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Under normal conditions, neural stem cells (NSCs or B cells) in the adult subventricular
zone (SVZ) give rise to amplifying neural progenitor cells (NPCs or C cells), which can
produce neuroblasts (or A cells) that migrate to the olfactory bulb and differentiate
into new neurons. However, following brain injury, these cells migrate toward the
injury site where they differentiate into astrocytes and oligodendrocytes. In this review,
we will focus on recent findings that chronicle how astrocytes and oligodendrocytes
derived from SVZ-NSCs respond to different types of injury. We will also discuss
molecular regulators of SVZ-NSC proliferation and their differentiation into astrocytes
and oligodendrocytes. Overall, the goal of this review is to highlight how SVZ-NSCs
respond to injury and to summarize the regulatory mechanisms that oversee their glial
response. These molecular and cellular processes will provide critical insights needed to
develop strategies to promote brain repair following injury using SVZ-NSCs.
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INTRODUCTION

In recent years, research has begun to unravel complex biological cascades that follows injury
to the brain: astroglial activation and proliferation (Pekny et al., 2016, 2019), parenchymal
inflammation and infiltration of immune cells (Liesz et al., 2015; Gill and Veltkamp, 2016;
Sofroniew, 2020), glial scar formation (Burda et al., 2016), revascularization/re-establishment of
blood-brain barrier (Li et al., 2021), remodeling of connections between surviving neurons (Jones,
2017) and replenishment of oligodendrocytes following demyelination injury (Nait-Oumesmar
et al., 2007; Butti et al., 2019).

Research in this area has revealed new methods to improve and augment these responses after
injury. One potentially exciting strategy is to enhance NSC proliferation in the postnatal/adult
brain. During embryogenesis these NSC populations are relatively abundant, however, in the adult
they become restricted to specialized regions/niches in the brain. Specifically, NSCs reside in the
SVZ along the lateral walls of lateral brain ventricles (Ihrie and Álvarez-Buylla, 2011) and the
subgranular zone (SGZ) of the hippocampal dentate gyrus (Bonaguidi et al., 2012). In the SVZ,
NSCs (B cells) are located in the walls of the ventricular-SVZ and give rise to transit amplifying
cells (NPC or C cells), which can produce neuroblasts (A cells) (Altman, 1962). Under physiological
conditions, neuroblasts migrate a long-distance (3–8 mm in mice) from the SVZ to the olfactory
bulb (Lois and Alvarez-Buylla, 1994; Lois et al., 1996), where they differentiate into granule neurons
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(Grelat et al., 2018; Li et al., 2018). Following injury such
as ischemic stroke, neuroblast migration can be redirected
from the rostral migratory stream (RMS)-olfactory bulb toward
the site of injury (for review see Chang et al., 2016),
suggesting that endogenous injury responses can mobilize NSCs
from the SVZ niche.

In addition to neurons, NSCs also make astrocytes and
oligodendrocytes. Several groups reported that following stroke,
cells coming from the SVZ are predominantly glial instead of
neuronal (Givogri et al., 2006; Li et al., 2010) and that these
cells play a major role in glial scar formation following injury
(Benner et al., 2013). The SVZ also plays a role in myelin repair
and oligodendrocyte formation. After white matter injury, the
number of oligodendrocytes derived from SVZ increases in the
corpus callosum (CC) (Nait-Oumesmar et al., 1999; Picard-Riera
et al., 2002; Menn et al., 2006).

Neurogenesis is a cardinal feature of SVZ-NSCs under
homeostatic conditions, however after injury the differentiation
programs of these SVZ-NSCs can be redirected toward the
generation of glial cells (astrocytes and oligodendrocytes)
(Figure 1). Therefore, in this review we will describe SVZ-
glia contribution following different forms of brain injury, and
discuss the factors regulating their function with the goal of
identifying areas of potential therapeutic interest.

SUBVENTRICULAR ZONE-DERIVED
ASTROCYTES RESPONSE TO INJURY

Under normal physiological conditions, the SVZ can generate
mature astrocytes (Sohn et al., 2015) and following injury, the
number of astrocytes produced by the SVZ drastically increases.
Lineage tracing with the Nestin-CreERT2 promoter has been used
to directly identify SVZ-derived progenitors migrating to the
injury site, with the Nestin-CreERT2:R26R-YFP/RFP traced cells
predominately expressing the astrocytic marker GFAP within the
injured striatal parenchyma after middle cerebral artery occlusion
(MCAO) (Li et al., 2010), in the cortex after injury (PBS filling
brain cavity) (Wang et al., 2019), cortical stroke (Benner et al.,
2013; Faiz et al., 2015) or stab-wound injury (Burns et al., 2009).
These studies reveal that the SVZ produces a more predominant
astrocytic component than previously appreciated.

These lineage tracing experiments not only provide strong
evidence of SVZ-derived astrocytes migrating to sites of injury,
but also demonstrate that several types of injury can elicit
this response. Additional injuries that also elicit astrocyte
differentiation responses from SVZ-NSCs include: motor
cortex lesion (Saha et al., 2013), cortical stab wound injury
(Givogri et al., 2006), aspiration of the left frontoparietal
cerebral (Goings et al., 2004), cortical contusion injury
(Radomski et al., 2013), controlled cortical impact injury
(Kernie et al., 2001), and puncture wound (Mundim et al., 2019).
Interestingly, clonal studies also revealed that astrocytes from
the SVZ migrate to the injury site following fine needle injury
(Martín-López et al., 2013).

