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Objective. Cholesterol oxidation products have an established proatherogenic and cytotoxic effect. An increased exposure to these
substances may be associated with the development of atherosclerosis and cancers. Relatively little, though, is known about the
effect of phytosterol oxidation products, although phytosterols are present in commonly available and industrial food products.
Thus, the aim of the research was to assess the effect of 5α,6α-epoxyphytosterols, which are important phytosterol oxidation
products, on redox state in rats. Material and Methods. The animals were divided into 3 groups and exposed to nutritional
sterols by receiving feed containing 5α,6α-epoxyphytosterols (ES group) and 5α,6α-epoxycholesterol (Ech group) or sterol-free
feed (C group). The levels of malondialdehyde (MDA), conjugated dienes (CD), and ferric reducing antioxidant potential
(FRAP) were assayed in the plasma; anti-7-ketocholesterol antibodies and activity of paraoxonase-1 (PON1) were determined in
serum, whereas the activity of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), S-glutathione
transferase (GST), and superoxide dismutase (SOD) were assayed in RBCs. Results. During the experiment, the levels of lipid
peroxidation products increased, such as CD and anti-7-ketocholesterol antibodies. At the same time, the plasma levels of FRAP
and serum activity of PON1 decreased alongside the reduced activity of GPx, GR, and SOD in RBCs. There was no effect of the
studied compounds on the plasma MDA levels or on the activity of CAT and GST in RBCs. Conclusions. Both 5α,6α-
epoxyphytosterols and 5α,6α-epoxycholesterols similarly dysregulate the redox state in experimental animal model and may
significantly impact atherogenesis.

1. Introduction

Cholesterol is the most common animal sterol. It is present in
every cell, as a plasma membrane component, and in the
extracellular space, as a plasma lipoprotein component. Its

wide bioavailability and chemical structure (monounsatu-
rated alcohol) make cholesterol prone to oxidation, which
leads to oxycholesterol formation [1]. Apart from endoge-
nous production, oxycholesterols can also be sourced from
nutrition, in particular, from cholesterol-rich foods after
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long-term thermal processing, gamma irradiation, or long-
term storage [2].

Recently, food products containing phytosterols and
phytostanols have been widely promoted. Animal experi-
mental studies and epidemiological studies demonstrated
their positive effect on lipoprotein status by, e.g., inhibiting
intestinal absorption of exogenous cholesterol. Population
studies show that increased intake of phytosterols and
phytostanols leads to a significant decrease in total choles-
terol and LDL cholesterol levels, as well as favourably affects
HDL cholesterol and triacylglycerol levels [3, 4].

However, the health effects of oxidated phytosterols’
intake have not been widely studied yet, although they
are present in abundance in widely available and popular
sterol- and stanol-containing margarines or can form during
thermal processing of food products. The available literature
lacks a full report on a study involving sterol administration
to experimental animals which assessed sterol effect on
oxidative stress. Thus, the aim of the research was to assess
the effect of 5α,6α-epoxyphytosterols and 5α,6α-epoxycho-
lesterol on oxidative stress markers in experimental animals.

2. Material and Methods

2.1. Animals. The protocol was approved by the Bioethical
Committee for Animal Experimentation of the Medical
University of Silesia in Katowice, Poland (approval no.
27/2007, dated April 17th, 2007). All animals received
humane care in compliance with the 8th edition of the Guide
for the Care and Use of Laboratory Animals published by the
National Institute of Health [5].

Male Wistar rats, with the body weight of 130-180 g at
baseline, were sourced from the Centre for Experimental
Medicine, Medical University of Silesia in Katowice. During
the experiment, the rats were kept on wood shaving
bedding in standard single rodent cages, at the temperature
of 20-25°C, with artificial lighting (a 12 h/12 h day/night
cycle). The feed was administered once a day, and tap water
was available ad libitum. Prior to the commencement of the
experiment, the animals were kept in the conditions
described above for an acclimation period of 2 weeks to
ensure reproducible results. The rats were divided into 3
groups (15 animals each), to receive the following:

(i) Feed containing 5α,6α-epoxyphytosterols acetate at
100 mg per 1 kg of feed (ES group)

(ii) Feed containing 5α,6α-epoxycholesterol acetate at
100 mg per 1 kg of feed (ECh group)

