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Abstract
In recent years, an increasing number of distribution maps of invasive alien plant spe-
cies (IAPS) have been published using different machine learning algorithms (MLAs). 
However, for designing spatially explicit management strategies, distribution maps 
should include information on the local cover/abundance of the IAPS. This study 
compares the performances of five MLAs: gradient boosting machine in two differ-
ent implementations, random forest, support vector machine and deep learning neu-
ral network, one ensemble model and a generalized linear model; thereby identifying 
the best‐performing ones in mapping the fractional cover/abundance and distribu-
tion of IPAS, in this case called Prosopis juliflora (SW. DC.). Field level Prosopis cover 
and spatial datasets of seventeen biophysical and anthropogenic variables were col-
lected, processed, and used to train and validate the algorithms so as to generate 
fractional cover maps of Prosopis in the dryland ecosystem of the Afar Region, 
Ethiopia. Out of the seven tested algorithms, random forest performed the best with 
an accuracy of 92% and sensitivity and specificity >0.89. The next best‐performing 
algorithms were the ensemble model and gradient boosting machine with an accu-
racy of 89% and 88%, respectively. The other tested algorithms achieved comparably 
low performances. The strong explanatory variables for Prosopis distributions in all 
models were NDVI, elevation, distance to villages and distance to rivers; rainfall, tem-
perature, near‐infrared and red reflectance, whereas topographic variables, except 
for elevation, did not contribute much to the current distribution of Prosopis. 
According to the random forest model, a total of 1.173 million ha (12.33% of the 
study region) was found to be invaded by Prosopis to varying degrees of cover. Our 
findings demonstrate that MLAs can be successfully used to develop fractional cover 
maps of plant species, particularly IAPS so as to design targeted and spatially explicit 
management strategies.
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1  | INTRODUC TION

In the last 20 years, many studies have attempted to accurately de-
tect the spatial extent of invasive alien plant species (IAPS) to map 
their spread over time or model their potential invasion area. They 
have used a variety of environmental, bioclimatic, and/or earth ob-
servation data, and applying classification or regression methods. 
More recently, machine learning algorithms (MLAs) have gained high 
popularity in ecology and earth science because of their ability to 
model highly dimensional and non‐linear data with complex interac-
tions and deal with data gaps (Thessen, 2016). Good performances 
of MLAs have been obtained in several fields, including remote 
sensing classifications (Mountrakis, Im, & Ogole, 2011) and species 
distribution modeling (Cutler et al., 2007; Elith & Leathwick, 2009). 
However, for quantifying the impact of IAPS and developing spa-
tially explicit management strategies, accurate information is crucial 
not only on the current or projected distribution of IAPS but also 
on their cover across the invaded range (Le Maitre, Gush, & Dzikiti, 
2015; Shackleton, Le Maitre, van Wilgen, & Richardson, 2015a; 
Shackleton, Le Maitre, van Wilgen, & Richardson, 2015b). A few 
studies attempted to estimate fractional IAPS cover using remotely 
sensed data either applying spectral unmixing techniques (Frazier & 
Wang, 2011; Vilà et al., 2011) or using very high‐resolution remotely 
sensed data, mostly in combination with machine learning classifiers 
(Cho, Malahlela, & Ramoelo, 2015; Masocha & Skidmore, 2011). The 
use of coarser resolution remote sensing resulted in accurate binary 
maps of presence and absence of IAPS (Chen, Yi, Qin, & Wang, 2017; 
Wakie, Evangelista, Jarnevich, & Laituri, 2014). Only recently, more 
promising mapping of IAPS at finer fractions of cover was obtained 
using a combination of medium or high‐resolution satellite data and 
powerful machine learning classification algorithms (Ng et al., 2016; 
Rembold, Leonardi, Ng, Gadain, & Meroni, 2015). Such fine‐scaled 
and accurate quantification of the local fractional cover of IAPS al-
lows understanding their impacts through cover‐impact curve anal-
ysis. Furthermore, it allows to identify areas with early stages of 
invasion where the control of satellite populations maybe halted or 
at least slow down further spread of IAPS (Vilà et al., 2011).

