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ABSTRACT Crohn’s disease is a complex genetic trait characterized by chronic relapsing intestinal inflammation.
Genome wide association studies (GWAS) have identified more than 170 loci associated with the disease, ac-
counting for �14% of the disease variance. We hypothesized that rare genetic variation in GWAS positional
candidates also contribute to disease pathogenesis. We performed targeted, massively-parallel sequencing of
101 genes in 205 children with Crohn’s disease, including 179 parent-child trios and 200 controls, both of European
ancestry. We used the gene burden test implemented in VAAST and estimated effect sizes using logistic regression
and meta-analyses. We identified three genes with nominally significant p-values: NOD2, RTKN2, and MGAT3.
Only NOD2 was significant after correcting for multiple comparisons. We identified eight novel rare variants in
NOD2 that are likely disease-associated. Incorporation of rare variation and compound heterozygosity nominally
increased the proportion of variance explained from 0.074 to 0.089. We estimated the population attributable risk
and total heritability of variation inNOD2 to be 32.9% and 3.4%, respectively, with 3.7% and 0.25% accounted for
by rare putatively functional variants. Sequencing probands (as opposed to genotyping) to identify rare variants and
incorporating phase by sequencing parents can recover a portion of the missing heritability of Crohn’s disease.
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Crohn’s disease is an idiopathic inflammatory bowel disease (IBD) char-
acterized by chronic and relapsing inflammation of the gastrointestinal
tract. Crohn’s disease is believed to be caused by an abnormal immune
response to intestinal microbiota in genetically susceptible individuals

(Sartor 2006; Sartor 2008; Kostic et al. 2014; Sartor andWu 2017). Twin
concordance and familial aggregation studies overwhelmingly support
a significant genetic contribution to Crohn’s disease (Tysk et al. 1988;
Monsén et al. 1991; Orholm et al. 1991; Meucci et al. 1992; Thompson
et al. 1996; Russel et al. 1997; Orholm et al. 2000; Halfvarson et al.
2003; Reynisdottir et al. 2004; Guthery et al. 2011), and genome wide
association studies (GWAS) have identified susceptibility loci in af-
fected individuals of European (Duerr et al. 2006; Hampe et al. 2007;
Parkes et al. 2007; Rioux et al. 2007; Wellcome Trust Case Control
Consortium 2007; Barrett et al. 2008; Kugathasan et al. 2008;
Imielinski et al. 2009; Franke et al. 2010; Liu et al. 2011; Jostins
et al. 2012), Asian (Yamazaki et al. 2005; Umeno et al. 2011), and
African (Brant et al. 2017) ancestry.

Pan-ancestry GWAS have thus far identified more than 170 loci
associated withCrohn’s disease (Liu et al. 2015). These loci are enriched
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for genes involved in important pathways of Crohn’s disease, including
innate immunity, autophagy, and the IL-23-TH17 pathway(Ramjeet et al.
2010; Corridoni et al. 2014). For most of the .170 common variant
associations implicated in Crohn’s disease, the causal variants responsible
for disease association are unknown. Moreover, currently identified var-
iants account for only �14% of the variance explained for Crohn’s
disease (Barrett et al. 2008; Franke et al. 2010; Jostins et al. 2012).

Rare variants are potentiallymore deleterious than common variation
due to the effects of natural selection (Eyre-Walker and Keightley 2007).
Although they are individually rare, they may in aggregate contribute to
Crohn’s disease and other complex genetic diseases (Eichler et al. 2010;
Veltman and Brunner 2012). Indeed, multiple exome sequencing studies
have identified rare and highly penetrant mutations in multiple genes
that cause chronic intestinal inflammation (Glocker et al. 2009; Rivas
et al. 2011;Worthey et al. 2011. ; Alangari et al. 2012; Christodoulou et al.
2013; Dinwiddie et al. 2013; Avitzur et al. 2014; Dhillon et al. 2014;
Hu et al. 2014; Okou et al. 2014; Kelsen et al. 2015; Hong et al. 2016).
Moreover, the contribution of de novo variation to Crohn’s disease sus-
ceptibility is currently unknown.

