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Abstract

Genetic and epigenetic contributions to various diseases and biological processes have been well-recognized. However,
simultaneous identification of single-nucleotide variants (SNVs) and DNA methylation levels from traditional bisulfite
sequencing data is still challenging. Here, we develop double strand bisulfite sequencing (DSBS) for genome-wide accurate
identification of SNVs and DNA methylation simultaneously at a single-base resolution by using one dataset. Locking
Watson and Crick strand together by hairpin adapter followed by bisulfite treatment and massive parallel sequencing, DSBS
simultaneously sequences the bisulfite-converted Watson and Crick strand in one paired-end read, eliminating the strand
bias of bisulfite sequencing data. Mutual correction of read1 and read2 can estimate the amplification and sequencing
errors, and enables our developed computational pipeline, DSBS Analyzer (https://github.com/tianguolangzi/DSBS), to
accurately identify SNV and DNA methylation. Additionally, using DSBS, we provide a genome-wide hemimethylation
landscape in the human cells, and reveal that the density of DNA hemimethylation sites in promoter region and CpG island
is lower than that in other genomic regions. The cost-effective new approach, which decodes DNA methylome and genomic
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variants simultaneously, will facilitate more comprehensive studies on numerous diseases and biological processes driven
by both genetic and epigenetic variations.

Key words: genomic mutation; cytosine modification; CpG context; epigenomic alteration; population genomics

Introduction
Cytosine methylation of DNA is one of the extensively studied
epigenetic modifications involved in the regulation of various
diseases and biological processes, including the initiation and
progression of cancers, embryonic development, X chromosome
inactivation, genomic imprinting and silencing of transposable
elements [1–6]. Alteration of DNA methylation was also unequiv-
ocally associated with population genetic variation [7, 8], sub-
clonal evolution of tumor tissues [9–11], evolutionary divergence
of duplicate genes, exon usage and local adaptation or rapid
phenotypic changes of specific populations [12–16]. Simultane-
ous identification of genetic variation and DNA methylation was
crucial for exploring the genetic and epigenetic contributions to
disease and various evolutionary processes [7, 17–19]. In addi-
tion, the identification of single-nucleotide variants (SNVs) is
critical for identification of allele-specific epigenetic events [20,
21], which is a driving force that led to genomic imprinting [22,
23].

Genome-wide base resolution analysis of DNA methylation
is enabled by bisulfite treatment and subsequent massive par-
allel sequencing [24]. During bisulfite treatment, unmethylated
cytosine is converted to uracil, whereas methylated cytosine and
the guanine on the opposite strand is not affected. Based on this
principle, several softwares, such as MethylExtract [25], Bis-SNP
[26], BS-SNPer [27] and CGmapTools [20], have been developed to
calling SNVs in bisulfite sequencing data. However, the sensitiv-
ity and accuracy of these tools in calling SNVs were limited by the
inevitable defects of traditional bisulfite sequencing methods.
Since bisulfite treatment could lead to separation of the two DNA
strands, DNA degradation and reduced genome sequence com-
plexity, which subsequently resulted in the high strand bias and
alignment errors of sequencing data [28–31]. Additionally, C > T
is the most frequent substitution in the population (for example
it accounts for 35% of all SNPs in human dbSNP database), it is
difficult to distinguish the real C > T mutations from the bisulfite
induced C > T conversions. Thus, an experimental innovation
and improvement on calling SNVs and methylation level from
bisulfite sequencing is urgently required.

Here, we developed double strand bisulfite sequencing (DSBS)
through locking Watson and Crick strand together followed by
bisulfite treatment, massive parallel sequencing and computa-
tional calling for simultaneous and precise identification of DNA
methylation, hemimethylation and SNVs, which offers a cost-
effective and useful approach for exploring the contributions
of genetic and epigenetic variations to numerous diseases and
biological processes.

Materials and methods
Samples and DNA extraction

Human ovarian epithelial cell line T29 was provided by Dr Jin-
song Liu (MD Anderson Cancer Center, University of Texas, TX,
USA) and the cell line was cultured as previously described [32–
34]. Genomic DNA was extracted from T29 cell line by using Qia-
gen DNeasy Blood & Tissue Kit (Qiagen, Germany), and 20 mg/ml

RNase (Qiagen, Germany) was added to avoid contamination of
RNA in the DNA samples. DNA was quantified by using a Qubit
2.0 fluorometer (Life Technologies, Carlsbad, CA, USA).

