg group compared with placebo) (Crossman and Rothman, 2018; 
Ridker et al., 2017b).

A recent follow- up study examined circulating tumor DNA (ctDNA) and nine soluble inflammatory 
biomarkers (CRP, IL- 6, IL1RA, IL- 18, Leptin, TNFα, adiponectin, fibrinogen, and PAI1) in blood samples 
from CANTOS patients. Catalogue of Somatic Mutations in Cancer (COSMIC) database ctDNA muta-
tions were detected in 65% (46/71) of the CANTOS patients with lung cancer but none of the muta-
tions commonly found in lung cancer were enriched (or depleted) following canakinumab treatment. 
Further, median time to lung cancer diagnosis was shorter in patients with (n=29, 407 days) versus 
without (n=38, 837 days) detectable COSMIC ctDNA mutations at baseline (p=0.011). High baseline 
levels of CRP and IL- 6 trended toward shorter median time to lung cancer diagnosis, suggesting 
that IL- 1β-inducible CRP and IL- 6, similar to ctDNA at baseline, correlate positively with a more rapid 
progression to lung cancer diagnosis (Wong et al., 2020). These results provide further evidence for 
the importance of the IL- 1β pathway for pro- tumor inflammation in lung cancer and suggest canak-
inumab’s effect may be mediated by delaying inflammation- driven disease progression of diverse 
molecular subtypes of lung cancer.

In conclusion, the results from CANTOS as well as the findings from pre- clinical studies clearly point 
to an important role of the IL- 1 system, autocrine or paracrine cytokine loops, and the downstream 
cytokine / chemokine networks for lung tumor development and progression (Briukhovetska et al., 
2021; Yang et al., 2021).

EGFR is also one of the most commonly mutated genes in lung cancer. EGFR is a trans- membrane 
glycoprotein with an extracellular ligand binding domain for epidermal growth factor, a transmem-
brane domain, and an intracellular tyrosine kinase domain that regulates epithelial tissue maintenance 
and growth (Liu et al., 2017). The clinical outcomes of immune checkpoint therapies have revealed 
that EGFR mutations in lung cancer cells can not only upregulate the intrinsic PD- L1 expression on 
cancer cells but also suppress T cell function and increase levels of pro- inflammatory cytokines within 
the TME, which marks an immune escape phenotype of EGFR- mutant NSCLC (Akbay et al., 2013; 
Chen et al., 2015). Moreover, it has been shown that patients with EGFR mutations have fewer T cell 
infiltrations of PD- L1+/CD8+ tumor infiltrating lymphocytes (TILs) and reduced shrinking properties of 
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the tumor in response to immune cell activation (Figure 2C, Dong et al., 2017a). In comparison to 
the reduced number of cytotoxic T cells in EGFR- mutant lung adenocarcinomas, patients with onco-
genic EML4- ALK rearrangements showed a significant increase in regulatory T cells, supporting the 
concept that different driver oncogenes induce distinct immunosuppressive mechanisms (Budczies 
et al., 2022).

The MYC oncoproteins belong to a super- transcription factor family that regulates the transcrip-
tion of at least 15% of the entire genome (Dang et  al., 2006). MYC activation is involved in the 
regulation of cell- cycle progression, apoptosis, cellular senescence, and metabolism (Gabay et al., 
2014). Co- occurrence of MYC genetic alterations with KRAS mutations considerably accelerates lung 
tumor development with a reduction of the survival rate in mouse lung tumor models (Kortlever 
et al., 2017). This mutational combination not only generates highly proliferative, invasive cancer cell 
clones but also reprograms the TME towards the inflammatory, angiogenic, and immune- suppressed 
phenotype. Mechanistically, MYC- induced immunosuppression relies on CCL9 and IL- 23. CCL9 regu-
lates the recruitment of CD206+ pro- tumor macrophages and PD- L1- dependent expulsion of T and 
B cells. IL- 23 boosts the pro- tumor CCL9 effects through the elimination of adaptive T and B cells 
and innate immune NK cells (Kortlever et al., 2017). Blocking of CCL9 and IL- 23 abrogates the lung 
tumor aggressiveness in KRAS/MYC- altered mice mainly by re- establishing a tumor- suppressive lung 
microenvironment (Kortlever et al., 2017).