To further explore the contribution of rare variants and de novo
mutations to Crohn’s disease susceptibility, we conducted targeted se-
quencing of 101 genes identified by GWAS in 205 childhood onset
patient-offspring trios and 200 unaffected controls. To test for rare
variant association in each gene, we conducted gene-based burden
tests using VAAST and de novo mutation association tests using
VARPRISM(Kong et al. 2012; Hu et al. 2016). Both tests incorporate
functional variant prediction information to improve statistical power.
Collectively, this study not only reaffirms the role of common variation in
NOD2 as the primary genetic risk for Crohn’s disease but also defines the
role of rare variation in NOD2 in the causation of Crohn’s disease.

MATERIALS AND METHODS
Thepurpose of this studywas to identify highly penetrant, rare deleterious
variants, to estimate the effect size of those variants in combination with
common variants, and to estimate the impact of phase on effect size.
Measures of effect size included relative risk estimates, percent of variance
of disease explained, population attributable risk, and total heritability.
Our approach included the identification of Crohn’s-affected children,
their parents and a cohort of healthy controls. Prior to sequencing, we
used genotyping arrays and principal components analysis to assure that
cases and controls were of similar genetic ancestry. We then performed
rare variant association tests and singlemarker association tests.We used
logistic regression to estimate percent of variance explained, and meta-
analyses to estimate population attributable risk.

Subjects
The study included 205 Crohn’s disease cases with disease onset 18 years
or younger. For 179 of these cases, trio sets were obtained by collecting
samples from both parents. All subjects were phenotyped by one of three
pediatric gastroenterologists with expertise in Crohn’s disease (SLK, LD,
SLG). 60.1% of the subjects were male, and the median age of diagnosis
was 11 years (see supplementary Figure S1). Controls were selected from
healthy adult volunteers who had neither personal nor family history of
autoimmune disease and no chronic diarrhea. The control group had a
median age at enrollment of 23 years and 59.5% were male. The healthy
adult controls have a greater time at risk than affected children, and
therefore are less likely to carry disease-causing alleles. Additionally, phle-
botomy in healthy children—especially under the age of 12 years–is
difficult to justify ethically. Therefore, we deemed healthy adult controls
as more appropriate controls. DNAwas obtained fromwhole blood using
standard procedures.

To identify population structure in cases and controls prior to
sequencing, we generated 185,337 raw genotypes obtained for each
study subject using the Immunochip genotyping array (Cortes and
Brown 2011). To examine stratification in the data, the Immunochip
data were merged with unrelated HapMap samples (60 CEU, 60 YRI,
and 90 CHB/JPT). The overlap between data sets consisted of 17,119
SNPs. To eliminate platform-specific differences, A/T and G/C SNPs
were removed. Additionally, SNPswith aminor allele frequency (MAF)
less than 0.05 were removed. There were 13,549 SNPs remaining after
all filtering. To select a genetically matched subset of samples for se-
quencing, we selected samples falling within three standard deviations
of the centroid for the CEUHapMap cluster in a principal components
analysis (PCA), as indicated by the red circle in Figure S2. The 200 con-
trol samples, who had no family nor personal history of autoimmunity,
were randomly selected from 500 individuals for whom Immunochip
datawere available. Figure S2 displays the PCAwith the final control set
of 200 European Immunochip samples and the HapMap samples.

Targeted capture and sequencing
We selected the coding regions of 97 genes for targeted sequencing based
on their proximity to well-established GWAS associations. We also
selected STAT1 and STAT4 because of our identification of STAT1 as
a cause of IPEX-like enteropathy and as positional candidates in aGWAS
(Hu et al. 2014), and similarly, STAT3 and JAK2 because of their appar-
ent involvement in Crohn’s disease pathophysiology(Willson et al. 2012).
The full list of 101 genes is presented in Table S1. We used Agilent
SureDesign to design probes for targeted enrichment using the HaloPlex
Target Enrichment System. The targeted regions constituted 1,076 targets
and 17,912 amplicons for a total of 497.3 kb of coding sequence.