In addition to the cortex, there is evidence that multiple
types of SVZ cells migrate to the striatum after injury. SVZ

cells migrate toward the striatum in the 6-hydroxydopamine
model of Parkinson’s disease, illustrating their migration in
neurodegenerative diseases as well as injury. Using Nestin-
CreERT2, striatal TGFα infusion recruits a large population
of SVZ-derived multipotent “C-like” cells to the DA-depleted
striatum (De Chevigny et al., 2008). Transient migration
of PSA-NCAM/Bromodeoxyuridine (BrdU)-positive cells from
the SVZ to the striatum also has been described in the 6-
hydroxydopamine implying that newborn cells are capable of
migrating into the dopamine deprived striatum (Liu et al.,
2006). Another study using BrdU reported that SVZ progenitors
proliferate following 6-hydroxydopamine-lesioned striatum after
intraventricular injection. Although they report that BrdU + cells
co-expressing the astrocytic marker GFAP are widely distributed
throughout the lesioned striatum, the authors did not attribute
astrogenesis to SVZ progenitors (Aponso et al., 2008).

The type of cells migrating to the injury site can depend
on timing post-injury (i.e., short- vs. long- term responses), the
type of injury (mechanical vs. chemical), and brain location
(proximal or distal from the SVZ). For instance, following stroke
or traumatic brain injury (TBI), NPCs migrate toward the injury
site to form astrocytes. After these injuries, newly formed neurons
are less abundant and do not integrate well, suggesting that NPCs
differentiation depends on local environment cues. Additional
lineage tracing studies that accounts for timing, location, and
cellular diversity (see below) are needed to further investigate
how spatial-temporal factors influence SVZ-progenitor fate
decisions responses to various forms of injuries. Interestingly,
one in vitro study showed that murine astrocytes isolated from
different brain regions (hippocampus, striatum and cortex) had
differential sensitivity to injury (Xu et al., 2001).

It has become increasingly clear that CNS astrocytes represent
a diverse cell population (Chai et al., 2017; John Lin et al., 2017;
Morel et al., 2017) and it is possible that different classes of
astrocytes have distinct functions during tissue recovery after
injury. However, whether SVZ-generated astrocytes migrating to
the injury site represent a distinct subset of astrocytes remains
unclear, and determining if parenchymal astrocytes and SVZ-
derived astrocytes have different functions in brain repair is of
interest, as it remains poorly defined. Finally, understanding
if modulation of these astrocyte populations following injury
can stimulate repair may reveal therapeutic targets to improve
outcomes after brain injury.

MOLECULAR REGULATORS OF
SUBVENTRICULAR ZONE-DERIVED
ASTROCYTES

Recent studies have defined a molecular framework for
developmental astrogenesis that includes the following signaling
pathways and transcription factors: Notch, BMP, NFIA, STAT3,
Sox9, and LIF (for review Molofsky et al., 2012; Sloan and
Barres, 2014; Akdemir et al., 2020). Therefore, in this review, we
will discuss the role of these developmental regulators in SVZ-
astrogliogenesis with a focus on factors that positively regulate
astrogliogenesis in the SVZ in the context of injury (Table 1).
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FIGURE 1 | SVZ response following injury. Under physiological conditions, SVZ progenitors generate neuroblasts that migrate through the RMS to the Olfactory bulb
(OB) (Path 1). Following stroke or TBI, SVZ progenitors are able to generate astrocytes that migrate to the injury site forming a glial scar (Path 2). Following
demyelination, SVZ progenitors can differentiate into oligodendrocytes and participate in remyelination (Path 3).

NOTCH PATHWAY

Thrombospondin 4
Localized photothrombotic/ischemic cortical injury initiates a
marked increase in Thrombospondin 4 high (Thbs4hi) astrocyte
production from the postnatal SVZ and these cells home to the
injured cortex. Thbs4 homozygous knockout mice (Thbs4K O/KO)
demonstrated severe defects in cortical-injury-induced SVZ
astrogenesis, resulting in abnormal glial scar formation (Benner
et al., 2013). This robust post-injury astrogenic response requires
SVZ Notch activation, modulated by Thbs4 via direct Notch1
receptor binding and endocytosis to activate downstream signals,
including increased expression of the transcription factor NFIA,
which is important for developmental gliogenesis (Deneen et al.,
2006). In another report, Thbs4K O/KO animals exhibited impaired
migration of newly formed neurons along the RMS, with several
neurons migrating out of the RMS (Girard et al., 2014). Together,
these studies suggest a role for Thbs4 associated with Notch and
NFIA in SVZ-issued astrocytes migration following injury.

NFIA
NFIA plays a crucial role in the onset of gliogenesis, astrocyte
differentiation, and maintaining morphological integrity of
astrocytes in the adult hippocampus (Kang et al., 2012;
Huang A. Y.-S. et al., 2020). NFIA is highly expressed in SVZ-
NSCs and plays a general role in maintaining proliferative cell
populations in the SVZ under homeostatic conditions (Laug
et al., 2019). In addition, NFIA is required for SVZ proliferation

in the uninjured brain and after cortical ischemia, suggesting that
defects in reactive astrogenesis could be a result of these defects
in the SVZ. Furthermore, absence of NFIA was associated with
a decrease in cellular proliferation. After ischemic stroke, NFIA
plays a role in the production of reactive astrocytes from the SVZ
and its absence was associated with aberrant glial scar formation,
highlighted by increased and prolonged blood serum leakage into
the parenchyma. Mechanistically, NFIA directly regulates the
expression of Thbs4 in the SVZ, revealing a key transcriptional
node that contributes to reactive astrogenesis following cortical
injuries (Laug et al., 2019).