TP53, encoding the tumor suppressive transcription factor p53, is not only the most frequently 
mutated genes in cancer but also across all types of lung cancer with mutations rates ranging from 
46% in lung adenocarcinoma to over 90% in SCLC (Gibbons et  al., 2014; George et  al., 2015). 
TP53- mutant tumors show a distinct TME profile including increased PD- L1 expression and CD8+ T 
cell infiltration, which suggest an adaptive immune resistance and a high immunogenicity state (Dong 
et al., 2017b). The excess of TP53 mutations in lung cancer cells can also elevate NF-κB activity (Scian 
et al., 2005). Interestingly, enhanced activation of NF-κB suppresses p53- mediated gene activation 
and thereby promotes resistance to apoptosis in cancer cells (Webster and Perkins, 1999). Similar to 
KRAS mutations, TP53 mutation- mediated NF-κB activation has an additional, non- cell autonomous 
impact on the TME through the secretion of a variety of pro- tumor and immunosuppressive cytokines 
and chemokines (Figure 2B; Mantovani et al., 2019b). In KRAS- mutant lung cancer cells with TP53 
co- mutations, increased NF-κB signaling conferred pro- survival signals to the cancer cells (Meylan 
et al., 2009). With regard to TME phenotype, KRAS/TP53 lung tumors are further characterized by 
increased expression of PD- L1 and a higher proportion of PD- L1+/CD8a+ T cells compared to KRAS 
or TP53 single mutation (Dong et al., 2017b). Moreover, TP53 mutations also directly impact on the 
protein secretion machinery itself (Pavlakis and Stiewe, 2020; Pavlakis et al., 2020). For example, 
TP53 inactivation in lung adenocarcinomas was found to activate progestin and adipoQ receptor 11 
(PAQR11)- mediated prometastatic secretory vesicle biogenesis in the Golgi, resulting in the autocrine 
activation of a PLAU receptor/STAT3/PAQR11 feedforward signaling loop that triggers an immuno-
suppressive TME rich in effector/memory  CD8+ T cells and M1 macrophages (Tan et al., 2021a). 
Similarly, TP53 loss induces Golgi reassembly and stacking protein 55 kD (G55)- dependent secretion 
that promotes angiogenesis and CD8+ T cell exhaustion (Tan et al., 2021b). Missense mutations in 
TP53 specifically induce the endoplasmic reticulum UDPase ENTPD5 that drives the calnexin/calretic-
ulin cycle required for proper folding of secreted proteins (Vogiatzi et al., 2016). The loss of TP53 or 
the expression of mutant p53 proteins thereby acts at multiple non- cell- autonomous levels to blunt 
antitumor and promote tumor- supporting TME properties (Blagih et al., 2020).

Co- mutation of KRAS and the tumor suppressor LKB1, one of the most prevalent mutational combi-
nations in lung tumor, is observed in about ~25% of KRAS- mutant lung adenocarcinomas (Skoulidis 
et al., 2015). LKB1 is a serine- threonine kinase, which has important regulatory roles in cellular metab-
olism and energy stress response mainly through activating AMP kinase (AMPK) and AMPK- related 
family members (Marcus and Zhou, 2010). Hence, mutations in LKB1 have tremendous impact on 
energy and metabolic profiles of a stressed TME, wherein cancer cells and immune or stromal cells are 
subjected to metabolic alterations, limited nutrient availabilities, hypoxia, and pH disturbances (Zheng 
et al., 2020a). Mutational cooperation between LKB1 loss and KRAS activation leads to induction of 
the serine–glycine–one- carbon pathway in lung cancer cells which results in enhanced S- adenosyl 
methionine (SAM) synthesis as a critical substrate for DNA methylation. Upregulation of SAM leads 
to increased DNA methylation in lung cancer cells with KRAS/LKB1 co- mutations (Kottakis et al., 
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2016). Interestingly, extracellular serine within TME is essential for optimal T cell expansion through 
supplementation of glycine and one- carbon units for de novo nucleotide biosynthesis in proliferating 
T cells. Accordingly, upregulation of the serine–glycine–one- carbon pathway in LKB1 mutated cancer 
cells can deplete the serine level in the extracellular space and thereby regulate T cell proliferation 
and function (Ma et al., 2017). Furthermore, KRAS/LKB1 co- mutated lung tumors are characterized 
by an altered nitrogen metabolism. KRAS/LKB1- mutant lung cancer cells are more dependent on an 
unorthodox pathway of pyrimidine biosynthesis that utilizes mitochondrially generated carbamoyl 
phosphate through upregulation of carbamoyl phosphate synthetase- 1 (CPS1; Kim et  al., 2017). 
CPS1 allows the mutated cancer cells to become resistant to arginine depletion, which is a major 
strategy of pro- tumor macrophages and tumor- associated myeloid cells to inhibit antigen- specific T 
cell responses (Bronte and Zanovello, 2005). Along the same line, primary resistance to PD- 1 based 
therapies in KRAS- mutant lung cancer patients is mainly associated with LKB1 alterations in cancer 
cells. Furthermore, the genetic ablation of Lkb1 also induces the resistance to anti–PD- 1/anti–PD- L1 
therapies in murine Kras- mutant lung cancer models (Skoulidis et al., 2018). Therefore, KRAS/LKB1 
mutations in cancer cells not only establish a non- T cell, inflamed TME including reduced infiltration 
of CD3+, CD4+, CD8+ T cells and low expression of PD- 1, but also help the cancer cells to cope with 
harsh conditions in the TME, when metabolites such as arginine become limited depending on the 
immune status (Figure 2D).