Genomic DNA was diluted and digested using restriction enzymes.
DNA fragments were hybridized to HaloPlex probes and sample in-
dexes, captured using streptavidin beads, and ligated into circulated
fragments per the manufacturer’s protocol. Target libraries were am-
plified and purified, and indexed samples were pooled for multiplexed
sequencing. Sequencing libraries (25 pM) were chemically denatured
and applied to an Illumina HiSeq v4 paired end flow cell using an
Illumina cBot. Hybridized molecules were clonally amplified and
annealed to sequencing primers with reagents from an Illumina HiSeq
PE Cluster Kit v4-cBot (PE-401-4001). Following transfer of the flow-
cell to an Illumina HiSeq 2500 instrument (HCS v2.2.38 and RTA
v1.18.61), a 125-cycle paired-end sequence run was performed using
HiSeq SBS Kit v4 sequencing reagents (FC-401-4003).

Bioinformatics and statistical analysis

Variant calling and quality control: We processed targeted sequenc-
ing data from both case and control groups using GATK, which is a
toolkit for SNV and inertion/deletion calling (McKenna et al. 2010). In
brief, we used GATK HaplotypeCaller 3.2 to first obtain individual
genotype calls, generating one gvcf file for each individual. We then
used HaplotypeCaller to combine the gvcf files and jointly recall geno-
types for all individuals. We filtered the joint-called variants to the
targeted region and recalibrated according to the variants’ quality score
(VQSR). We used 99.9 as the VQSR score cutoff for SNVs. We did not
apply VQSR filtering to insertions and deletions (Indels) due to their
limited number.We excluded all sites withmissing genotype rates of 10%
or greater in either the cases or controls. In total, 6,323 SNVs, 217 inser-
tions, and 335 deletions were carried forward for subsequent analyses.

We tested for cryptic relationships using the relationship inference
software KING(Manichaikul et al. 2010) and identified no first-
through third-degree relationships among individuals in the study.
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Association test and single-marker tests: To evaluate evidence for rare
variant association, we performed gene-based tests using the Variant
Annotation, Analysis and Search Tool (VAAST), version 2.1(Hu et al.
2013). VAAST incorporates phylogenetic conservation and amino acid
substitution information together with allele frequency differences be-
tween cases and controls to identify the set of variants in a given
gene that are most likely to directly influence disease risk. A positive
VAAST score indicates that the combined allele frequency and func-
tional prediction evidence for the variant is sufficient to infer causality
based on the Akaike Information Criterion. We constrained the
population MAF of each variant in the likelihood model to 0.05 or lower
(parameter –r 0.05). We restricted the VAAST analysis to the subset of
63 genes with five or more allele copies among cases and controls, which
is the minimum number of allele copies needed to potentially achieve a p
value of less than 0.05. For rare variants with MAF less than 1% in the
controls, we conducted single-marker tests and estimated variant-specific
odds ratios using non-Finnish European controls from the Exome Ag-
gregation Consortium (ExAC) database(Lek et al. 2016).

Estimating effect size: Using pre-specified covariates, we modeled the
association between variants inNOD2 and Crohn’s disease using logistic
regression. We used two models to quantitatively investigate the vari-
ance of disease explained by common variants only, and common var-
iants with additional rare variants and parental information. In the first
model, we included the following covariates: heterozygosity for each of
the L1007fs, R702W, and G908R alleles, and homozygosity for any one
of these alleles. These data would be similar to the data obtained from a
genotyping study without parental information. In the secondmodel, we
included the following covariates: heterozygosity for each of the L1007fs,
R702W, andG908R alleles, homozygosity for any one of these alleles, any
compound heterozygote (common and rare), and heterozygosity for any
of the rare variants we deemed putatively disease-associated. This second
model takes advantage of more information obtained by sequencing
parents and rare variants obtained by sequencing. For both models, we
included R702W because of its widely reported association with Crohn’s
disease, although the variant was marginally significant in this study.
Because of the quasi-separation noted for rare variants in cases, we used
the method of Firth to estimate the maximum likelihood (Firth 1993).
We approximated the variance explained from eachmodel by calculating
R2 using the method of Tjur (Tjur 2009).