(iii) Oxysterol-free feed (controls, C group)

Daily estimated sterol dose was 10 mg per 1 kg of
animal body weight (assuming the feed intake is equal to
10% of the animal body weight). Labofeed B (Wytwórnia
Pasz, Kcynia, Poland), a standard laboratory maintenance
feed for rodents, was used during the study. The feed was
administered for 90 days. The animals were weighted
before and after the experiment. After 3 months, the rats
were anaesthetised with the mixture of ketamine (50

mg/kg), droperidol (1 mg/kg), and fentanyl (0.1 mg/kg)
administered i.m. and euthanised by cardiac exsanguination
and cervical dislocation.

2.2. Synthesis of 5α,6α-Epoxycholesterol and 5α,6α-
Epoxyphytosterols Acetate. The 5α,6α-epoxycholesterol
acetate and 5α,6α-epoxyphytosterols acetate were synthe-
tized, respectively, from cholesterol and sitosterol (Sigma-
Aldrich, USA) by acetylation and subsequent oxidation with
m-chloroperoxybenzoic acid (Sigma-Aldrich, USA) as
described by McCarthy et al. [6]. Next, the oxidation mixture
was purified by column chromatography on silica gel using
chloroform-acetone (4:1, v/v) as a mobile phase. Fractions
containing pure esterwere controlled byTLC technique (silica
gel plates, solvent as above), pooled, and dried under vacuum.

According to information from the manufacturer, “sitos-
terol” contained about 90% β-sitosterol and ca. 10% other
phytosterols and phytostanols. Thus, its oxidation products
are named as 5α,6α-epoxyphytosterols.

2.3. Blood Sample Collection. Blood samples were collected to
tubes containing ethylenediaminetetraacetic acid (Sarstedt,
S-Monovette with 1.6 mg/mL EDTA-K3) and into tubes with
a clot activator (Sarstedt, S-Monovette). The blood samples
were centrifuged (10 min, 900 g 4°C) and then the plasma
and serum were immediately separated and stored at the
temperature of –70°C, until biochemical analyses were
performed. The red blood cells (RBCs) retained from the
removal of EDTA plasma underwent a triple wash with
cooled PBS and were lysed after the last wash in 10 mM
Tris-HCl buffer pH 7.4 to obtain 10% lysates which were
frozen for further analyses [7–9].

The levels of free radical damage markers, i.e., malon-
dialdehyde (MDA), conjugated dienes (CD), and ferric
reducing antioxidant power (FRAP) were assayed in EDTA
plasma. Anti-7-ketocholesterol antibodies and paraoxonase-
1 (PON1) activity were assayed in serum. The activity of
catalase (CAT), glutathione reductase (GR), glutathione
peroxidase (GPx), S-glutathione transferase (GST), and
superoxide dismutase (SOD) were assayed in lysed RBCs.

2.4. Biochemical Analyses

2.4.1. Oxidative Stress Analyses

(1) Determination of Lipid Peroxidation Products and
Antibodies against 7-Ketocholesterol. Plasma MDA levels
were determined as thiobarbituric acid reactive substances
(TBARS) by spectrofluorimetric method after its derivatiza-
tion with thiobarbituric acid as described by Wasowicz et al.
[10] and expressed inμmol/L. The inter- and intra-assay coef-
ficients of variation (CV) were 3.5% and 5.3%, respectively.

Plasma conjugated diene (CD) levels were determined by
second derivative ultraviolet spectrophotometry as described
by Corongiu et al. [11] and expressed in μmol/L. The inter-
and intra-assay coefficients of variation (CV) were 6.2%
and 8.9%, respectively.

Concentration of anti-7-ketocholesterol antibodies in
serum was determined by ELISA method with the use of 7-
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ketocholesterol-bovine serum albumin conjugate as previ-
ously described [12]. The results were expressed as AU/mL
(arbitrary units per mL). The inter- and intra-assay coeffi-
cients of variation (CV) were 8.4% and 10.2%, respectively.

(2) Determination of Nonenzymatic Antioxidant Status. The
total antioxidant capacity of plasma was measured as the
ferric reducing ability of plasma (FRAP) according to Benzie
and Strain [13] and calibrated using Trolox and expressed in
μmol/L. The inter- and intra-assay coefficients of variation
(CV) were 1.1% and 3.8%, respectively.