Prosopis juliflora (Swartz DC.), hereafter referred to as Prosopis, 
has been introduced to different parts of the world with the aim 
of providing benefits to rural people, such as the production of 
fuelwood, charcoal, or construction material (Engda, 2009; Haji & 
Mohammed, 2013; Mureriwa, Adam, Sahu, & Tesfamichael, 2016; 
Pasiecznik & Henry Doubleday Research Association, 2001). Like 
numerous other introduced plants, Prosopis has become invasive in 
many places and is increasingly known for its negative ecological and 
socio‐economic impacts (Shackleton, Le Maitre, van Wilgen et al., 
2015a; Shackleton, Le Maitre, van Wilgen et al., 2015b; van Wilgen 
& Wannenburgh, 2016). In Ethiopia, several studies have attempted 
to assess Prosopis distribution particularly in the Afar Region (Ayanu 
et al., 2014; Engda, 2009; Wakie et al., 2014), but they either focused 
on relatively small study areas or provided only coarse‐resolution 
maps of either presence or absence of the species. Yet, at the early 

stage of its invasion, or at the invasion front, Prosopis often occurs in 
a patchy mixture with natural vegetation or as single trees, which is 
challenging to capture by remotely sensed data of moderate spatial 
resolution. Hence, the development of effective management strat-
egies to mitigate the negative impacts of Prosopis requires accurate 
and detailed information on both invaded areas and on the level of 
invasion across the invaded area.

We set out to compare the performances of five MLAs (gradient 
boosting machine implemented in two different ways, random for-
est, support vector machine, and deep learning neural network), an 
ensemble model and a generalized linear model. This analysis helps 
identifying the best‐performing algorithm in mapping detailed frac-
tional cover of Prosopis in the dryland ecosystem of the Afar Region, 
Ethiopia. All model outputs were validated using a number of per-
formance measures. The best‐performing model was then used to 
create a Prosopis distribution and fractional cover map.

2  | METHODS

2.1 | Study area and study species

The study was conducted in the Afar National Regional State of 
Ethiopia (hereafter referred to as the Afar Region). The study area 
extends from 39.7°E to 42.4°E and 8.8°N to 14.5°N, and is located in 
the Great Rift Valley of Eastern Africa and covers an area of 9.51 mil-
lion ha (Figure 1a). Mean annual rainfall is about 560 mm; and the 
mean annual temperature is about 31°C (MOA, 1997). The biome 
can be described as semi‐arid to arid. Its vegetation cover consists 
of patches of scattered dry shrubs, acacia woodland (comprising dif-
ferent Vachellia species), bushland, grassland, and wooded grassland. 
People's main sources of livelihood are pastoralism and some agro‐
pastoralism around small rural towns (Yirgalem, 2001).

The study focuses on Prosopis species. Prosopis shows a wide 
range of ecological adaptations (from arid to tropical climate con-
ditions) and occur along a large variety of environmental gradients 
(Asfaw & Thulin, 1989; Mohamed, 1997), including different soil 
types (from sand to heavy clays and stony soils) and a wide range of 
altitudes (from sea level up to 1,600 m. a.s.l: Shiferaw et al., 2019). 
Furthermore, Prosopis trees are able to fix nitrogen and have deep 
root systems, rendering them resistant to droughts (Keller, Lodge, 
Lewis, & Shogren, 2009; Mohamed, 1997). This has enabled Prosopis 
to become one of the most successful invasive woody plant species 
in arid and semi‐arid areas. Prosopis has been planted to reclaim de-
graded land, combat desertification, reduce soil erosion (Mishra, 
Crews, & Okin, 2014; Pasiecznik & Henry Doubleday Research 
Association, 2001; Tessema, 2012; Wakie, Evangelista, & Laituri, 
2012), and manage soil salinity (El‐Keblawy & Al‐Rawai, 2007). 
Prosopis trees originally planted in Ethiopia (Figure 1a) belong to the 
species P. juliflora (Figure 1b) in the late 1970s and early 1980s with 
the main aim of soil and water conservation (Pasiecznik & Henry 
Doubleday Research Association, 2001). However, since the early 
1990s, its invasive nature has caused major problems in rangelands, 
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agricultural fields, and riverbanks, and aggravating conflicts on graz-
ing land among pastoralists (Argaw, 2015; Kebede & Coppock, 2015; 
Tegegn, 2008). Such conflicts have been common in the Awash 
Basin, where Prosopis has invaded vast areas of precious rangeland 
and cropland (Wakie et al., 2012).