For themeta-analysis ofR702W,L1007fs andG908R,we included
data from 89, 90 and 96 published articles(for R702W, G908 and
L1007fs, respectively) with a combined total of 23,703 cases and
22,873 controls, which were published before December 31st, 2016
(D’Addabbo et al. 2009; Schoultz et al. 2009; Yazdanyar et al. 2009;
Csöngei et al. 2010; Dassopoulos et al. 2010; Gazouli et al. 2010; Glas
et al. 2010; Hoffmann et al. 2010; Lacher et al. 2010; Sventoraityte
et al. 2010; Yazdanyar et al. 2010; Naderi et al. 2011; Adeyanju et al.
2012; Azzam et al. 2012; Hama et al. 2012; Kanaan et al. 2012; Akyuz
et al. 2013; Meddour et al. 2014; Boukercha et al. 2015; Salkic et al.
2015), and conducted the analysis in R using the ‘meta’ package. We
calculated the odds ratios for the three variants in the meta-analysis
using DerSimonian-Laird statistics as a random-effects model.

Population Attributed Risk and total heritability estimate: We
calculated the population attribute risk (PAR) for every potential risk
variant using its odds ratio (OR) and allele frequency as the proportion
of exposed subjects (Pe) from ExAC using the following formulas
to account for the contribution from heterozygotes and homozygotes.
(Witte et al. 2014).We converted the odds ratio to the relative risk (RR)

using the Crohn’s disease prevalence (P0) of 34.7 cases per 100,000
children(Kappelman et al. 2013):

RR ¼ OR
ð12 P0þ ðP0 ·ORÞÞ

PAR ¼ 2Peð12 PeÞðRRBb 2 1Þ þ Pe2ðRRBB 2 1Þ
1þ 2Peð12 PeÞðRRBb 2 1Þ þ Pe2ðRRBB 2 1Þ

In this equation, RRBb and RRBB are relative risk of heterozygotes and
homozygotes for putative risk variant B. We calculated RRBB under
the assumption of a multiplicative model(Witte et al. 2014). We cal-
culated the locus-wide PAR and its confidence interval using a mul-
tiplicative model rather than sum of individual PARs to obtain a
conserved PAR(Natarajan et al. 2007; Goyal 2013). Finally, we also
computed total heritability for putative variants using a web applica-
tion, INDI-V (http://cnsgenomics.com/shiny/INDI-V/)(Witte et al.
2014).

De novo mutation analysis: In addition to the variant-calling
procedures outlined above, we also applied filtering criteria for de
novo mutation calls(Kong et al. 2012). We also applied two addi-
tional de novo mutation filters, excluding all variants reported in
ExAC with MAF greater than 0.5% in any population and all var-
iants present in two or more individuals among our cases and con-
trols. We conducted de novo mutation association analysis using
VARPRISM, which integrates functional variant prioritization in-
formation to identify de novo mutations influencing disease risk
(Hu et al. 2016) with the mutation rates in SNVs and indels of
1.2x1028 and 4x10210 per generation, respectively(Lynch 2010;
Ségurel et al. 2014). Default settings were used for all other
VARPRISM parameters.

Data Availability
All sequences are available from the NCBI dbGap under BioProject
accession phaXXXXX. Supplemental material available at Figshare:
https://doi.org/10.25387/g3.6713156.