(3) Determination of Activity of Antioxidant Enzymes.
Antioxidant enzyme activity was assayed in lysed RBCs
obtained using 10 mM Tris-HCl buffer pH 7.2. Haemoglobin
levels in lysed RBCs were estimated by Drabkin’s method.

Catalase (CAT; E.C.1.11.1.6.) activity was determined in
erythrocytes with the hydrogen peroxide-methanol method
at 25°C developed by Johansson and Borg [14]. The method
is based on the reaction of catalase with methanol in the pres-
ence of an optimal concentration of hydrogen peroxide. The
obtained formaldehyde is measured spectrophotometrically
at 550 nm after derivatization with Purpald as a chromogen.
The enzymatic activity of catalase was expressed in kU/gHb.
The inter- and intra-assay coefficients of variation (CV) were
6.8% and 9.7%, respectively.

The activity of erythrocytes glutathione reductase (GR;
E.C.1.6.4.2) was determined by kinetic spectrophotometric
method at 37°C using Biotech (USA) kits as per manufac-
turer’s instructions [15, 16]. The results were expressed as
International Units per a gram of haemoglobin [IU/hHb].
The inter- and intra-assay coefficients of variation (CV) were
4.2% and 6.1%, respectively.

The activity of erythrocyte glutathione peroxidase (GPx;
E.C.1.11.1.9.) was determined by Paglia and Valentine’s
kinetic method [17] at 37°C, with t-butyl peroxide as a
substrate and expressed as micromoles of NADPH oxidized
per minute and normalized to one gram of haemoglobin
[IU/gHb]. The inter- and intra-assay coefficients of variation
(CV) were 1.8% and 3.5%, respectively.

The activity of glutathione S-transferase (GST) in RBCs
was determined by kinetic spectrophotometric method [18]
at 37°C using the Cayman Chemical (USA) kits. The results
were expressed as International Units per a gram of haemo-
globin [IU/hHb]. The inter- and intra-assay coefficients of
variation (CV) were 2.7% and 3.9%, respectively.

The erythrocyte superoxide dismutase (SOD; E.C.1.15.1.1)
activity was assayed using the Oyanagui method [19]. The
enzymatic activity was expressed in nitrite unit (NU) in each
mg of haemoglobin (Hb) [mg/Hb]. In this method, one
nitrite unit (1 NU) means a 50% inhibition of nitrite ion pro-
duction by SOD. The inter- and intra-assay coefficients of
variation (CV) were 2.8% and 6.3%, respectively.

Paraoxonase-1 (PON-1) serum activity was assayed using
the kinetic method with paraoxon (o,o-diethyl-o-(p-nitro-
phenyl)-phosphate; Sigma-Aldrich, USA) as a substrate at
37°C [20]. For cholinesterase inactivation, physostigmine
salicylate (eserine) was added to serum samples ten minutes

prior to the assay. One unit (1 IU) of PON-1 is the amount
of enzyme sufficient to decompose 1 micromole of substrate
per minute under testing conditions [IU/L]. Inter- and
intra-assay coefficients (CV) of variation were 2.6% and
4.4%, respectively.

2.5. Statistical Analyses. Statistical analysis was performed
using STATISTICA 30 PL (Tibco Inc., Palo Alto, CA, USA)
and StataSE 12.0 (StataCorp LP, TX, USA) and R software
(CRAN). The p value below 0.05 was considered statistically
significant. All tests were two-tailed. Imputations were not
done for missing data. Nominal and ordinal data were
expressed as percentages, while interval data were expressed
as mean value ± standard deviation if normally distributed
or as median/interquartile range if the distribution was
skewed or nonnormal. Distribution of variables was evaluated
by the Shapiro-Wilk test, and homogeneity of variances was
assessed using the Levene test. The comparisons were made
using one-way parametric ANOVA with Tukey post hoc test.

The number of animals in each group was imposed by
restrictions of the Bioethical Committee for Animal Experi-
mentation of the Medical University of Silesia in Katowice.
Nevertheless, to ensure the reliability of our results, the
power analysis of the test was performed. The test power
level, typically used in biomedical research, was assumed as
not less than 80%.