2.2 | Sampling design and datasets

Georeferenced field samples were collected throughout the entire 
study area using a stratified random sampling approach. Presence 
and absence plots were selected from invaded and uninvaded areas, 
respectively. Invaded areas were additionally stratified into heavily 
invaded and less invaded areas. Within those strata, careful atten-
tion was paid to collect representative samples of the entire cover 
gradient (0%–100%) of Prosopis coverage. In order to reduce spa-
tial autocorrelation, each sampling plot had a minimum distance 
of 500 m to the next one. A total of 2,722 samples (presence and 
absence plots of 20 m × 20 m) were collected between September 
2016 and March 2017. A plot was considered a presence plot if it 
contained at least one Prosopis plant; otherwise, it was considered 
an absence plot. About 70% of the samples were absence plots while 
30% were presence plots. These shares were chosen based on a pre-
liminary rough estimation of the shares of uninvaded and invaded 
land in the study area, which would avoid any bias of results toward 

either presence or absence of Prosopis (Jiménez‐Valverde & Lobo, 
2007). Finally, 80% of all sampling plots were randomly selected to 
be used for model calibration, whereas the other 20% were used for 
validation (Elith et al., 2011).

The spatial datasets were gathered from various sources 
and used as explanatory variables to run the models (Table 1). 
Explanatory variables differed in terms of spatial resolution, projec-
tion, and time of acquisition; thus, reprojection to UTM projection 
and nearest neighbor spatial resampling to a pixel resolution of 15 m 
was applied using panchromatic band of Landsat 8. The Landsat 8 
(operational land imager‐OLI) satellite data were acquired on 26 and 
28 January as well as 11 and 20 February 2017 (paths: 167 and 168; 
rows: 50–54). In total, nine scenes were required to cover the en-
tire study area and then mosaicked. These acquisition dates match 
the period of field data collection and fall into the study area's dry 
season, when herbs and grasses are dry and most trees and bushes 
except Prosopis have shed their leaves.

The remotely sensed datasets were checked for geometric cor-
respondence to all other datasets. Further, these datasets were at-
mospherically corrected using the Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS) algorithm (Chavez, 1996; 
Lu, Mausel, Brondizio, & Moran, 2002). The Red, the near‐in-
frared (NIR) and the first shortwave‐infrared (SWIR1) bands of 
Landsat 8 were selected as explanatory variables. Furthermore, 

F I G U R E  1   Location of the study area, Afar National Regional State, in Ethiopia (a). The detailed map shows the main towns, roads, and 
rivers, as well as the locations where Prosopis was first introduced. The shading indicates elevation, ranging from 175 m below sea level (dark 
gray) to 2,992 m above sea level (white), and photos of Prosopis plant (b)



     |  2565SHIFERAW Et Al.

the normalized difference vegetation index (NDVI) was calculated 
from Red and NIR bands and used as another input. All selected 
bands, as well as the NDVI, have proven to be particularly suitable 
to capture photosynthetic active vegetation, and soil and vege-
tation moisture content (Barsi, Lee, Kvaran, Markham, & Pedelty, 
2014). Additionally, daytime (LSTd) and nighttime (LSTn) land sur-
face temperatures from MODIS sensor were included. In order to 
have longer‐term LSTd and LSTn average data, a 5‐year average of 
these products was generated between 2012 and 2017. The spatial 
resolution of these datasets is 1 km. Although this seems rather 
low compared to the other datasets, these day‐ and nighttime tem-
perature datasets have shown to be useful in species distribution 
modeling and, particularly in Africa where weather stations are 
scarce. These datasets have shown to be more accurate than other 
global climate datasets (Ashby, Moreno‐Madriñán, Yiannoutsos, 
& Stanforth, 2017; He et al., 2015). Moreover, we used variables 
representing topography, infrastructure as well as watercourses as 
these variables have shown to have an influence on Prosopis distri-
bution (Shiferaw et al., 2019).