Adapter synthesis

Hairpin linker adapter oligonucleotides (Sequence 5′-pho-
CGmCmCAGGTGGCAAGTGAAGCCACCTGGCGT-3′) were synthe-
sized by Invitrogen Company (Shanghai, China). The synthesized
oligonucleotide was diluted to a concentration of 1 mM, and
denatured in a 95◦C water bath, and then annealed by adding
cold water to the final concentration of 100 μM.

Preparation of DSBS library

Approximately 1 μg genomic DNA was fragmented to 200 bp
double-stranded DNA fragments by using a Covaris E210 sonica-
tor (Covaris Inc., MA, USA). Fragmented DNA was end-repaired
and dA-tailed, and ligated with Illumina TruSeq adapter (all Cs
methylated) and the Hairpin linker adapter with a ratio of 1:2:60
using KAPA Hyper Prep Kit (KAPA Biosystems, USA). The adapter-
ligated DNA was treated by bisulfite using EpiTect Fast DNA
Bisulfite Kit (Qiagen, Germany), and then amplified using 2×
KAPA HiFi Uracil+ Readymix (KAPA Biosystems, USA). After the
amplification, agarose gel-based size selection was performed
to generate the sequencing library with size range of 400–800 bp
(Figure 1). The DSBS libraries were sequenced for 150 bp paired-
end reads using an Illumina Hiseq X Ten sequencer.

Preparation of whole-genome sequencing, target
sequencing and MethylC-seq libraries

For whole-genome sequencing (WGS), about 1 μg genomic DNA
was fragmented to 400 bp using a Covaris E210 sonicator (Covaris
Inc., MA, USA). Fragmented DNA was end-repaired and dA-tailed,
and ligated to Illumina TruSeq adapter using KAPA Hyper Prep
Kit (KAPA Biosystems, USA). The adapter-ligated DNA was ampli-
fied by using 2× KAPA HiFi Hotstart Readymix (KAPA Biosystems,
USA) to produce the sequencing library. To evaluate the accuracy
of our SNV calling, targeted enrichment of whole exome regions
was performed using AIExome Enrichment Kit V2 (iGeneTech,
Beijing, China) to generate whole exome library, and then the
library was sequenced for 150 bp paired-end reads using Illu-
mina NovaSeq 6000 sequencer with average depth of 389×.

For MethylC-seq, about 1 μg genomic DNA was fragmented
to 400 bp using a Covaris E210 sonicator (Covaris Inc., MA,
USA). Fragmented DNA was end-repaired and dA-tailed, and
ligated with Illumina TruSeq adapter (all Cs methylated) using
KAPA Hyper Prep Kit (KAPA Biosystems, USA). The adapter-
ligated DNA was bisulfite-treated using EpiTect Fast DNA Bisul-
fite Kit (Qiagen, Germany), and then amplified by using 2× KAPA
HiFi Uracil+ Readymix (KAPA Biosystems, USA) to produce the
sequencing library. Both WGS and MethylC-seq libraries were
sequenced for 150 bp paired-end reads using an Illumina Hiseq
X Ten sequencer.
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Figure 1. Experimental diagram of double strand bisulfite sequencing (DSBS) and whole-genome bisulfite sequencing (MethylC-seq). (A) MethylC-seq: Genomic DNA is

fragmented to 300–400 bp and ligated to methylated Illumina adapters. The ligated fragments are treated with bisulfite and amplified by PCR using Illumina paired-end

PCR primers. (B) DSBS: Genomic DNA is fragmented to 150–200 bp and ligated to methylated Illumina adapters and hairpin adapters. The ligated fragments are treated

with bisulfite and amplified by PCR using Illumina paired-end PCR primers. PCR product of longer than 400 bp are size-selected on agarose gel and sequenced on the

illumine platform. (C) Flowchart regarding the timeline of the preparation of DSBS library.

Processing of DSBS sequencing data

The high-quality clean reads were generated by filtering out
low-quality reads and removing adapter sequences using
CutadaptV1.11 (https://github.com/marcelm/cutadapt). The
clean reads were aligned to the GRCH37 human reference
genome by using BSMAP [35]. The local sequence realignment
and recalibration was performed by using Bis-SNP as previously
described [26]. SNV calling was performed by using an inhouse
python program DSBS analyzer, which was developed based
on python3, and depends on the package of pysam, pyfasta
and tabix. The output files contained the genome location of
SNVs, DNA methylation levels and DNA hemimethylation levels.
The source code of DSBS analyzer was uploaded to the website:
https://github.com/tianguolangzi/DSBS.