3. Results

Among the markers of free radical damage, changes in their
plasma concentration were only demonstrated for conju-
gated dienes. Their level significantly increased in the ECh
group (p < 0:05 vs controls). Additionally, the level of anti-
7-ketocholesterol antibodies increased significantly in both
groups exposed to oxysterols. Whereas there were no signif-
icant differences in the levels of MDA between the study
groups, there was an increasing trend demonstrated in both
groups exposed to oxysterols. Plasma FRAP level was signif-
icantly lower in groups exposed to oxysterols (ES and ECh
groups) as compared to controls.

In terms of antioxidant enzyme activity in RBCs, signifi-
cant differences in the activity of GPx, GR, and SOD were
demonstrated between the study groups, with no differences
in the activity of CAT and GST. There was a significant
decrease in GPx, GR, and SOD activity in RBCs demon-
strated in ES and ECh groups as compared to controls, with
no difference between the ES and ECh groups. The serum
activity of paraoxonase-1 (PON-1) significantly decreased
during the experimental exposure to oxysterols in low-
cholesterol diet. The lowest PON-1 activity was demon-
strated in the ECh group, with a slightly smallest reduction
shown in the ES group.

Changes to oxidative stress parameters are shown in
Table 1 and Figures 1–7.

4. Discussion

There is ample evidence to support oxidative stress induction
by oxidized cholesterol derivatives. However, there are only
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single reports to discuss this effect of oxyphytosterols. Until
now, the only published evidence of peroxidative effect of
oxyphytosterols was the study by Tomoyori et al. [21], who
demonstrated an increase of plasma F2-α isoprostane levels
in mice fed with a mixture of oxidized phytosterols, despite
a simultaneous absence of their atherogenic effect. Much
more is known about the harmful effect of oxidized choles-
terol derivatives. Most authors agree that cytotoxic effect of
oxycholesterols (such as induction of apoptosis) is primarily
due to upregulated production of reactive oxygen species in
cells exposed to oxycholesterols [22, 23]. The exposure of
U937 cells or macrophages to 7-hydroxycholesterol led to
increased apoptosis associated with the depletion of intracel-

lular reduced glutathione [24, 25]. The exposure of U937 cells
to 7-ketocholesterol or 7α-hydroxycholesterol also upregu-
lated the cellular production of superoxide radical anion
and downregulated nitric oxide biosynthesis [26–28],
whereas the exposure to 5α-6α-epoxycholesterol did not have
that effect [29]. It also seems that simultaneous exposure to
the mixture of oxysterols has a stronger effect than the expo-
sure to any individual oxysterol [22].

In our study, the concentration of conjugated dienes as
early lipid peroxidation products increased significantly in
rats exposed to oxysterols (both oxyphytosterols and choles-
terol derivatives). It may indicate the intensified production
of free radicals in animals exposed to the tested compounds.
The conjugated diene assay may offer specificity at least
comparable to the one of thiobarbituric acid reactive sub-
stance assay (TBARS), which is confirmed by a significantly
higher concentration of conjugated dienes in plasma samples
of animals exposed to 5α,6α-epoxycholesterol than in con-
trols, with no significant differences in the concentration of
MDA determined as TBARS, demonstrated in our study.

The available data show that anti-7-ketocholesterol anti-
body determination may be the means to indirectly monitor
the severity of oxidative stress [12, 30]. The immunogenic
potential of oxidized cholesterol derivatives results, for
instance, from the formation of aldehyde adducts, generated
during oxidation of cholesterol esters, 9-oxonanylcholes-
terol, and 5-oxovalerolylcholesterol, to proteins, especially
apolipoprotein B [30]. It has also been shown that 7-
ketocholesteryl 9-carboxinonate (oxLig-1) is a specific ligand
for α2-glycoprotein-1. As a result, it binds specifically
oxidized LDL, containing oxydized cholesterol derivatives,
which is the link between autoimmune response to phospho-
lipids (α2-GP-1) and atherogenesis [31]. Given that ketocho-
lesterol is one of the major oxycholesterols, our analysis of
anti-7-ketocholesterol antibody levels in a rat model pro-
vided very interesting data. We demonstrated a significant
increase in the concentration of these antibodies in both
groups exposed to oxysterols as compared to the controls.