2.3 | Models

Our study evaluates the performances of seven algorithms in map-
ping Prosopis distribution and fractional cover abundance. We 
chose five MLAs: two different implementations of gradient boost-
ing machine (GBM and GBM‐BRT), random forest (RF), support 

vector machine (SVM), and deep (learning) neural network (DNN), 
an ensemble model composed of the four best‐performing tested 
algorithms, and a generalized linear model (GLM) for comparison 
reasons. All model calculations and model performance assessments 
were implemented in R programming (R Core Team, 2017). A com-
prehensive overview of the R packages and the different parame-
ter settings are provided in the Supporting information (Table S1). 
We checked collinearity of explanatory variables before applying 
to any model and those having high variable inflated factors (VIF) 
were removed. In this study, we used a threshold level of VIF > 10 
to exclude variable(s) from any model (Bruce & Bruce, 2017; Gareth, 
Witten, Hastie, & Tibshirani, 2014). Accordingly, three variables, the 
blue, green and second shortwave‐infrared (SWIR 2) bands were re-
moved from all models as they had high VIF (Dormann et al., 2012). 
We then assessed the influence (importance) of variables in each 
model by using the method described by Natekin and Knoll (2013). 
Furthermore, 10‐fold cross‐validation was applied to assess model 
performance (Fushiki, 2009). Finally, the predictive power of all 
tested MLAs was evaluated using several performance parameters 
(Table 2). The general functionality of each tested model is described 
below.

Until few years ago, multivariate linear regression was the 
most commonly used approach in species distribution modeling 
(Collingham, Wadsworth, Huntley, & Hulme, 2000; Higgins et al., 
2003; Stohlgren et al., 2010). In this study, the GLM was included 
to compare the performance with the MLAs (Nicholls, 1989; Getis & 

TA B L E  1   List of spatial data and explanatory variables used for the modeling of Prosopis fractional cover

Variable abbreviations Description Source

Rain Mean annual rainfall Ethiopian National Meteorol. Agency

Temp Mean monthly temperature

LSTd Monthly land surface temperature during daytime and nighttime; for the 
modeling 5‐year averages were calculated

MODIS, NASA

LSTn Monthly land surface temperature during nighttime; for the modeling 
5‐year averages were calculated

MODIS, NASA

PAN Panchromatic reflectance Landsat 8 OLI, USGS

Red Red reflectance Landsat 8 OLI, USGS

NIR Near‐infrared reflectance Landsat 8 OLI, USGS

SWIR1 Shortwave‐infrared band 6 reflectance Landsat 8 OLI, USGS

NDVI Normalized difference vegetation index

Elevation Shuttle Radar Topography Mission digital elevation model (30 m spatial 
resolution)

USGS

Slope Derived from elevation

Relief Derived from elevation (contour) differences Adediran, Parcharidis, Poscolieric, and 
Pavlopoulos (2004)

Landform Topographic position index derived from elevation, aspect and slope Dikau (1989); Dikau, Brabb, & Mark 
(1991); Weiss (2001); Ilia, Rozos, & 
Koumantakis (2013)

Rugged An index derived from elevation Riley, DeGloria, & Elliot (1999)

DistRoad Distances derived from road network data Ethiopian Road Authority

DistVillage Distances derived from settlement data EthioGIS and Central Statistical Agency

DistRiver Distances derived from data on watercourses EthioGIS
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Ord, 1992). We used backward and forward stepwise variable selec-
tion to find a parsimonious model (Pearce and Ferrier, 2000). Akaike 
Information Criterion was used as the model performance metric 
(step‐AIC; Higgins et al., 2003).