RESULTS

Replication of established risk variants and
identification of putative novel risk variants
Our gene-based rare variant case-control analysis identified three
genes with nominally significant p-values: NOD2, RTKN2, and
MGAT3 (Table 1 and Supplementary Table S3.). Only NOD2 was
significant after Bonferroni correction (P = 1.53x1025 x 63 =
0.00096). We identified 14 potential risk variants with positive
VAAST scores in NOD2, including three well-established risk var-
iants with MAFs of 1% or greater and 11 novel rare variants with
MAFs less than 0.5% (Table 2). In addition to the 11 rare variants in
NOD2, we also identified two variants with positive VAAST scores
in RTKN2, and three in MGAT3 (Table 2.).

Given the rarity of these variants, we did not have sufficient
power to evaluate each variant individually among our cases and
controls. Therefore, we incorporated allele counts from the non-Finnish
European sample (NFE) in the ExAC data together with our controls
to conduct single marker association tests (Fisher’s Exact Test). The
individual variant results should be interpreted with caution given
the potential for systematic bias between cases and controls resulting
from both population stratification and heterogeneous sequencing
technologies.
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We identified 11 additional rare variants in NOD2 (S47L, E54K,
D291G, R393C, R420H, S431L, P668fs, R791Q, R830L, C842R and
C973R) with positive VAAST scores suggesting that these rare
variants occur in evolutionarily conserved regions of NOD2 and
result in more severe amino acid substitutions. These variants are
novel potential Crohn’s disease risk variants, although S431L
and R791Q were previously reported as likely benign variants in
ClinVar with limited evidence of pathogenicity. Eight of the 11
variants were significant when we performed the single variant test
using the allele counts in cases, and controls combined with ExAC
data (P , 0.05): E54K, D291G, R393C, R420H, P668fs, R830L,
C842R and C973R (Table 2). Although S431L was not significant,
its odds ratio (OR:1.97; CI: 0.05-11.4) was comparable with a pre-
vious report (OR:1.45; CI:1.1-2.0) (Rivas et al. 2011). Six of the
eight variants were identified as potentially damaging or deleteri-
ous by one or more functional prediction tools (Table 2)(Ng and
Henikoff 2003; Adzhubei et al. 2010; Kircher et al. 2014). The
scaled CADD score for each of these six variants was greater than
20, which represents the top 1% of predicted deleterious variants
in the human genome. Nine of the 12 NOD2 missense variants
identified by VAAST were located within the boundaries of three
NOD2 domains: caspase recruitment domain (CARD), neuronal
apoptosis inhibitor protein (NACHT) and leucine-rich-repeat
(LRR) domain (Figure 1).

We observed two protein-coding de novo mutations among the
179 affected offspring, in NOD2 and C11orf30. We tested for enrich-
ment of de novomutations using VARPRISM (Kong et al. 2012); both
NOD2 and C11orf30 were nominally significant, with p-values of
0.0157 and 0.0175, respectively (Table 3).

Replication of the common disease risk variant
ATG16L1 T300A

Our single-marker tests replicated the association with the common
susceptibility variant T300A (rs2241880) in ATG16L1 (P = 0.0085).
We also identified a rare coding variant in ATG16L1 with an OR of
2.0, R258Q, although the variant was not statistically significant in
the single marker test (Table 2). R258Q is a potential rare risk
variant in Crohn’s disease because it was predicted to be a probably
damaging variant in PolyPhen2 and had a high CADD score of 27.
However, given the limited observations in our cases, further studies
are required to understand the role of rare variants in ATG16L1 in
Crohn’s disease.