Table 1: Oxidative stress markers (mean value ± standard deviation (SD)) (MDA: malondialdehyde levels, anti-7-ketoCH- anti-
ketocholesterol antibody levels; FRAP: total antioxidant capacity of plasma levels; CAT: activity of catalase; GPx: activity of glutathione
peroxidase; GR: activity of glutathione reductase; SOD: activity of superoxide dismutase; GST: activity of glutathione S-transferase; PON-
1: activity of paraoxonase-1) in plasma (p), serum (s), and erythrocytes (e) of rats fed with 5α,6α-epoxycholesterol (ECh group) and
5α,6α-epoxyphyosterols (ES group) vs controls (C).

ECh group ES group C group p

MDA (p) [μmol/L] 3:40 ± 1:0 3:0 ± 0:55 2:7 ± 0:41 0.0545

Conjugated dienes (p) [μmol/L] 76:7 ± 15:9 70:0 ± 16:2 55:0 ± 13:1 <0.01
Anti-7-ketoCh (s) [AU/mL] 202:2 ± 122:3 164:9 ± 75:0 92:1 ± 41:0 <0.01
FRAP (p) [μmol/L] 214:7 ± 38:8 220:6 ± 22:1 248:8 ± 26:8 <0.01
CAT(e) [kIU/g Hb] 194:5 ± 18:6 187:9 ± 22:0 194:4 ± 19:3 0.600

GPx (e) [IU/g Hb] 155:0 ± 15:5 154:5 ± 14:0 171:3 ± 16:0 <0.01
GR (e) [IU/g Hb] 0:78 ± 0:16 0:78 ± 0:15 0:99 ± 0:12 <0.001
SOD (e) [NU/g Hb] 180:3 ± 14:8 187:0 ± 17:1 209:7 ± 24:5 <0.001
GST (e) [IU/g Hb] 0:22 ± 0:04 0:22 ± 0:03 0:24 ± 0:05 0.509

PON-1 (s) [IU/L] 286:1 ± 29:6 294:5 ± 27:8 332:5 ± 20:0 <0.001
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Figure 1: Conjugated diene (CD) levels
(mean value ± standard deviation (SD)) in the plasma of rats
exposed to 5α,6α-epoxycholesterol (ECh group) and 5α,6α-
epoxyphytosterols (ES group) vs controls (C).
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Since animals in any of the groups were not directly exposed
to 7-ketocholesterol, the increase in the concentration of
these antibodies could be solely attributable to the increase
in endogenous 7-ketocholesterol formation and resultant
increased immune exposure to this sterol.

The analysis of changes in the FRAP demonstrated its
significant decrease in the ES and ECh groups as compared

to controls. The effect of oxysterols on antioxidant activity
assessed using FRAP assay, or levels of individual nonenzy-
matic antioxidants included in the FRAP assay, has not yet
been described in any published work. Similarly, there are
relatively few studies to assess the effect of oxysterols on the
activity of antioxidant enzymes. Since it has been postulated
that toxicity and proapoptotic effect of oxysterols are associ-
ated with an increased formation of reactive oxygen species,
the majority of available papers report in vitro studies
(mainly in cell cultures), and only a few document antioxi-
dant enzyme changes in animals following the in vivo expo-
sure to oxysterols. In rats exposed to hydrogen peroxide as
an oxidative stress inductor, an increased production of
oxycholesterols (25-hydroxy-, 7α-hydroxy- and 7-ketocho-
lesterol), elevated MDA levels, and decreased plasma activity
of CAT and SOD were observed [32]. However, it is difficult
to conclude that the observed changes in enzymatic activity
were directly triggered by oxidized cholesterol derivatives.
Studies assessing the effect of oxycholesterols generated in a
free radical-mediated process in ovarian cells showed intensi-
fied lipid peroxidation (determined as a part of TBARS)
alongside increased activity of SOD and CAT [33].

In our study, the analysis of changes in the activity of
superoxide dismutase in RBCs during rat exposure to 5,6-
epoxysterols indicated the depletion of antioxidant defense
mechanisms, which was manifested by a decrease in the
activity of superoxide dismutase in ECh and ES groups.
Whereas there were no significant changes in CAT activity
in RBCs, the activity of GPx and GR in RBCs decreased sig-
nificantly during the experimental exposure of rats to
oxysterols, which was demonstrated in both ECh and ES
groups in our study. We did not demonstrate significant
changes to GST in RBCs.