Gradient boosting machine as well as GBM‐BRT use a boosting 
approach where datasets are resampled several times to generate 
results that form a weighted average of the resampled dataset. This 
is done by creating a gradient (or step‐by‐step) boosting by mini-
mizing errors among series of decision trees that together form a 
single predictive model (Natekin & Knoll, 2013; Olinsky, Kennedy, 
& Kennedy, 2012; Wana & Beierkuhnlein, 2010; Boser,Guyon, & 
Vapnik, 1992). In our study, we tested two implementations of 
GBM and GBM‐BRT. They are both based on the same packages: 
“gbm,” “caret,” “dismo,” and “raster,” with “dismo” and “caret” using 
the “gbm” package to fit the models. The main differences of the 
two implementations are the use of different hyper‐parameters. 
We varied the interaction depth (i.e., tree complexity in GBM‐BRT) 
which we set to 3 for GBM and was set to 5 for GBM‐BRT, as well as 
the loss function. While GBM used the “Gaussian” family (Friedman, 

2001), GBM‐BRT used the "Bernoulli" (Elith, Leathwick, & Hastie, 
2008). Furthermore, the final selection of number of trees and the 
learning rate was different. We tuned the models by only varying the  
number of trees and the number of repeats while other parameters 
were kept stable using their respective R package default settings 
(for details see also Supporting information Table S1). Fine‐tuning 
the number of iterations is done to improve the performance of 
a model by fitting either many sub‐models or gradient fitting and 
combining them for final prediction. All models were tuned using the 
same performance metrics. For the fine‐tuning, we calculated mean 
change in predictive deviance ±one standard error (Elith et al., 2011). 
The optimization of the number of trees improved the performance 
substantially (Supporting information Figure S1).

The RF builds the trees in parallel processes (Breiman, 2001). 
The trees are fully grown and each is used to predict the out‐of‐
bag observations that do not occur in a bootstrap sample (Breiman, 
2001). The predicted class of an out‐of‐bag observation is calculated 
average of the results of all predictions (Breiman, 2001; Youssef, 
Pourghasemi, Pourtaghi, & Al‐Katheeri, 2016). The RF has some 

TA B L E  2   Parameters used to assess model performance

Perf ormance parameter Description Sources

Confidence interval (CI) It provides a range of values within which the population parameter is likely to lie. In a 
normal distribution, the general expression of the confidence interval is: Estimate ± 
Zα

2
(SE), where SE is the standard error of the estimate and, if α = 0.05, z = 1.96. The 

provision of confidence limits in addition to accuracy is particularly useful in 
comparative analyses

Newcombe (1998)

Correlation Agreement between fractional cover measured in the field samples and the predicted 
fractional cover for the same samples

Harrington (2006); 
Meynard & Quinn, 
(2007)

Sensitivity Known as true‐positive rate (TPR); measures the proportion of positives that were 
correctly identified as locations where Prosopis was present. Calculated as: TP

(TP+FN)
; 

where TP stands for true positives, and FN for false negatives

Metz (1978); 
Fuchs, DeMeester 
and Albertucci 
(1987)

Specificity Known as true‐negative rate (TNR); measures the proportion of negatives that were 
correctly identified as locations where Prosopis was absent. Calculated as: TN

(TN+FP)

;where TN stands for true negative, and FP for false positives

Fuchs et al. (1987)

Accuracy Class accuracy is calculated by dividing the number of correct pixels in that category 
by the total number of pixels in either the corresponding row or the corresponding 
column; it indicates the probability of a reference pixel being correctly classified and 
is really a measure of omission error. Calculated as: TP+TN

(TP+FP+TN+FP)
; where TP stands for 

true positives, TN for true negatives, FP for false positives, and FN for false 
negatives

Congalton (1991) 
Fuchs et al.(1987)

AUC Area under the receiver operating characteristics (ROC) curve; indicates the model's 
accuracy in handling true values (presence of Prosopis) as true and false values 
(absence of Prosopis) as false. The higher the AUC, the better the model fit, and vice 
versa

Landis & Koch 
(1977); Metz 
(1978)

Kappa coefficient Statistical measure of inter‐rater agreement, excluding agreements occurring by 
chance. It is calculated in a confusion matrix as (0.5×TP)

(TP+FN)
+

(0.5×TN)

(TN+FP)

Metz (1978)

Balanced accuracy Average of all class accuracies; takes into account unbalanced class sizes. In our case, 
with two classes (presence and absence of Prosopis) it is calculated as: 1

2

(

TP

P
+

TN

N

)

Brodersen, Ong, 
Stephan, and 
Buhmann (2010)

Threshold (max @ TPR + TNR) Maximum value at which the true‐positive rate (TPR, or sensitivity) and the true‐nega-
tive rate (TNR, or specificity) intersect. It is often used as a threshold level in 
dichotomies. In our case, values above the threshold indicate that Prosopis is present; 
values below the threshold indicate that Prosopis is absent

Metz (1978); Getis 
& Ord (1992); 
Hijmans and Elith 
(2015)
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limitations like incapable of predicting beyond the range of response 
values in the training data (Hengl et al., 2015), and overestimate low 
values and underestimate high values (Horning, 2010). In this study, 
we only varied the number of trees, testing two different settings: 
1,000 and 5,000 trees while all other parameters were set to default.