In details, due to the low sequence complexity and high
repetitive rates of bisulfite-converted genome, the alignment
accuracy of bisulfite-converted sequence data was relatively
lower compared with genome sequence data. To realize the
high accuracy of SNV calling, a series of parameters were set to

filter the invalidly aligned bisulfite-sequencing reads before the
identification of SNVs and DNA methylation levels using DSBS
analyzer. The detailed parameters include: (i) considering that
the read 1 and read 2 of paired-reads were derived from one DNA
fragment, the paired-end reads mapped to different locations
in the reference genome were filtered, and paired-reads with
overlap size shorter than 50 bp were discarded; (ii) considering
that the alignment accuracy of short reads was lower, reads with
length shorter than 50 bp were discarded; (iii) sequencing reads
with the N bases exceeding 5 would be discarded, and sequenc-
ing reads with the ratio of bases exceeding 0.6 with sequencing
quality score <20 would be discarded; (iv) sequencing reads
with the amount of small insertion and deletion exceeding 1
would be discarded; (v) the paired-reads in which the number
of mismatches is greater than 5 would be discarded. In addition,
when identifying the SNVs and DNA methylation levels, (i) the
sequencing quality score of the bases should exceed 20 in both
paired-reads; (ii) there should less than two mismatches in the
continuous 10 bp; (iii) the SNVs within 5 bp range of an indel
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would be discarded; (iv) the allele frequency of SNVs should
be higher than 0.15. According to the paired bisulfite-converted
sequencing reads, DSBS analyzer could determine the original
sequence and DNA methylation status of the double-strand DNA
according to Figure 2.

To facilitate the use of DSBS analyzer, we have developed a
pipeline based on python3, which included six steps: quality
control, cleaning, genome alignment, realignment, SNV calling
and evaluation of the DNA methylation and hemimethylation
levels, and annotation. FastQCV0.11.5 (http://www.bioinformati
cs.babraham.ac.uk/projects/FastQC) and BAMQC (https://github.
com/s-andrews/BamQC) were used in the quality control step.
Cutadapt was used to cut the hairpin adapter and PE adapter
sequence. The alignment of sequencing reads to the reference
genome sequence was performed by using BSMAP [35]. Bis-
SNP [26], which based on GATK, was used to realign the sorted
BAM file. As the duplication of sequencing data dramatically
influence the SNV calling, Fastuniq (https://github.com/dcjones/
fastq-tools) was used to remove the duplicates before cutting the
adapters, and the function of removing duplication in Samtools
[36] and PicardV2.9 (http://broadinstitute.github.io/picard/) were
used after the realignment of sorted BAM files. Finally, DSBS
analyzer was used to call SNVs and assess the DNA methylation
and hemimethylation levels. As for the computational resources
and cost of DSBS analyzer, in this study performed on a single
computing node with the CPU of 32 cores, memory of 48G and
64 threads, the total time for data cleaning, mapping, local
sequence realignment and recalibration of 150 Gb raw DSBS
data is about 116.76 h using 40 threads, and the time for calling
SNVs, the DNA methylation and hemimethylation levels is about
4.09 h using 40 threads.

Results
Experimental and SNV calling strategy for DSBS

Fragmented genomic DNA was ligated with the hairpin adaptor
and methylated Illumina adaptor simultaneously, and then
treated with bisulfite and amplified by ligation-mediated
polymerase chain reaction (PCR). The amplified library was
size-selected to enrich library linked with hairpin adaptor for
high throughput paired-end sequencing (Figure 1). Although
both sequencing reads of DSBS and whole-genome bisulfite
sequencing (MethylC-seq) are directional, only the sequence
information of one bisulfite-converted strand of double-strand
DNA was generated from one pair of paired-end reads in the
MethylC-seq, whereas in the DSBS, bisulfite-converted Watson
and reverse complement of bisulfite-converted Crick or bisulfite-
converted Crick and reverse complement of bisulfite-converted
Watson strand derived from the same DNA fragment were
simultaneously sequenced in reads 1 and reads 2, respectively.
Thus, the sequence of two bisulfite-converted strands derived
from one double-strand DNA fragment could be obtained from
one paired-end reads of DSBS.