Sox9
The transcription factor Sox9 regulates induction of NFIA
and plays a crucial role in the onset of gliogenesis (Stolt
et al., 2003; Kang et al., 2012), while activation of Notch1
during neuroectodermal differentiation has been shown to
upregulate Sox9 expression (Martini et al., 2013). Furthermore,
in adult astrocytes, Sox9-expression is required to maintain
morphological integrity of astrocytes in the olfactory bulb (Ung
et al., 2021). Overexpression of Sox9 in the adult SVZ suppresses
production of neurons from NSCs, whereas Sox9 knockdown
stimulates neurogenesis and inhibits gliogenesis (Cheng et al.,
2009) indicating that Sox9 promotes astrogenesis in SVZ-NSC
populations. The role of Sox9 in SVZ-NSC astrocyte production
after injury remains poorly defined, however, Sox9 is expressed
in reactive astrocytes after MCAO injury (Sun et al., 2017)
suggesting that it may also have a role in injury associated
SVZ-astrogenesis.
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Notch/STAT3
During development, NPCs express Notch ligands and activate
Notch signaling in neighboring NPCs, conferring astrocytic
differentiation potential through the induction of NFIA. This
Notch-NFIA pathway potentiates Stat3-activity and further
reinforces the astrocytic differentiation program (Namihira et al.,
2009). Following cortical stab wound or stroke, the astrogliogenic
response of the SVZ to injury is accompanied by activation of
the Notch pathway modulated by Thbs4 (Givogri et al., 2006;
Benner et al., 2013). Therefore, NOTCH/STAT3 pathway appears
to play a central role in SVZ-induced astrogliogenesis response
following injury.

JAK/STAT PATHWAY

Leukemia Inhibitory Factor
Leukemia inhibitory factor (LIF) activates the JAK/STAT
pathway, which plays an important role in NSC/NSP
differentiation into glia. Indeed, the JAK/STAT pathway
promotes astrocyte differentiation during development
(Bonni et al., 1997) and is specifically activated in subsets
of CNS lesions (Okada et al., 2006). Treatment of cultured
embryonic SVZ-NPCs with LIF generates GFAP + cells that
have the characteristics typical of adult SVZ and SGZ stem
cells/astrocytes (Bonaguidi et al., 2005). In addition, LIF

impairs neuroblast formation in the SVZ and stimulates the
formation of SVZ astrocytes (Bauer and Patterson, 2006).
Therefore, under homeostatic conditions LIF, via the JAK/STAT
pathway, can promote SVZ-astrogliogenesis. However, because
JAK/STAT signaling promotes astrogliogenesis, coupled
with the fact that it is activated following CNS injury,
suggests that it may also contribute to SVZ-astrogliogenesis
following injury.

Endothelin-1
Astrocytic endothelin-1 overexpression in mice (GET-1)
promotes NSC proliferation and astrocytic differentiation via
the Jak2/Stat3 pathway after MCAO in the ipsilateral SVZ
(Cheng et al., 2019). Therefore, JAK2/STAT3 pathway appears
to play a central role in SVZ-induced astrogliogenesis response
following injury.

BONE MORPHOGENETIC PROTEIN
PATHWAY

Bone Morphogenetic Protein 4
Bone morphogenetic protein (BMP) signaling promotes
the generation of astrocytes from the SVZ (Gross et al.,
1996; Gomes et al., 2003). BMP receptor activation inhibits
proliferation and suppresses SVZ neurogenesis while promoting

TABLE 1 | Factors modulating SVZ-astrogliogenesis.

SVZ-Astrogenesis

Pathway Factor
name

Factor impact Role Factor type Factors
associated

Source References

Proliferation Differentiation Migration Normal Injury Extrinsic Intrinsic

NOTCH Thbs4 x x x Notch/NFIA SVZ astrocytes 1

Notch x x x x x NFIA/Thsb4/
STAT3

NPC 1–3

NFIA x x x x x Thbs4 Astrocytes 4

Sox9 x x x ? x Notch/NFIA Astrocytes,
SVZ-NSC

5–8

STAT3 x x x x Notch/NFIA SVZ-NSC 3

JAK/STAT Endothelin-1 x x x x JAK2/STAT3 Astrocytes 9

LIF x x ? x JAK/STAT *N/A in vitro
treatment

10,11

BMP BMP4 x x x x pSMAD 1/5/8 *N/A in vitro
treatment

12–14

ID3 x x x BMP2 NSPC 15

P57kip2 x x x BMP4, Noggin,
Chordin

SVZ Sox2/
GFAP + cells

1

Galectin-3 x x x x BMP,
pSmad1/5/8

SVZ 17

Fibrinogen x x x BMP, pSmad1,
ID3

*N/A
Pharmacological
depletion

18

This table summarizes factors modulating SVZ-astrogliogenesis and their effects on proliferation, migration and differentiation according to the following references.
Factors are defined as followed: intrinsic factors (transcription factors, receptors) vs. extrinsic factors (growth factors, secreted molecules). 1 Benner et al. (2013); 2
Givogri et al. (2006); 3 Namihira et al. (2009); 4 Laug et al. (2019); 5 Stolt et al. (2003); 6 Cheng et al. (2009); 7 Sun et al. (2017); 8 Kang et al. (2012); 9 Cheng et al.
(2019); 10 Bonaguidi et al. (2005); 11 Bauer and Patterson (2006); 12 Gross et al. (1996); 13 Gomes et al. (2003); 14 Cate et al. (2010); 15 Bohrer et al. (2015); 16 Jadasz
et al. (2012); 17 Al-Dalahmah et al. (2020); 18 Pous et al. (2020). *The factor source is not indicated N/A as it is applied in vitro or by external administration.
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gliogenesis (Lim et al., 2000). In the absence of injury, BMP4
promotes astrocytic differentiation of SVZ-NPCs both in vitro
and in vivo (Gross et al., 1996; Bonaguidi et al., 2005). During
demyelination BMP4 increased levels are associated with an
increase in phosphorylated SMAD 1/5/8. Further, treatment
with BMP4 or demyelination increased production of astrocytes
within the SVZ compared to naïve mice indicating that
BMP4 is sufficient to promote SVZ-produced astrocytes
(Cate et al., 2010).