How the tumor microenvironment shapes the genomic 
landscape of lung cancer cells
The mutational characteristics of cancer cells can shape the cellular composition of the TME, in partic-
ular the immune phenotype, but there is less attention paid to the fact that the immune components 
of the TME can vice versa modify the tumor genomic landscape. As tumorigenesis is an evolutionary 
process of clonal selection, cancer cell clones with strongly immunogenic neo- antigens are suscep-
tible to recognition and elimination by immune cells at the early stages of tumor development. This 
can confer an evolutionary advantage to tumor development through the elimination of those clones 
with high antigenic mutations or aberrations (Figure 3). Simultaneously, other clones that manage 
to restrict neo- antigenic peptide presentation by MHC I molecules become invisible to the adaptive 
immune system and evade the anti- tumor immune response. Accordingly, the immune phenotype of 
the TME can shape the genomic landscape of tumor not only by detecting and eliminating immuno-
genic clones but also by promoting the outgrowth of clones that can evade immune responses. The 
important role of immune cells is underlined by the increased tumor susceptibility of immunodeficient 

Figure 3. TME shapes the genomic landscape of lung cancer cells. Accumulation of specific cancer clones (light and dark cream) with (neo)antigen 
presentation can induce the infiltration of anti- tumor immune cells (blue cells with light nuclei). The anti- tumor immune cells will recognize and induce 
the cell death pathway in the targeted clones. By this mechanism, anti- tumor immune cells can act as a genetic selection barrier not only by killing less 
fit clones but also through the preparation of an environment that promotes growth and proliferation of other clones (dark gray) with specific genetic 
profiles that subsequently prevent antigen production. However, some cancer cells with antigen presentation can also evade the killing by anti- tumor 
immune cells through other mechanisms (dark cream clones after genomic selection).
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mice compared to wild- type mice and the higher immunogenicity of cancer cells from immunodefi-
cient mice (Koebel et al., 2007). Also, it has been documented that immunosuppressed transplant 
recipients with kidney failure developed secondary tumors after transplantation from undetected 
(occult) cancer of the organ donors (MacKie et al., 2003).

More recently, Marty et al. developed the Patient harmonic- mean best rank (PHBR) score to predict 
the probability for a patient’s MHC I variants to bind to a peptide sequence containing the relevant 
residues which can be recognized by matching immune cells. In their model, low PHBR scores demon-
strate a high likelihood of residue presentation (Marty et al., 2017). Interestingly, mutations in known 
oncogenes and tumor suppressor genes have higher PHBR scores than random mutations, which 
means less recognition probability by immune cells. Moreover, they could find a positive correla-
tion between the PHBR score of any given mutation and the frequency of the mutation in tumors. 
Accordingly, an oncogenic mutation can acquire the high mutation frequency not only because of a 
cell- autonomous fitness benefit provided by the mutation but also due to poor presentation of the 
mutant peptide, which renders the mutations undetectable to the immune cells (Marty et al., 2017).