During the bisulfite treatment, unmethylated cytosine is con-
verted to uracil, whereas the guanine on the opposite strand is
not affected. This property was exploited to distinguish between
bisulfite conversion of C > T and single nucleotide variation from
C to T. Because in the MethylC-seq, bisulfite-converted Watson
and Crick strands were separated during the bisulfite treat-
ment, and only one strand was sequenced in large fraction of
genomic regions. Therefore, C > T SNVs were difficult to be dis-
tinguished from C > T conversion induced by bisulfite treatment
in MethylC-seq data. In the DSBS, bisulfite-converted Watson

and Crick strand were locked together by hairpin adaptor, and
simultaneously sequenced in the paired-end reads, the original
sequence and modification status could be accurately deduced
from the paired-end sequencing reads.

Bisulfite conversion only occurs on unmethylated Cs, and
have no effect on Gs on the complementary strand, therefore,
bisulfite-converted Watson and Crick strand are not fully reverse
complementary to each other. In the paired-end sequencing
of DSBS, bisulfite-converted Watson and reverse complement
of bisulfite-converted Crick; or bisulfite-converted Crick and
reverse complement of bisulfite-converted Watson derived from
one double-strand DNA fragment, reflected by read 1 and read 2,
should be aligned to the same position of the reference genome.
These paired-end reads aligned to different positions were con-
sidered as alignment error, and not used for the calling of SNVs.
Therefore, the false positive SNVs caused by alignment errors
could be eliminated. In the paired-end reads of DSBS, read 1 and
read 2 were different in Cs and Gs, whereas same in As and
Ts (Figure 2). Due to the sequencing and amplification errors,
positions which were not in accordance with this principle,
were excluded for SNV calling. Therefore, when calling SNVs
in DSBS sequencing data, the mutual correction of read1 and
read2 could eliminate the effect of sequencing, amplification
and alignment errors. We provided the bioinformatic pipeline,
DSBS Analyzer, for SNV calling, evaluation of DNA methylation
and hemimethylation level in DSBS sequencing data, which is
freely available at https://github.com/tianguolangzi/DSBS.

Evaluation of SNV calling by DSBS

To evaluate the minimum sequencing data required by DSBS,
we plotted the saturation curve of sequencing data. The 10×
genome-wide coverage was saturated in about 150 Gb sequenc-
ing data. We then compared the coverage of genome fraction of
DSBS and WGS and observed DSBS and WGS covered 91.2% and
91.3% of genome fractions in depth ≥ 1, and covered 88.7% and
90.2% of genome fractions in depth ≥ 10, respectively (Figure 3).
By analyzing the coverage of DSBS and WGS in different genomic
elements, we revealed that the coverage of DSBS had no bias in
different genomic elements.

To further evaluate the sensitivity and accuracy of DSBS
in SNV calling, we compared the performance of SNV calling
of DSBS with two published high-performance computational
pipelines in calling SNVs from methylation sequencing data,
Bis-SNP [26] and BS-SNPer [27], and WGS. With the average
sequencing depth of 30×, we identified SNVs in WGS data of
human ovarian epithelial cell line, T29, by using four SNV calling
softwares, GATK, VarScan, Bcftools, Freebayes, respectively. Of
3 071 837 SNVs simultaneously identified by these four soft-
wares, 2 839 016 (92.42%) SNVs could be identified by DSBS,
while only 1 758 715 (57.25%) and 2 308 667 (75.16%) SNVs could
be identified by Bis-SNP and BS-SNPer, respectively (Figure 3).
Regarding a total of 3 398 625 SNVs identified by DSBS, 3 148 862
(92.65%) SNVs could be validated by WGS, which revealed a
low false positive rate (7.35%) of SNV calling by DSBS. As for
3 579 175 SNVs called by Bis-SNP, only 2 069 360 (57.82%) could be
validated by WGS, and 3 317 957 SNVs called by BS-SNPer, only
2 577 798 (77.69%) could be validated by WGS (Figure 3). As the
vast majority of adaptation or disease-related SNVs were located
at nonrepeat regions, we further evaluated the accuracy of SNV
calling by DSBS in nonrepeat regions, and observed the accuracy
of SNV calling by DSBS in nonrepeat regions was 95.4%, which
was higher than that in the whole-genome regions. Considering
a proportion of these so called false positive SNVs in DSBS could
be the truly occurred SNVs with lower allelic frequency, we then