ID-3, P57kip2, and Agmantine
In addition, genetic depletion of the transcriptional regulator
Id3 (BMP-2-induced transcriptional regulator) decreased the
number of astrocytes generated from SVZ-derived adult
NSCs/NSPs in the cortical lesion area after TBI (Bohrer et al.,
2015). Deletion of P57kip2, an important upstream promoter
of BMP4-mediated astrogliogenesis, abrogated astrogenesis
from SVZ-NSCs, possibly through increased Noggin and
chordin levels (Jadasz et al., 2012) comforting the role of
the BMP pathway in SVZ-astrocytes production following
injury. In SVZ-NSCs cultures, treatment with Agmatine, an
endogenous primary amine, increased ERK1/2 expression and
suppressed astrogenesis by decreasing expression of BMP 2,4
and SMAD 1,5,8 in SVZ-NSCs (Song et al., 2011) confirming
the involvement of BMP and SMAD in SVZ-astrocytes response
after injury.

Galectin-3
In another series of BMP-associated studies, galectin-3 (Gal-
3) overexpression increased the percentage of striatal astrocytes
generated by the SVZ, coupled with a concomitant decrease
in the percentage of oligodendrocytes. Mechanistically, Gal-3
induced BMP signaling by binding to the BMP receptor one
alpha (BMPR1α) and by increasing the phosphorylation of
pSmad1/5/8, BMP signaling in turn suppressed Gal-3 expression.
Indeed, Gal-3 mRNA levels were reduced 24 and 48 h after BMP4
treatment of SVZ cells, suggesting negative feedback of BMP
on Gal-3 transcription. In the same study, in human following
hypoxia/ischemia, Gal-3 immunoreactivity was increased in the
perinatal human SVZ and striatum suggesting a role of Gal-3
in promoting SVZ-gliogenesis after injury (Al-Dalahmah et al.,
2020). Of note, Gal-3 appears to play an important role in non-
SVZ gliogenesis as well, as its deletion led to a reduction in the
number of striatal glial populations, whereas its overexpression
led to an increase in glial production.

Fibrinogen
In addition, fibrinogen which is enriched in the SVZ niche
following cortical brain injury in mice, inhibited neuronal
differentiation in SVZ and hippocampal NSPs/NSCs while
promoting astrogenesis via activation of the BMP receptor
signaling pathway. These results suggest that fibrinogen is a
regulator of NSPC-derived astrogenesis from the SVZ niche via
BMP receptor signaling pathway following injury (Pous et al.,
2020). Collectively, these studies demonstrate that activation
of BMP signaling promotes SVZ-astrogliogenesis under both
homeostatic and injury conditions.

To conclude, several pathways can influence SVZ-
astrogliogenesis. Taking into account the relationship between
these factors, we propose a potential pathway between Thbs4,
Notch, Sox9, NFIA and Stat 3 that drives SVZ-astrogenesis. It
begins with Thbs4 physically interacting with Notch1 to activate
downstream effectors of the Notch pathway (Givogri et al.,
2006; Benner et al., 2013) and inducing NFIA expression in
primary SVZ-NSCs (Benner et al., 2013). Next, Sox9 contributes
to the induction of NFIA expression (Kang et al., 2012),
while activation of Notch1 upregulates Sox9 expression, thus
reinforcing the transcriptional apparatus that confers astrocyte
identity (Martini et al., 2013). Subsequently, NFIA directly
regulates Thbs4-expression (Laug et al., 2019) and Notch
activates NFIA leading to STAT3-activating signals (Namihira
et al., 2009) providing a feed-forward, self-propagating gliogenic
signaling mechanism (Figure 2).

THE SUBVENTRICULAR ZONE
PRODUCES MYELINATED
OLIGODENDROCYTES FOLLOWING
DEMYELINATION

SVZ-NSCs are also able to produce oligodendrocytes as discussed
above. Parenchymal oligodendrocyte precursor cells (OPCs) and
SVZ-derived progenitors are the two main sources of progenitor
cells that contribute to oligodendrogenesis (for review El Waly
et al., 2014). A small fraction of SVZ-NSCs are also able to
generate OPCs that migrate out of the SVZ into the overlying
white matter and cortex (Menn et al., 2006).

The number of oligodendrocytes derived from NSCs increased
fourfold after a demyelinating lesion in the CC, indicating
that SVZ-NPCs participate in myelin repair in the adult brain
following injury (Nait-Oumesmar et al., 1999; Picard-Riera et al.,
2002; Menn et al., 2006). Examination of post-mortem human
Multiple Sclerosis (MS) brains revealed the migration of SVZ-
OPCs to periventricular lesions, where they could participate
in remyelination (Nait-Oumesmar et al., 2007). In mice, SVZ-
OPCs migrate during the remyelination phase after cuprizone-
induced demyelination to the CC and are capable of forming
new oligodendrocytes (Butti et al., 2019), while also producing
thicker myelin sheets (Xing et al., 2014). Therefore, stimulating
the regenerative potential of SVZ-NPCs could be a promising
strategy for therapies for demyelinating diseases such as MS.

In the nestin-CreERT2-R26R-YFP mouse model,
demyelination led to decreased neurogenesis in the adult brain
(Luo et al., 2020) that was coupled with a massive recruitment
of SVZ-NSCs to the demyelinated CC during the acute phases
of injury response, where these recruited cells subsequently
differentiated into myelinating oligodendrocytes (Brousse et al.,
2015). In addition, ablation of SVZ-NSCs using Ganciclovir
during cuprizone-induced demyelination resulted in reduced
numbers of oligodendrocytes within the lesioned CC (Butti et al.,
2019), while local irradiation of the SVZ preserves the capacity
of NSCs to respond to a demyelinating lesion in the striatum and
differentiate in oligodendrocytes (Capilla-Gonzalez et al., 2014).
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FIGURE 2 | Prospective molecular mechanism of SVZ-derived astrogliogenesis. Following stroke or TBI, NPCs give rise to astrocytes (A). Here we suggest a
prospective mechanism for SVZ astrogenesis (B): 1- Thbs4 activates downstream effectors of the Notch pathway and NFIA, 2- Sox9 regulates NFIA induction, while
Notch activation upregulates Sox9 expression, 3- NFIA directly regulates Thbs4-expression and 4- Notch activates NFIA leading to STAT3-activating signal which
play a role in NPC proliferation and astrocytes differentiation.