Furthermore, McGranahan et al. revealed that tumors with clonal loss of heterozygosity (LOH) 
in the HLA locus, the gene which encodes MHC I molecules, is associated with a high neoantigen 
burden, APOBEC- mediated mutagenesis and significantly elevated PD- L1- positive immune cells 
compared to tumors without any HLA LOH, suggesting that HLA LOH can be considered as an 
immune escape mechanism (McGranahan et  al., 2017). The authors proposed that infiltration of 
immune cells, including CD8+ T cells, happens upon the accumulation of antigen/neoantigen within 
cancer cells. This immune infiltration creates a selection barrier for tumors by eliminating the clones 
with high antigen/neoantigen load. However, cancer cell subclones with HLA LOH may be positively 
selected based on their evasion capability from CD8+ T cell recognition (McGranahan et al., 2017).

Altogether, the development of the mutational landscape of cancer cells in the early stage of 
tumor development is tightly interconnected with the immune components of the TME. Although the 
immune component of TME can recognize and eliminate the clones with high antigen/neoantigen 
load, they eventually co- determine the genomic landscape of tumor by paving the way for the fitter 
clones with less immunogenic mutations (lower PHBR scores) or antigen presentation defects (high 
HLA LOH), which supports evasion from the immune response (Figure 3).

New and advanced approaches to study the TME
As outlined above, there is ample evidence to suggest that cytokine networks govern immune evasion 
and foster the development of immunosuppressive T cells and TAMs within the TME (Van Den Eeck-
hout et al., 2021; Van Den Eeckhout et al., 2020). However, it is still unclear how to tackle the 
TME cytokine milieu therapeutically in order to trigger strong and sustained antitumor responses 
in the majority of patients. A large and comprehensive survey of completed and ongoing clinical 
trials on cytokines and chemokines concluded that, with few exceptions in small numbers of patients, 
inhibiting or enhancing a single cytokine or chemokine pathway is unlikely to have sustained activity 
against advanced- stage cancer (Propper and Balkwill, 2022). Thus, while new pre- clinical and clinical 
results reinforce the idea that cytokines and chemokines should be targeted to reprogram the TME as 
outlined above, new strategies are needed for effective therapies.

With respect to the TME, it is important to consider the local concentrations of cytokines at time 
of diagnosis (and biopsy) and how they may change over time (during therapy). Many cytokines have 
natural antagonists and the ratios of agonists to antagonists will determine the TME phenotype. For 
example, the IL- 1 family of cytokines (IL- 1F) comprises seven proinflammatory receptor agonists (IL- -
1α/b, IL- 18, IL- 33, IL- 36 α/β/γ) and four anti- inflammatory or antagonistic members (IL- 1RA, IL- 36Ra, 
IL- 37, IL- 38) (Teufel et al., 2022). Most cytokines regulate gene expression patterns in their target 
cells (Gaestel et al., 2009). It is therefore important to consider the cytokine- activated effects down-
stream of their receptors and the cell- to- cell heterogeneity of these effects within the TME in order 
to understand the outcome of systemic manipulations of individual cytokines or their neutralization 
in patients.

Towards this goal, we propose that it will be instrumental to determine the (epi)genetic profile of 
individual cells in the TME by combinatorial high- resolution approaches to map cell states and under-
stand the regulatory diversity at the single cell and molecular levels (Shema et al., 2019). While the 
overall gene expression pattern of a population of (tumor) cells might appear stable, at the single- cell 
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level gene expression occurs stochastically with individual genes undergoing cycles of bursts in activity 
and periods of inactivity (Misteli, 2020). This type of gene activity is closely linked to the different 
levels of 3D hierarchical genome organization within the nucleus (chromosomes, compartments, 
topologically- associating domains (TADs), DNA loops, nucleosome accessibility; reviewed in Finn 
and Misteli, 2019). High- throughput chromosome conformation capture (Hi- C) and high- throughput 
imaging assays can now be used to systematically map chromatin states of individual cells (Finn et al., 
2019). Together with the multitude of next generation sequencing (NGS) techniques now available to 
measure mRNA expression and chromatin accessibility at single cell resolution, the genetic activities 
of individual cells can be precisely mapped (Kaya- Okur et al., 2019; Luecken and Theis, 2019; Meers 
et al., 2019; Wu et al., 2021). The basic concepts of these approaches are summarized in Figure 4.

The application of multi- level single- cell NGS approaches will allow to track the genetically most 
active cells within the TME and to monitor their functional changes upon tumor progression or during 
therapy (Guruprasad et al., 2021; Longo et al., 2021; Shema et al., 2019). For example, in a recent 
study whole- exome and transcriptomic data for >1000 immune checkpoint inhibitor- treated patients 
across seven tumor types were combined with single- cell RNA- seq data from clonal neoantigen- 
reactive CD8+ tumor- infiltrating lymphocytes (TILs), to identify CCR5 and CXCL13 as T cell- intrinsic 
markers of ICI sensitivity (Litchfield et al., 2021).