Effect size estimated for R702W, G908R and L1007fs
in NOD2

Logistic regression models are shown in Table 4. In the first model,
heterozygosity for G908R and L1007fs was associated with a 7.2- and
3.1-fold increased risk of Crohn’s disease, respectively. R702W hetero-
zygosity was nominally associated with Crohn’s disease, and homozy-
gosity for this allele was associated with a 6.5-fold increased risk of
Crohn’s disease. The second model incorporated haplotype phase
and rare variants. Heterozygosity for L1007fs, G908R and homozygos-
ity for common variants remained statistically associated with Crohn’s
disease. Compound heterozygosity was associated with a 6.2-fold in-
creased risk of Crohn’s disease. The coefficient of discrimination (an
approximation of R2 for rare events) for model one was 0.074 and for
model two was 0.089, suggesting the ability to improve explained

n Table 2 Rare coding variants identified in NOD2, RTKN2, and MGAT3

PolyPhen2
annotation

PolyPhen2
value

SIFT
annotation SIFT value CADD

Allele frequency
in cases

Allele frequency in
ExAC and controls p-value

NOD2 Variants
R702W benign 0.008 deleterious 0 24.1 10.05% 3.502% 2.99E-09���

G908R Probably damaging 1 deleterious 0 31 4.90% 1.407% 2.40E-06���

L1007fs NA NA NA NA 35 9.07% 2.020% 9.27E-14���

S47L benign 0.98 deleterious 0.1 21.3 0.24% 0.12% 0.0886
E54K probably damaging 0.995 deleterious 0.01 33 0.24% 0.003% 0.01825�

D291G probably damaging 0.873 deleterious 0.01 23 0.25% 0.004% 0.02418�

R393C probably damaging 0.996 deleterious 0 23.7 0.25% 0.004% 0.02396�

R420H benign 0.082 tolerated 0.21 13.99 0.25% 0.001% 0.01209�

S431L probably damaging 0.166 deleterious 0.03 21.4 0.24% 0.002% 0.401
P668fs NA NA NA NA 22.8 0.25% 0.002% 0.01220�

R791Q benign 0.006 tolerated 0.22 0.074 0.49% 0.004% 0.2586
R830L benign 0.006 tolerated 0.13 23.3 0.25% 0.001% 0.01212�

C842R probably damaging 0.646 deleterious 0 23.4 0.25% 0.004% 0.02406�

C973R benign 0.086 tolerated 0.36 16.96 0.25% 0.000% 0.00616��a

RTKN2 Variants
A328fs NA NA NA NA 22.5 12.01% 16.399% 0.01561�

G573S benign 0.001 tolerated 1 0.002 0.49% 0.106% 0.07243
MGAT3 Variants
D499H benign 0.409 tolerated 0.15 18.52 0.73% 0.670% 0.7559
R525W benign 0.116 deleterious 0.01 22.4 0.25% 0.051% 0.194
R162Q benign 0.004 tolerated 0.54 9.76 0.25% 0.024% 0.1319
� P , 0.05, ��P , 0.01, ���P , 0.001; aThe p-value was estimated using the total NFE sample number at the nearby variant (chr16:50759433).

n Table 1 VAAST results for genes with nominal p-value less than
0.05

Gene VAAST p-value
VAAST p-value after
Bonferroni correction

NOD2 1.53x1025 0.0009639
RTKN2 0.00165 0.10395
MGAT3 0.0147 0.9261
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variance when incorporating rare variants and phase into explanatory
models evaluating the association between variants in NOD2 and
Crohn’s disease.

We further refined the effect size estimates of R702W, G908R and
L1007fs by conducting ameta-analysis of our results togetherwith prior
studies (Yazdanyar et al. 2009)(see Supplemental Table S4-S6 for lists of
studies). The per-allele odds ratios relative to healthy controls for
R702W, G908R and L1007fs were 2.23, 2.58, and 3.83, respectively.
The odds ratio for compound heterozygotes and homozygotes of the
three variants was 7.31.