http://www.bioinformatics.babraham.ac.uk/projects/FastQC
http://www.bioinformatics.babraham.ac.uk/projects/FastQC
https://github.com/s-andrews/BamQC
https://github.com/s-andrews/BamQC
https://github.com/dcjones/fastq-tools
https://github.com/dcjones/fastq-tools
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Figure 2. Strategy of genetic variants and methylation status calling in double strand bisulfite sequencing. (A) In MethylC-seq, bisulfite-converted Watson strand

and reverse complement of bisulfite-converted Watson strand were sequenced in read 1 and read 2 of paired-reads. Two strands of a DNA fragment were separately

sequenced, or only one strand of a DNA fragment was sequenced due to the sequencing bias. (B) Bisulfite-converted Watson strand and reverse complement of bisulfite-

converted Crick strand derived from the same double-strand DNA fragment were sequenced in read 1 and read 2, and aligned to the same position on reference genome.

By simultaneous analyzing the sequence of read 1 and read 2, the sequence and DNA methylation state of DNA fragment could be deduced. (C) Base status of the

double-strand bisulfite-sequenced DNA.

evaluated the SNVs called by DSBS but not identified by any of
the four SNV calling softwares based on WGS data. Of the 1 984
exonic SNVs called by DSBS but not by WGS, we observed that
526 (26.51%) exonic SNVs could be validated by deep sequencing
(with average depth of 389×) of whole exome regions. Thus, we
inferred the actual false positive rate of DSBS was lower than
that mentioned previously.

Evaluation of the DNA methylation levels at CpG sites
by DSBS

To evaluate the performance of the DNA methylation level iden-
tified by DSBS, we compared the coverage of DSBS sequencing
data with the data of MethylC-seq, the golden standard of DNA
methylation analysis. Analyzing 150 GB clean data generated by
DSBS and MethylC-seq, respectively, we observed DSBS covered

92% whereas MethylC-seq covered 90% of the total CpGs in
the human genome with sequencing depth ≥ 2, and DSBS and
MethylC-seq both covered 89% of the total CpGs in the human
genome with sequencing depth ≥ 10 (Figure 4). By analyzing the
coverage of DSBS and MethylC-seq in different genomic ele-
ments, we also revealed that the coverage of DSBS was similar
in different genomic elements.

To evaluate the reproducibility of DSBS in evaluating the
DNA methylation levels, we count the DNA methylation levels of
CpGs with at least 10-fold sequencing depth, and determined the
Pearson correlation coefficient value between two DSBS exper-
imental replicates. The Pearson correlation coefficient value
between two DSBS replicates was 0.939, indicating an excel-
lent reproducibility of DSBS in evaluating the DNA methyla-
tion levels (Figure 4). We then compared the DNA methylation
levels of DSBS with the one from MethylC-seq by evaluating
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Figure 3. The comparison of double strand bisulfite sequencing (DSBS) and whole-genome sequencing (WGS) in identifying SNVs. (A) Genome fraction coverage of

DSBS and WGS. X-axis denotes sequencing depth and y-axis denotes the fraction of genome that is at or above a given sequencing depth. Venn diagram shows the

overlap of SNVs identified by DSBS (B), Bis-SNP (C), BS-SNPer (D) and WGS using different tools.

all CpGs identified by DSBS from MethylC-seq with sequencing
depth ≥ 10 in T29 cell line. Our result demonstrated that the DNA
methylation level for DSBS versus MethylC-seq were correlated
at Pearson correlation coefficient of 0.947 (Figure 4).