Following experimental autoimmune encephalomyelitis
(EAE) (Calzà et al., 1998; Picard-Riera et al., 2002), aspiration
induced cortical lesions (Goings et al., 2004), or traumatic
axonal injury (Sullivan et al., 2013), SVZ cells also migrate from
the SVZ to the CC and differentiate into oligodendrocytes.
Hypoxic-ischemic insult also stimulates SVZ-NSCs to generate
new neurons and oligodendrocytes in vitro (Yang and Levison,
2006) or in vivo (Zaidi et al., 2004). OPC expression of NG2-
/Olig2 in the SVZ occurs within the first few days after hypoxia
(Jablonska et al., 2012), with one study reporting an increase in
the number of Olig2 + cells in the posterior part of the SVZ,
which subsequently migrated into the injured white matter
(Kako et al., 2012).

In a model of demyelination following injection of
lysolecythin in the anterior CC, SVZ-NPCs labeled by direct
injection of cytomegalovirus (CMV)-GFP retrovirus revealed co-
labeling with Olig2 and the proteoglycan NG2. These cells were
predominately located within the CC. In addition, spontaneous
excitatory postsynaptic currents significantly increased 1 week
after the lesion, indicating that oligodendrocytes became
synaptically connected (Etxeberria et al., 2010). An additional
study used genetic fate mapping following acute demyelination
by local injection of α-lysophosphatidylcholine (LPC) in the CC
to demonstrate that local OPCs rapidly respond and expand
in the lesion within 7 days, and produced oligodendrocytes
within 2 weeks after injury. By contrast, NSC-derived NG2
cells did not significantly increase in the lesion until 4 weeks
after demyelination and generated fewer oligodendrocytes than
parenchymal OPCs.

These observations suggest that local OPCs may be the
primary responders to repair acutely demyelinated lesion

whereas SVZ-NSCs may contribute to repopulating OPCs
following their depletion due to oligodendrocyte differentiation
(Serwanski et al., 2018).

In contrast, another study reported that SVZ-derived cells of
the oligodendroglial lineage that migrate either to the intact or the
focally demyelinated CC have limited migratory and self-renewal
capacity and fail to generate mature myelin (Kazanis et al.,
2017). A further study proposed that SVZ-NSCs are dispensable
for myelin repair but protect neurons from degeneration (Butti
et al., 2019). Beyond their role replacing oligodendrocytes, SVZ-
NSCs also display immunomodulatory properties, highlighting
a new role for endogenous SVZ-NSC in myelin regeneration.
Indeed, SVZ-NSC may minimize demyelination by modulating
microglial activity and promoting myelin debris phagocytosis
(Brousse et al., 2020).

MOLECULAR REGULATORS OF
SUBVENTRICULAR ZONE-DERIVED
OLIGODENDROCYTES

Recently, several studies have demonstrated that a range of
factors such as LIF/CNTF, Endothelin-1, Notch, EGFR play a
major role in oligodendrogenesis (for review Gonzalez-Perez
and Alvarez-Buylla, 2011; Maki et al., 2013; El Waly et al.,
2014; Adams et al., 2020). In this review, we will summarize
the role of these factors in SVZ-oligodendrogenesis with a
focus on factors positively regulating oligodendrogenesis in
the SVZ in the context of injury and especially white matter
injury (Table 2).
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TABLE 2 | Factors modulating SVZ-oligodendrogenesis.

SVZ-Oligodendrogenesis

Pathway Factor name Factor impact Role Factor type Factors associated Source References

Proliferation Differentiation Migration Maturation Other Normal Injury Extrinsic Intrinsic