Population attributable risk and total heritability
for NOD2

Weevaluated the populationattributable risk (PAR) for the14 coding
variants in NOD2 with MAF less than 5% (Table 2). We estimated
that the three variants with MAF of 1% or greater (R702W, G908R
and L1007fs) collectively confer 30.3% PAR (CI:17.0–45.2%) and
3.1% total heritability to Crohn’s disease. This PAR estimate was
comparable with previous estimates from prior estimates ranging
from 26.7 to 33.2% (Hugot et al. 2001; Abreu et al. 2002; Ahmad et al.
2002; Brant et al. 2007). For rare variants with MAF less than 0.5%,
we restricted our analysis to the eight variants listed in Table 2 with
significantly elevated allele frequencies in our cases relative to ExAC
based on Fisher’s Exact Test. Together, these rare variants confer ap-
proximately 3.7% additional PAR (CI: 1.18–9.8%) and 0.25% total her-
itability explained. The total estimated PAR and total heritability for
NOD2 variants identified in our study were thus 32.9% and 3.4%,
respectively.

DISCUSSION
We performed a sequence-based case-control study in 205 European
children with Crohn’s disease incorporating 101 genes. Our study has
three major findings. First, we again demonstrate that common and
rare variation in NOD2 represents the most important genetic risk
factor for Crohn’s disease. Second, by sequencing trios, we identified
compound heterozygosity and de novomutations as potentially impor-
tant sources for missing heritability. Third, we demonstrate the utility
of applying gene burden tests such as VAAST to assess both common
and rare variation in a complex genetic trait. Collectively, these data
support the concept that the use of gene burden tests for complex traits
and methods to incorporate phase such as sequencing parents and

probands (as opposed to genotyping) can recover a portion of the
“missing heritability” for Crohn’s disease.

The mechanistic relationship between gene variants in NOD2
and Crohn’s disease pathogenesis is unclear, but could involve
defective epithelial defenses, disruption of Paneth cell function,
alterations in the gut microbial community, and/or defects in
autophagy (reviewed in (Al Nabhani et al. 2017; Feerick and
Mckernan 2017)). VAAST scored 11 variants in three key domains
of NOD2: six in the LRR domain, two in the CARD domain, and
three in the NACHT domain, including one de novomutation. The
NACHT domain is the same domain that harbors disease-causing
mutations found in the majority of patients with Blau syndrome
(Sfriso et al. 2012), a Mendelian disorder characterized by granu-
lomatous arthritis, iritis and dermatitis. We speculate that patients
with Crohn’s disease and mutations in the NACHT domain may
represent an important, albeit uncommon, subgroup of patients
potentially with phenotypic variability, variation in penetrance
estimates for mutations in this region, variation in response to
therapy, and/or intestinal disease distribution. Functional studies
incorporating biological samples from subjects with NACHT do-
main variants, as well as a large cohort of such patients, are needed
to test these hypotheses.

Our data suggest that at least some of the “missing heritability” for
Crohn’s disease is explained by rare variants and haplotype phase.
Unphased genotyping of the canonical variants in NOD2 were
assessed in our first logistic regression model, while we incorporated
the phased data obtained from both parents and ascertainment of
rare variants by sequencing in our second model, increasing the
proportion of explained variance from 0.074 to 0.089. Similarly,
PAR and total heritability estimates are increased from 30.3 to
32.9% and from 3.1 to 3.4%, respectively, when incorporating rare
variants.

We acknowledge that our sample size is too small to fully
characterize the contribution of extremely rare genetic variation
in Crohn’s disease. However, we show the feasibility of using gene
burden tests for Crohn’s disease sequencing studies by demonstrat-
ing that VAAST has the ability to uncover statistical association in
NOD2 among 63 genes and only 205 cases. We demonstrate the
utility of using gene-based association tests rather than variant-
based association tests as the field moves toward large-scale exome
and whole genome approaches.

Figure 1 Location of risk variants in the NOD2 protein. Green dots indicate the well-established Crohn disease variants; Red dots indicate the
potential risk rare variants found in the VAAST result.

n Table 3 VARPRISM de novo mutation results

Transcript ID Gene name p-value Number mutations Genome Coordinate Reference base Alternative base

NM_022162 NOD2 0.015682657 1 chr16:50744999 C T
NM_020193 C11orf30 0.017465753 1 chr11:76248871 C G
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