Signature of DNA hemimethylation across genomic
regions

DNA hemimethylation, with only one of the two complementary
DNA strands methylated, was intermediate product in DNA
methylation maintenance during DNA replication, and it was
regarded to regulate DNA methylation inheritance [37–39].
It was reported that the majority of intermediately (40–60%)
methylated CpG dinucleotides were hemimethylated [40], and
10% of CpGs in embryonic stem cells (ESCs) and trophoblast stem

cells remain hemimethylated, which could regulate chromatin
interaction and transcription [40, 41]. DSBS simultaneously
sequenced bisulfite-converted Watson and Crick strand of
bisulfite-treated DNA, which enables it to precisely identify
hemimethylation sites. Although previous study has performed
to investigate the DNA methylation fidelity during mouse ESC
self-renewal and differentiation [40, 41], it only analyzed the
CpG-rich regions, and the distribution of DNA hemimethylation
in the whole genome and different genomic regions have
not been evaluated. Here, we depicted the genome-wide
hemimethylation signature of T29 cell line by using DSBS, and
observed the average hemimethylation level of CpGs (depth ≥ 10)
was 0.1304. We identified 14 547 891 hemimethylated CpGs
(depth ≥ 10), including 6 812 824 sites with hemimethylation
level ≥ 0.2 in the whole genome. To evaluate the distribution of
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Figure 4. The comparison of double strand bisulfite sequencing (DSBS) and whole-genome bisulfite sequencing (MethylC-seq) in evaluating DNA methylation levels. (A)

Genome fraction coverage of DSBS and MethylC-seq. X-axis denotes sequencing depth and y-axis denotes the fraction of genome that is at or above a given sequencing

depth. (B) Scatter plots show Pearson correlation coefficient (PCC) of CpG methylation levels identified by two DSBS technical replicates (n = 16 509 627). (C) Scatter plots

show PCC of CpG methylation levels identified by DSBS and MethylC-seq (n = 15 141 119).

Figure 5. DNA hemimethylation levels across genomic regions. (A) Scatter plots showing the correlations between methylation level and hemimethylation level

(n = 21 752 893). (B) The distribution of hemimethylation level in different genomic elements. (C) Metaplot of DNA methylation and hemimethylation levels across

gene bodies. DR, direct repeat; LINE, long interspersed nuclear elements; LTR, long terminal repeat; SINE, short interspersed nuclear elements; STR, short tandem

repeats; UTR, untranslated region; TSS, transcription start site; TTS, transcription termination site.
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Figure 6. The comparison of double strand bisulfite sequencing (DSBS) and whole-genome sequencing (WGS) in identifying C > T SNVs. (A) Venn diagram shows the

overlap of C > T SNVs identified by DSBS and WGS using different tools. Identification (B) and validation (C) of single-nucleotide variants (SNVs) which could disrupt

the existed CpGs or create new CpGs relative to the reference genome in the human ovarian epithelial cell line.

DNA hemimethylation sites and the levels across the human
genome, we analyzed the density and the average level of DNA
hemimethylation in different genomic element regions. The
results revealed that the density and the average level of DNA
hemimethylation varied across different genomic elements
(Figure 5), and the density of DNA hemimethylation sites in
promoter region and CpG island were lower than that in other
genomic regions.

To further investigate the relationship between DNA
hemimethylation and methylation levels, we evaluated the
hemimethylation levels and DNA methylation levels on each
identified CpG (Figure 5). As for CpGs with the low DNA
methylation levels (<0.5), the DNA hemimethylation level was
positively associated with DNA methylation level (PCC = 0.277).
While regarding the CpGs with high DNA methylation level
(≥0.5), the DNA hemimethylation level was negatively associated
with DNA methylation level (PCC = −0.392). We further evaluated
the relationship between the hemimethylation levels and the
DNA methylation levels on CpGs in different genomic element
regions, and unveiled that both the DNA hemimethylation and
DNA methylation levels were lower near the transcriptional start
site than other genomic regions.

Genetic background should be considered in population
epigenetic studies

C > T is the most frequent substitution in the population, for
example it accounts for 35% of all SNPs in human dbSNP
database. Through our DSBS pipeline, we identified 1 129 492
C > T/G > A substitution in the human ovarian epithelial cell
line, and 1 072 678 (94.97%) of them could be identified by
WGS (Figure 6). In addition, 8 049 (94.90%) of 8 482 exonic
C > T/G > A substitution could be validated by deep sequencing
of whole exome regions, suggesting the high reliability of our
pipeline in identifying C > T mutations from the bisulfite-treated
sequencing data. The substitution of C > T usually occurs in the
CpG context, which are frequently methylated in vertebrate
genomes [42]. Thus, the identification of SNVs in bisulfite
sequencing data is essential for accurate quantification of the