In the long- term, the NGS- based approaches should be complemented by advanced proteomic 
methods that allow to determine and quantify secreted proteins and proteins in body fluids, such 
as proximity extension assays (PEA) or adapted liquid chromatography mass spectrometry set ups 
(LC- MS/MS) (Geyer et al., 2019; Petrera et al., 2021). With respect to the importance of the acti-
vation status of the NF-κB system for the TME, proximity ligation assays (PLA) can be combined with 
immunofluorescence and single- molecule RNA fluorescence in situ hybridization (smRNA- FISH) to 
monitor the flow of signal transduction, that is the formation of active NF-κB dimers and the nuclear 

Figure 4. The interplay of single- cell chromatin states determine changes in gene expression in the TME of lung cancer cells. At the single cell level, 
gene expression occurs in a stochastic fashion and stable phenotypes in populations of tumor cells or immune cells result from variable single- cell 
gene expression patterns. Depicted are changing patterns of active chromatin loci formed by transient interactions of enhancers and promoters 
of multiple genes, some of which may encode secreted factors secreted by the TME. These nuclear foci operate as transcriptional hubs that are 
characterized by high concentrations of transcription factors, transcriptional cofactors and RNA polymerases. Similarly, the 3D spatial conformations of 
chromatin (including the loops that engage in enhancer promoter interactions) vary from cell to cell. This high degree in (epi)genetic diversity very likely 
contributes significantly to the clonal selection of cells that shape the TME in a pro- tumorigenic manner.
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translocation as well as the resulting expression of NF-κB target genes in single cells (Figure 5; Mayr- 
Buro et al., 2019; Meier- Soelch et al., 2021).

In conclusion, the combined application of NGS and proteomics methods will allow to (i) decon-
volute the main cellular sources of the altered cytokine milieu and (ii) quantify the entire spectrum of 
mediators that drive TME phenotypes as a prerequisite for much more precise targeted therapies.

Clinical relevance
Biomarkers
Most lung cancer patients are diagnosed at the advanced stage with metastasized tumor. Therefore, 
application of predictive biomarkers to identify and categorize the lung tumor as early as possible 
cannot only improve the diagnosis but also increase the efficiency of targeted therapies. Recent 
advancements made in genomic analyses and onco- immunology revealed two classes of predictive 
biomarkers in NSCLC; first, the presence of druggable driver oncogenes such as EGFR mutations 
and anaplastic lymphoma kinase (ALK) rearrangements and second, TME- based biomarkers including 
immune checkpoint molecules (Villalobos and Wistuba, 2017; Kerr et al., 2021). However, although 

Figure 5. Single cell states of the NF-κB signaling pathway. (A) The scheme shows the key steps of the NF-κB signaling system. Activation of the 
canonical NF-κB pathway by triggers such as IL- 1β will lead to the rapid phosphorylation and ubiquitination- mediated destruction of the cytosolic 
inhibitor IκBα. This in turns liberates the active NF-κB transcription factor subunits p50 (encoded by the NFKB1 gene) and p65 (encoded by the RELA 
gene), which translocate to the nucleus. The p50 and p65 dimers bind to specific DNA motifs within accessible, open chromatin regions, often in 
conjunction with other transcription factors such as JUN or FOS proteins which form activating protein (AP)–1 (hetero)dimers. Many NF-κB target genes 
encode secreted factors such as IL- 6 or CXCL8, which are crucial regulators of the TME. High activity of NF-κB target genes is usually associated with 
characteristic epigenetic signatures at histone tails prevailing as enhancers (e.g. H3K27ac), promoters and gene bodies as indicated. (B) Schematic 
representation of proximity ligation assays (PLA) combined with single molecule (sm)RNA- FISH to monitor the NF-κB status at the single cell resolution. 
High numbers of NF-κB:IκBα dimers (red dots) and low numbers of smRNA- FISH signals (green dots) characterize cells with a silenced NF-κB pathway, 
while low numbers of NF-κB:IκBα dimers and high numbers of smRNA- FISH signals characterize cells with high NF-κB activity. For details see text. NF-
κB (left sequence logos) and AP- 1 (right sequence logos) motifs were obtained from the JASPAR data base (https://jaspar.genereg.net).
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the usage of these biomarkers has improved diagnosis and patient survival, the majority of NSCLC 
patients does not respond or develops resistance to targeted therapies.