0.075

0.474

0.004

200

400

600

C ES ECh
Group

A
nt

i-7
-k

et
oC

H
 (A

U
/m

l)

Figure 2: Anti-7-ketocholesterol (anti-7-ketoCH) antibody levels
(mean value ± standard deviation (SD)) in the serum of rats
exposed to 5α,6α-epoxycholesterol (ECh group) and 5α,6α-
epoxyphytosterols (ES group) vs controls (C).
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Figure 3: Ferric reducing antioxidant power (FRAP) levels
(mean value ± standard deviation (SD)) in the plasma of rats
exposed to 5α,6α-epoxycholesterol (ECh group) and 5α,6α-
epoxyphytosterols (ES group) vs controls (C).
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Figure 4: Activity of erythrocytes glutathione peroxidase (GPx)
(mean value ± standard deviation (SD)) of rats exposed to 5α,6α-
epoxycholesterol (ECh group) and 5α,6α-epoxyphytosterols (ES
group) vs controls (C).
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A decrease was also demonstrated in serum paraoxonase-
1 activity in groups exposed to 5α,6α-epoxycholesterol, and
phytosterols 5α,6α-epoxides derivatives in this study,
which may be explained by their direct effect on PON-1
biosynthesis or on oxidative stress, and may be associated
with an increased formation of endogenous lipid hydro-

peroxides. The involvement of immune mechanisms con-
tributing to effective elimination of PON-1 from
circulation cannot be ruled out, either. Hedrick et al.
demonstrated decreased serum PON-1 activity and
concentration CL57BL/6 mice on atherogenic diet during
the first 7 days of the experiment, whereas its respective
mRNA expression in the liver remained unaffected. The
finding was explained as associated with the accelerated
HDL elimination from the plasma [34]. Other studies
pointed to the effect of high-lipid diet on PON-1 activity.
It is likely that similar mechanisms were involved, as a test
meal containing thermally processed fats caused a reduction
in PON-1 activity in clinically healthy volunteers, while the
intake of nonoxidized fat caused an increase in the enzymatic
activity of PON-1 in plasma [35].

Therefore, a reduced activity of PON-1 manifested in
rodents in response to oxyphytosterols and oxycholesterols
seems an important determinant of their proatherogenic
profile in laboratory animals.

The limitations of the current study include a small
sample size and the inability to monitor the dynamics of
changes in the studied parameters, as the redox state
undergoes dynamic changes throughout the exposure to
the studied compounds. Similarly, it seems warranted to
study the effect of other derivatives of phytosterols and
cholesterol than epoxysterols in animal models. It would
also be beneficial to assess the effect of those compounds
on redox state in an animal model consuming atherogenic,
high-cholesterol feed. What is novel about this study,
though, is that it evaluates the effect of oxyphytosterols
on the redox state and its associated mechanisms, as the
available research mainly focuses on the effect of oxydized
cholesterol derivatives on antioxidant mechanisms.

0.001

0.997

0.001

0.6

0.8

1.0

1.2

C ES ECh
Group

Er
-G

R 
(k

U
/g

 H
b)

Figure 5: Activity of erythrocytes glutathione reductase (GR)
(mean value ± standard deviation (SD)) of rats exposed to 5α,6α-
epoxycholesterol (ECh group) and 5α,6α-epoxyphytosterols (ES
group) vs controls (C).
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Figure 6: Activity of erythrocytes superoxide dismutase (SOD)
(mean value ± standard deviation (SD)) of rats exposed to 5α,6α-
epoxycholesterol (ECh group) and 5α,6α-epoxyphytosterols (ES
group) vs controls (C).
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Figure 7: Paraoxonase-1 (PON-1) activity (mean value ±
standard deviation (SD)) in the serum of rats exposed to 5α,6α-
epoxycholesterol (ECh group) and 5α,6α-epoxyphytosterols (ES
group) vs controls (C).
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5. Conclusions

5α,6α-Epoxyphytosterols and 5α,6α-epoxycholesterol simi-
larly impair the redox state in rats by increasing the produc-
tion of free oxygen radicals and free radical-mediated lipid
modification, as well as by affecting the mechanisms of non-
enzymatic antioxidant defense and the activity of antioxidant
enzymes.
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