methylation levels. Here, in the human ovarian epithelial cell
line, we identified 466 714 SNVs which disrupted the existed
CpGs in the reference genome, and 482 461 SNVs which created
new CpGs relative to the reference genome (Figure 6). We further
validated the accuracy of these disrupted and created CpGs
using deep sequencing of target regions, and 4 182 of 4 239
(98.66%) disrupted CpGs and 3 999 of 4 111 (97.28%) created CpGs
residing in the exon regions were validated by whole exome
deep sequencing, respectively (Figure 6). These SNVs could have
impact on the evaluation of the DNA methylation level of CpG,
while not considered in the evaluation of the DNA methylation
levels in the traditional MethylC-seq method. To accurately
evaluate the DNA methylation levels, we further recalculated
the DNA methylation levels of these CpGs in consideration of
SNVs. Compared with DNA methylation levels evaluated by
MethylC-seq, the DNA methylation levels recalculated by DSBS
in consideration of SNVs has dramatic differences.

Discussion
Genetic and epigenetic variations may affect each other, and
alteration of DNA methylation has been reported to be involved
in various evolutionary and biological processes [7–16]. However,
in the previous epigenetic variation studies, genetic background
was frequently ignored [43, 44], and the sensitivities and accu-
racies of several published computational pipelines in calling
SNVs from the methylation sequencing data were limited by
the inevitable defects of traditional bisulfite sequencing meth-
ods [20, 25–27]. To deal with the challenge, here, we developed
DSBS by locking Watson and Crick strand together followed by
bisulfite treatment, massive parallel sequencing and computa-
tional calling. Although the strategy of hairpin bisulfite sequenc-
ing has been described to improve the mapping efficiency and
accuracy in quantitative detection of 5-methylcytosine [28, 31,
45, 46], an integrated experimental and computational pipeline
that simultaneously assesses DNA methylation, hemimethyla-
tion and genomic variants is an advantage of our work. Using the
approach, we unveiled approximately 0.95 million SNVs which
could break the existed CpGs or create new CpGs relative to the
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reference genome. Many SNVs located at regulatory elements
may shape patterns of population epigenomic variation [8, 47,
48]. Recently, interaction between genetic and epigenetic varia-
tions has begun to be dissected during the evolution of popula-
tions or tumors, such as population divergence of recent human
evolution [7], tumors’ clonal evolution [9, 10], local adaptation or
rapid phenotypic changes of specific populations [13–15]. Thus,
the cost-effective new approach we provided here, which can be
used for simultaneous decoding DNA methylome and genomic
variants in numerous vertebrate species with reference genome,
will facilitate more comprehensive studies on various kind of
disease and biological processes driven by both genetic and
epigenetic variations.

We acknowledge that our approach has some limitations.
The bisulfite treatment we used could not distinguish DNA
methylation and DNA hydroxymethylation [46, 49]. Thus, the
existence of DNA hydroxymethylation in specific loci may influ-
ence the detection of DNA methylation [50]. In addition, bisul-
fite conversion of cytosine to thymine may lead to selective
and context-specific DNA degradation [30, 51]. Displacement of
bisulfite conversion by using enzymatically conversion methods
including TAPS [51] and EM-seq [52], which have mild damage
to DNA, may facilitate the application of DSBS method. Further-
more, we enriched the library with hairpin adapter by using size
selection in DSBS, which might lead to a small fraction of library
without hairpin adapter. Modification of hairpin adapter with
biotin, and binding with streptavidin beads after ligation is an
alternative fragment enrichment choice. To deal with the chal-
lenge of calling somatic mutations from methylation sequencing
data, we will update the computational pipeline in identifying
somatic mutations from the double strand bisulfite sequencing
data in the future.

Key Points
• We offered a useful approach for simultaneously deci-

phering DNA methylome, hemimethylome and SNVs
with high sensitivity and accuracy.

• Genetic background should be considered in popula-
tion epigenomic studies.

• We provided a genome-wide hemimethylation land-
scape using DSBS.

• The DNA hemimethylation levels near the transcrip-
tion start sites were relatively low, and different repet-
itive elements were found with different hemimethy-
lation levels.

Data availability

The raw sequencing datasets including DSBS, WGS, MethylC-
seq and deep sequencing of target exon regions were
deposited at the NCBI (https://www.ncbi.nlm.nih.gov/bio
project/722313) under accession number PRJNA722313. The
source code of DSBS analyzer was available via the website:
https://github.com/tianguolangzi/DSBS.
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