Given the crosstalk between the cancer cells and TME, both the cancer cell genetic landscape 
and immune cell profile determine the efficacy of targeted therapies. Thus, the combination of tumor 
genetic landscape and immune checkpoint profile together can be helpful to define the best candi-
dates for immune therapy. The best example for the success of this approach is the FDA approval 
of pembrolizumab (anti PD- 1), for the treatment of adult and pediatric patients with unresectable or 
metastatic tumor with TMB- H ≥10 (mut/Mb) and solid tumors (Marcus et al., 2021). A recent meta- 
analysis of patients who received PD- L1/PD- 1 therapies has shown high TMB (≥10 mut/Mb) to be 
significantly correlated with prolonged progression free survival (PFS) compared to patients with low 
TMB (Zhu et al., 2019). Therefore, the combination of TMB with other TME markers such as PD- L1 
level, CD8+ tumor infiltrating lymphocytes and MHC profile can help select the best possible candi-
dates that will benefit from PD- L1/PD- 1 therapy. Despite these evidences, there are still significant 
hurdles to overcome including technical challenges in measuring TMB, a general lack of agreement 
for TMB cutoff and the absence of a standardized method (Addeo et al., 2021) which need to be 
addressed and resolved prior to future application in clinical routine.

In addition, driver mutation status can also be considered a promising biomarker, especially for 
exclusion of inefficient treatment strategies. For example, NSCLC patients with EGFR mutation 
showed an unfavorable response to PD- L1/PD- 1 inhibitors compared to those with wild- type EGFR, 
which could be related to the low TMB of EGFR- mutant tumor and an immunosuppressive TME (Dong 
et al., 2017b).

More recently, HLA- I LOH has been shown to be a negative predictor of overall survival in non- 
squamous NSCLC patients treated with ICIs. Interestingly, combining TMB and HLA- I LOH improved 
the prediction of survival, which suggests a better subcategorization of patients that will benefit from 
immunotherapies (Montesion et al., 2021). Recent advances in imaging techniques such as multiplex 
immunofluorescence staining was instrumental in demonstrating the high potential of TME immune 
phenotype as a prognostic factor. Our group have shown that lower density of anti- tumor M1- like 
macrophages and higher proximity of cancer cells to pro- tumor M2- like macrophages are associated 
with poor survival in NSCLC (Zheng et al., 2020b). We also demonstrated that accumulation of Th9 
and Th17 cells in lung tumors are correlated with poor survival in lung cancer patients (Salazar et al., 
2020). The combination of multiplex immunofluorescence staining and genomic analysis thus may 
prove a robust predictive tool for the subcategorization of patients.

Combination therapy
Although the development of lung cancer therapy from cytotoxic chemotherapies to genetic- and 
immune checkpoint- based strategies has shifted lung cancer therapy toward precision medicine, the 
study of the crosstalk between genomic landscape and TME immune phenotype offers new possi-
bilities for more advanced personalized treatments. For example, LKB1 mutation plays a key role in 
primary resistance to the PD- 1 axis blockade in KRAS- mutant lung adenocarcinoma (Skoulidis et al., 
2018). Interestingly, it has been shown that loss of LKB1 increases the sensitivity to energetic stress 
triggered by metformin and phenformin (Shackelford et al., 2013). Moreover, the enhanced depen-
dence on the CPS1- associated pyrimidine pool in KRAS/LKB1 mutated cells suggested a higher sensi-
tivity of this cell type to DNA replication stress, which can lead to DNA damage and cell death (Kim 
et al., 2017). Therefore, targeting the metabolic vulnerabilities of LKB1 mutated cancer cells may 
reverse the resistance of PD- 1 blockade therapy in lung adenocarcinoma patients with KRAS/LKB1 
mutation. Regarding EGFR mutation, The ADAURA study, a randomized, double- blind clinical phase 
3 trial, showed that adjuvant therapy with osimertinib, a third- generation EGFR- tyrosine kinase inhib-
itors (TKI), significantly improved the disease- free survival among patients with stage IB to IIIA EGFR 
mutation–positive NSCLC (Wu et al., 2020). Although, osimertinib can induce PD- L1 protein degra-
dation and reduce PD- L1 mRNA expression in vitro, to date, the existing clinical data regarding PD- L1 
association with osimertinib in EGFR- mutant NSCLC patients is contradictory. For example, Brown et 
al. demonstrated that efficacy of osimertinib in the first- line treatment of EGFR- mutated metastatic 
NSCLC was unaffected by PD- L1 expression (Brown et al., 2020). In contrast, Hsu et al. reported the 
strong PD- L1 expression in advanced EGFR- mutant NSCLC tumors to be associated with a signifi-
cantly poorer prognosis in patients that received osimertinib as their first- line EGFR- TKI treatment 
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(Hsu et al., 2022). This highlights the need for further studies to increase our knowledge about the 
effect of osimertinib on EGFR- mutated TME before and after therapy, which will ultimately improve 
the subcategorization of EGFR- mutant NSCLC patients.