Notch Endothelin-1 x x x x x x EDNRB, Notch, Jagged
1. Gsx1, S100b

Endothelial cells/Astrocytes 1–3

Jagged 1 x x x NICD, HES5 Reactive astrocytes SVZ, CC 4

TGF-β x x x Jagged1, HES1 *N/A in vitro treatment 5

F3/Contactin x x x Notch, Apotransferrin Neurons 4

Apotransferrin x x x x Notch *N/A Intranasal treatment 6

BMP Noggin x x x x x BMP4, pSMAD1/5/8 SVZ-NSC 7,8

JAK/STAT CNTF x x x x JAK/STAT Astrocytes, SVZ, lesion site 9

LIF x ? x ? x JAK/STAT LV administration 10

Wnt Canonical Wnt x x x SEZ 11

SFRP1 and
SFRP5

x x x Wnt, BMAL1 Astrocytes in demyelinating
lesions

12

Growth
factors

FGF receptor-3 x x x FGF SVZ-NCS 13

Anosmin-1 x x x x FGFR1 receptor SVZ-NP, Astrocytes 14

EGF, FGF-2, and
PDGF

x x x X *N/A intraperitoneal injection 15

EGF x x X *N/A infusion lateral ventricle 16

x x X * N/A intranasal
administration

17

HB-EGF x x X *N/A intranasal administration 18

EGFR x x x x SVZ/CC 19

regeneration x x oligodendrocytes lineage 17

N-cadherin x x X EGFR, ADAM10 SVZ NPCs (EGFR + cells) 20

IGF-1 myelination and
protection

x x *N/A subcutaneous/
intraventricular injection

21,22

T3 free window x x x x EGFR *N/A Food treatment 23

SHH SmoM2 x x ? x DV-SVZ 24

Others Cdk4 x x x SVZ 25

Prickle1 x x x x NSCs, OPcs 26

Nfe2l3 x x x X NSCs, OPcs 26

Asialo-
erythropoietin

x x x X *N/A intraperitoneal injection 27

Zfp488 x x x X SVZ NSCs 28

FTY720 x x x x X Src-bcr-Abl tyrosine
kinase, S1P receptor

*N/A in vitro treatment,
intraperitoneal injection

29

This table summarizes factors modulating SVZ-oligodendrogenesis and their effects on proliferation, migration, differentiation according to the following references. Factors are defined as followed: intrinsic factors
(transcription factors, receptors) vs. extrinsic factors (growth factors, secreted molecules). 1 Gadea et al. (2009); 2 Hammond et al. (2015); 3 Adams et al. (2020); 4 Aparicio et al. (2013); 5 Pinto et al. (2018); 6 Guardia
Clausi et al. (2012); 7 Morell et al. (2015); 8 Cate et al. (2010); 9 Vernerey et al. (2013); 10 Bauer and Patterson (2006); 11 Ortega et al. (2013); 12 Huang S. et al., 2020; 13 Kang et al. (2019); 14 Murcia-Belmonte et al.
(2016); 15 Lachapelle et al. (2002); 16 Gonzalez-Perez et al. (2009); 17 Scafidi et al. (2014); 18 Cantarella et al. (2008); 19 Aguirre et al. (2007); 20 Klingener et al. (2014); 21 Lin et al. (2005); 22 Zhong et al. (2009); 23
Remaud et al. (2017); 24 Tong et al. (2015); 25 Jablonska et al. (2012); 26 Zilkha-Falb et al. (2017); 27 Kako et al. (2012); 28 Soundarapandian et al. (2011); 29 Cipriani et al. (2017). *The factor source is not indicated
N/A as it is applied in vitro or by external administration.
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NOTCH PATHWAY

Endothelin-1
Endothelial cells produce endothelin (ET-1), which promotes
oligodendrocyte differentiation in the SVZ. ET-1 stimulates a
pro-migratory phenotype in cultured OPCs and SVZ explants,
while selective ET receptor antagonists or anti-ET-1 antibodies
inhibit OPC migration from the SVZ (Gadea et al., 2009).
Another study revealed that ET-1 acts selectively through
EDNRB on astrocytes, but not OPCs, to indirectly inhibit
remyelination (Hammond et al., 2015). Loss of ET-1 signaling
increases neurogenesis and reduces OPC in the developing SVZ.
In addition, ET-1 acts mechanistically by promoting Notch
activation in OPCs during remyelination through induction of
Jagged1 expression in reactive astrocytes (Hammond et al., 2015;
Adams et al., 2020). ET-1 also induces upregulation of Gsx1 and
downregulation of S100b in SVZ OPCs, which acts to increase
their proliferation as well (Adams et al., 2020). Together, these
studies reinforce the notion that ET-1 is required for increased
NPCs and OPC proliferation in the adult mouse SVZ following
demyelination (Adams et al., 2020).

Jagged 1, TGF-β, F3/Contactin,
Apotransferrin
Levels of Notch ligand Jagged1 increase in the CC and SVZ
during the early phases of LPC-mediated demyelination in
rats. This increase was found to induce Notch intracellular
domain (NICD) release and Hes5 expression, which increased
OPC proliferation (Aparicio et al., 2013). TGF-β also has pro-
oligodendrogenic effects on adult SVZ progenitors in vitro and
induced the expression of Jagged1 and downstream gene Hes1
(Pinto et al., 2018). In this context it appears that Notch activation
is mediated by the expression of F3/contactin, which could then
induce apotransferrin-mediated oligodendroglial maturation
(Aparicio et al., 2013). Indeed, intranasal administration of
apotransferrin enhanced OPC proliferation in the SVZ and
CC and promoted OPC differentiation (Guardia Clausi et al.,
2012). Therefore, these studies suggest a role for Notch
involving apotransferrin in promoting OPC proliferation and
oligodendrocytes differentiation.

BONE MORPHOGENETIC PROTEIN
PATHWAY

Noggin
Noggin promotes the proliferation of SVZ-NSCs, and shifts
the differentiation of NSCs from mature astrocytes to transit
amplifying NPCs and OPCs without depleting the NSC
population (Morell et al., 2015). Intraventricular infusion of
Noggin, which is an endogenous antagonist of BMP4, reduced
pSMAD1/5/8, decreased astrocyte numbers, and increased
oligodendrocyte numbers in the SVZ during cuprizone-induced
demyelination (Cate et al., 2010). Therefore, these results
suggest that Noggin promotes oligodendrogenesis following
demyelination injury.

JAK/STAT PATHWAY

Leukemia Inhibitory Factor/Ciliary
Neurotrophic Factor
Ciliary neurotrophic factor (CNTF) and LIF are neurotrophic
cytokine belonging to the interleukin-6 (IL6) family that
activates the JAK/STAT pathway, which also plays an active role
in astrogenesis.

LIF stimulates the self-renewal of adult NSCs in the SVZ,
which may expand this population to facilitate repair (Bauer
and Patterson, 2006). This finding has relevance for the
repair of demyelination since NSCs can generate migratory
OPCs that differentiate into oligodendrocytes and contribute to
remyelination (Menn et al., 2006).

On the other hand, CNTF (Ciliary neurotrophic factor)
controls the migration of SVZ-derived progenitors following
HEK cells secreting CNTF graft into the CC and also controls
OPCs toward the demyelinated CC both in vivo and in in vitro
models (Vernerey et al., 2013) suggesting a role for both
LIF and CNTF in oligodendrocytes migration/differentiation
following demyelination.

WNT PATHWAY

Canonical Wnt
Shifts between non-canonical and canonical Wnt signaling
activate quiescent NSCs during demyelination injury (Chavali
et al., 2018). In vivo activation or inhibition of canonical Wnt
signaling increased or decreased the number of Olig2 and
PDGFR-α positive cells, respectively, suggesting that this pathway
contributes to the fine tuning of oligodendrogliogenesis in the
adult SVZ (Ortega et al., 2013).