Further, EGFR- TKIs can also induce a rapid and temporary increase of cytotoxic CD8+ T cells, 
dendritic cells, and a reduction of the pro- tumor M2- macrophage population in EGFR- driven lung 
tumor mouse models. However, most of these anti- tumor effects gradually diminished with the contin-
uation of treatment while the main immunosuppressive cell type, MDSCs, was consistently becoming 
more dominant during tumor development under treatment (Jia et al., 2019). Combining EGFR- TKIs 
with depletion of MDSCs, for example by gemcitabine (Le et al., 2009), may therefore improve the 
efficiency of treatment.

Another strategy, which has promising effects in lung tumor reduction, is the reprogramming of 
pro- tumor to anti- tumor macrophages (Zheng et al., 2017). Chemotherapy- resistant KRAS patients 
have a large population of pro- tumor M2- macrophages that support the formation of the immuno-
suppressive TME phenotype (Katopodi et al., 2021), whereas the re- programming of M2- protumor 
macrophages through modulation of the Wnt/β-catenin pathway reduced primary and metastatic lung 
tumors (Sarode et al., 2020). Therefore, the modulation of immune components of the TME and its 
effect on the mutational landscape of cancer cells may not only improve oncoprotein- targeted thera-
pies but also TME- based therapies such as ICIs.

Conclusion and future perspective
Over the last decades, the conceptual picture of a tumor has shifted from a solid mass of tumor cells 
to a complex and dynamic micro- organ where genetically altered cancer cells are embedded into an 
interactive tumor microenvironment containing numerous non- transformed immune and stromal cell 
types. This conceptual shift introduces the mutational landscape of the cancer cells and the cellular 
architecture and phenotype of the TME as the two major determinants of tumor initiation, progres-
sion and metastasis. Based on the accumulated and emerging evidence, we propose that the fate of 
individual tumor subclones depends on how well the cancer cell’s genetic profile and the TME pheno-
type harmonize. While cancer cells require genomic instability to bring forth strong oncogenic drivers 
that enable aggressive proliferation, the neoantigens, generated in this process, render the cells 
vulnerable to immune attack. A balance between these opposing forces is required for optimal tumor 
growth and results from a mutual crosstalk in which the genetic alterations of the cancer cells induce 
immunosuppressive signals that shape a tumor- supportive TME, while the TME immune components 
edit the genetic profile of the tumor cells by depleting highly immunogenic subclones until a balance 
between the two processes is achieved.

In light of the key roles of cancer cell mutations and the TME phenotype during tumor evolution, 
integrating these two aspects for lung tumor stratification is expected to help anticipate primary and 
acquired therapy resistance, the key remaining obstacles to a long- term survival benefit under treat-
ment with targeted and immunotherapy regimens. The main and immediate challenge for the inte-
gration of genetic landscape and TME phenotype is the heterogeneity of tumor tissues, which calls 
for spatially resolved single- cell analysis techniques. To address the TME phenotype and its hetero-
geneity, highly multiplexed imaging technologies and computational tools have been developed that 
can quantitatively and at single- cell resolution reveal the spatial distribution of tumor, immune and 
stromal cell components, their interactions and activity states in distinct tumor niches. While the muta-
tional landscape is still primarily profiled by next generation sequencing of bulk tumor tissue, recent 
advances with single- cell genomics raise hope that tumor mutational status and TME phenotype can 
soon be better integrated in one framework for a refined classification of lung tumors that better 
informs clinical decision making for the benefit of long- term survival.
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