SFRP1 and SFRP5
Evidence suggests that altered-clock-derived signals in the
demyelinated lesion mediate communication with the SVZ
to switch NSCs toward generation of oligodendrocyte lineage
cells, which enhances remyelination. Astrocyte circadian clocks
produce the Wnt inhibitors SFRP1 and SFRP5 that signal to
the SVZ to reduce the circadian transcription factor BMAL1
(Huang S. et al., 2020). Together, these studies indicate that Wnt
signaling promotes oligodendrogenesis issued from the SVZ in
the demyelination lesion.

GROWTH FACTORS

Epidermal Growth Factor and Fibroblast
Growth Factor Signaling
Epidermal growth factor (EGF) and fibroblast growth factor
(FGF) signaling pathways play key roles in a spectrum of
developmental and physiological processes, including SVZ-NSC
responses. Increasing FGF receptor-3 activity in adult SVZ-NSCs
cells in a Nestin-CreER mouse model transiently promoted
differentiation from the neuronal to the oligodendroglial
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lineage following demyelination and improved myelin
repair in the CC and in the lower cortical layers (Kang
et al., 2019). In addition, anosmin-1 over-expression was
shown to regulate OPCs proliferation, migration and myelin
sheath thickness predominately through FGFR1 receptor
(Murcia-Belmonte et al., 2016).

EGFR-dependent, N-cadherin signaling promotes migration
of oligodendrocytes or oligodendrocyte progenitors into
demyelinated lesions (Klingener et al., 2014). Additional
studies also demonstrated that NG2+ cells responses in the
SVZ and differentiation in CC after focal demyelination are
dependent upon EGFR signaling (Aguirre and Gallo, 2007).
EGFR overexpression in the SVZ and CC during early postnatal
development expanded oligodendrocytes progenitors, which
enhanced the generation of oligodendrocytes and subsequent
axonal myelination in the lesion (Aguirre et al., 2007). Together,
these studies indicate that EGF signaling plays a role in SVZ-
NSC responses following demyelination injury by promoting
oligodendrogenesis. Taken further, direct administration via
intraperitoneal injection of EGF, FGF-2, and platelet-derived
growth factor (PDGF) promoted the survival, migration,
and differentiation of grafted SVZ cells into myelin-forming
oligodendrocytes. This combination of growth factors expanded
the constitutively proliferative PSA-NCAM + population in vivo
and facilitated their differentiation toward the neuronal and
oligodendroglial cell fates (Lachapelle et al., 2002). Furthermore,
EGF infusion into the lateral ventricle (Gonzalez-Perez et al.,
2009) or intranasal HB-EGF administration (Cantarella
et al., 2008) promoted OPC recruitment from the SVZ to
demyelinated lesions.

Importantly, endogenous EGF is upregulated in the white
matter and SVZ after perinatal hypoxia and EGFR overexpression
in the oligodendrocyte lineage enhances their regeneration
and promotes functional recovery in white matter (Scafidi
et al., 2014). In addition, in the SVZ, Notch regulates NSC
identity and self-renewal, whereas EGFR specifically affects NPC
proliferation and migration. Enhanced EGFR signaling resulted
in the expansion of the NPC pool and reduced NSC number and
self-renewal by inhibiting Notch signaling (Aguirre et al., 2010).
Intranasal EGF was also shown to accelerate oligodendrocyte
maturation in white matter after chronic neonatal hypoxia
(Scafidi et al., 2014) suggesting a role of growth factors in
promoting SVZ-issued oligodendrogenesis.

Insulin-Like Growth Factor I
It was also shown that administration of a related-growth
factor, Insulin-like growth factor I (IGF-1), prevented
immature oligodendrocyte death, enhanced myelination after
hypoxia/ischemia and protected OPCs in the SVZ and white
matter regions (Lin et al., 2005; Zhong et al., 2009) suggesting
that additional IGF-1 associated pathway promote SVZ-issued
oligodendrogenesis.

Thyroid Hormone (TH) Signaling—T3
EGFR+ oligodendrocyte progenitors, but not neuroblasts,
express high levels of a T3-inactivating deiodinase, Dio3.
T3 through its nuclear receptor, TRα1, favors progenitor

commitment toward a neuroblast phenotype. However, a
transient T3-free window increases OPCs numbers. Therefore
T3 free window provides a favorable environment for SVZ-
derived oligodendrocyte progenitor generation (Remaud et al.,
2017). This finding indicates that T3 free window promotes
remyelination and therefore, plays a role in SVZ-issued
oligodendrocytes.

SONIC HEDGEHOG PATHWAY

SmoM2
Smoothened (Smo) is essential for Sonic hedgehog signaling.
Genetic ablation of Smo in the dorsal SVZ resulted in a reduction
of oligodendroglial cells in the CC. In contrast, expression of
constitutively active SmoM2 significantly increased the number
of oligodendrocytes (Tong et al., 2015). Overall, these results
suggest that Smo increases SVZ-issued oligodendrocytes and
suggest a potential role for Smo in demyelination injury,
though these mechanisms have not been directly examined
in this context.

OTHERS ASSOCIATED PATHWAYS

CDK4, Prickle1, and Nfe2l3
Hypoxia-induced proliferation of NG2-/Olig2-expressing OPCs
occurs in the SVZ within the first few days after insult and
depends on activation of the Cdk4 pathway (Jablonska et al.,
2012). Subsequent studies demonstrated that Prickle1 and Nfe2l3
are strongly associated with differentiation toward myelin-
producing cells. Prickle1 dramatically affects OPCs maturation
and differentiation to mature myelinating oligodendrocytes,
while Nfe2l3 has a moderate effect on OPC maturation in
the absence of injury (Zilkha-Falb et al., 2017). Overall, these
studies suggest a role of Cdk4 and Prickle1 in SVZ-induced
oligodendrogenesis with a potential role in the context of injury.

Asialo-Erythropoietin, Zfp488, FTY720
Long-term post-injury treatment with a non-erythropoietic
derivative of EPO, asialo-erythropoietin, promoted the
maturation of the posterior SVZ-derived OPCs and the recovery
of neurological function, without affecting hematopoiesis
(Kako et al., 2012). On the other hand, overexpression of
oligodendrocyte-specific zinc finger transcription repressor
(Zfp488) retrovirus in SVZ-NSCs following Cuprizone-induced
demyelination in mice promoted differentiation into mature
oligodendrocytes (Soundarapandian et al., 2011). In addition,
FTY720, a Src-bcr-Abl tyrosine kinase inhibitor and S1P receptor
agonist, increased postnatal SVZ-NSCs differentiation into both
neurons and oligodendrocytes in vitro and partially increased
proliferation and differentiation of OPC after kainic acid lesion
in vivo (Cipriani et al., 2017).

These collective studies implicate a role for SVZ-NSC
derived oligodendrocytes in myelin-associated injury responses
and highlight several pathways and strategies that are able to
promote SVZ-oligodendrogenesis and myelin repair following
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FIGURE 3 | Prospective molecular mechanisms of SVZ-derived oligodendrogenesis. After demyelination or other white matter injuries, NPCs give rise to OPCs that
will differentiate in oligodendrocytes (A). Here we suggest a prospective mechanism that modulates SVZ oligodendrogenesis (B). 1-EGFR signaling increases NPC
proliferation and migration but also oligodendrocyte maturation by inhibiting Notch. 2-ET-1 promotes Notch activation in OPCs during remyelination through
induction of Jagged1 and increases NPCs and OPC proliferation. 3- ET-1 also induces upregulation of Gsx1 and downregulation of S100b in SVZ OPCs, increasing
their proliferation but blocking oligodendrocytes maturation. 4-TGF-β has pro-oligodendrogenic effects by increasing Jagged 1.

demyelination. It appears that Notch has a dual role in
oligodendrogenesis being both inhibited by EGFR signaling
which promotes OPC proliferation and oligodendrocytes
differentiation (Aguirre et al., 2010; Scafidi et al., 2014) but also
being activated by Endothelin-1 and Jagged 1 [also activated
by TGF B (Pinto et al., 2018)] to promote OPC proliferation
through NICD and Hes5 (Adams et al., 2020). Interestingly
Endothelin-1 also plays a role on OPC proliferation by activation
Gsx1 but also inhibits oligodendrocytes maturation through
S100b inhibition (Adams et al., 2020; Figure 3). Taking this dual
role of Notch, it would be of interest following demyelination to
assess EGFR signaling and Endothelin-1 signaling relationship.

CONCLUSION

In conclusion, astrocytes and oligodendrocytes play pivotal roles
in diverse injury responses throughout the CNS and the type
of injury and location in the brain where the injury occurs
dictates their generation by SVZ-NSCs. Indeed, ischemia and TBI
induce the SVZ to produce astrocytes, whereas oligodendrocytes
are produced after white matter injury and demyelinating
events. Furthermore, the fate of SVZ-NSCs under physiological

conditions is regulated by the combined actions of intrinsic
and extrinsic factors, in addition of regional differences within
the SVZ. Although several key features of these two cell types
under normal physiological conditions and in response to injury
have emerged in recent decades, additional studies combining
new genetic tools, molecular studies, and behavioral tests are
warranted to further decipher how these injury-specific responses
regulate SVZ production of astrocytes or oligodendrocytes.

In addition, SVZ-issued astrocytes play a major role in glial
scar formation. It is unclear whether SVZ-generated astrocytes
migrating to the injury site, 1- represent a distinct subset of
astrocytes compared to parenchymal astrocytes, 2- have different
functions in brain repair and capacity to integrate to the existing
brain circuitry. Furthermore, future studies should consider
SVZ-astrocytes as a strategy to compensate for neuronal loss
following injury. The adult brain cortex has limited ability
to produce new neurons, therefore reprogramming astrocytes
into neurons could be an ideal approach to replenish the
lost cells and repair the damage. As it can be challenging to
reprogram fully differentiated astrocytes and that NSCs make
newly formed astrocytes contributing to the glial scar following
injury, there is a potential for in vivo reprogramming of SVZ-
issued astrocytes into neurons.
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SVZ-issued oligodendrocytes also play a major role in re-
myelination and their proliferation rate or subtype may also differ
from parenchymal oligodendrocytes. SVZ-OPCs are recruited
during the remyelination phase to the CC and are capable of
forming new oligodendrocytes. Therefore, future studies should
focus on promoting SVZ-OPCs proliferation and differentiation
by endogenous or exogenous factors in order to promote
myelin repair. It would also be of interest to establish therapies
stimulating myelin repair to prevent neurodegeneration in
pathology like MS.

Lastly, there are sub-regional differences of the SVZ niche
with respect to embryonic origins and cell subtype generation
(Young et al., 2007), where single-cell analysis revealed that
SVZ lateral and septal wall astrocytes are primarily neurogenic
and oligodendrogenic, respectively (Mizrak et al., 2019). This
suggests functionally relevant spatial diversity in neurogenesis
and oligodendrogenesis in the adult brain, while also revealing
molecular correlates of adult NSC dormancy and lineage
specialization (Mizrak et al., 2019). To our knowledge, single-
cell analysis on SVZ subregions involved in astrogenesis has
yet to be performed and could provide insight into the origins
of diverse astrocyte responses. Therefore, future studies should
assess astrogliogenesis modulation by specific factors in specific
SVZ subregions in order to understand specific sub-SVZ regions
implicated in SVZ-astrogliogenesis response following injury.
Besides, the dorsal SVZ appears to be more oligodendrogliogenic

than the lateral SVZ, consistent with the notion of a mosaic
organization of the SVZ (Merkle et al., 2007; Cebrian-Silla et al.,
2021; Delgado et al., 2021). Therefore, future studies assessing
oligodendrogliogenic modulation by specific factors in specific
SVZ subregions are necessary to increase our understanding of
specific sub-SVZ regions implication in SVZ-oligodendrogenesis
response following injury.
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