The SVM can be used for classification or regression. It constructs 
a hyperplane or set of hyperplanes in an infinite‐dimensional space 
and tries to find the optimal separating hyperplanes, that is, the planes 
where the separability between classes is at its maximum (Noble, 
2006; Rodrigues & De la Riva, 2014). The SVMs have many mathe-
matical features that make them attractive for prediction, handle ex-
tremely high‐dimensional feature spaces, and identify outliers (Brown 
et al., 2000; Kimothi & Dasari, 2010). We varied settings for the ker-
nel, the cost function and gamma (Supporting information Table S1).

The DNN has become very popular recently but is still sparsely 
used by the geoscience community (Zhang, Zhang, & Du, 2016). The 
DNN is fully connected neural networks composed of multiple hidden 
layers together with non‐linear transformations and a variety of tai-
lored architectures (Guo et al., 2016). The DNN has a capacity to an-
alyze big data. In this study, we used a feed‐forward neural network.

The purpose of ensemble models is that it should combine the 
benefits of each included optimized model and penalize the over-
estimate or underestimate of each individual model. Thus, in order 
to be able to do so they should be diverse and complement each 
other on the one hand, but also each one of them independently 
achieving a high performance (Chitra & Uma, 2010). Our ensemble 
model consisted of the four best‐performing models (RF, GBM, SVM, 
and GLM). They were weighted using the function “glmnet” where 
the predictions from each model are used as a predictor in a GLM 
and the resulting GLM coefficients determine how much each model 
should be weighted (Hastie & Qian, 2016; R Core Team, 2017). The 
coefficients of contribution of each model in our ensemble were 0.2 
for RF, 0.1 for GBM, 0.05 for SVM, and 0.01 for GLM as indicated 
in Figure 2.

3  | RESULTS

3.1 | Model parameter settings and weighting of 
variables

Optimum performance of the GBM‐BRT was found when using ~6,050 
trees than 3,100 trees; while the GBM performed better with 500 trees 
than 100 trees. The RF model performed better for 5,000 trees than 
with 1,000 trees. The tested algorithms weighted the explanatory vari-
ables differently, depending on each model's sensitivity to small varia-
tions in the data and to the variable types (Figure 2a–g). In all models, 
Relief, Landform, Rugged, and Slope were removed again from the 
model except from the DNN. In the DNN, the least important vari-
ables were NIR, PAN, Red, NDVI, and Slope. Interestingly, DistRoad, 
Rugged, Relief, and Slope proved to be among the least‐contributing 
variables in the GLM model and were removed from the final iteration 
(Figure 2a) though DistRoad was one of the important contributors in 
other models. In the MLAs, 13 out of the 17 variables were kept. The 

most important explanatory variables, having >5% relative influence, 
were selected by more than one MLAs. These are NDVI, Elevation, 
DistVillage, DistRiver, Rain, NIR, Red, LSTd, and LSTn in decreasing 
order. The first four variables had the highest influence in four of the 
seven models to explain Prosopis distribution (Figure 2).

3.2 | Evaluation of the models

Among the tested models, the RF performed the best, followed by 
the ensemble model, GBM and SVM (Table 3). The last two per-
formed comparably. While the GBM achieved slightly higher accura-
cies and kappa statistics than the SVM, but the SVM obtained better 
sensitivity and specificity scores. While the GBM‐BRT achieved 
high accuracy compared to the GLM but its kappa, sensitivity, and 
specificity scores are low. However, the GLM's specificity score was 
higher than the ones obtained by the GBM‐BRT model. DNN did not 
perform well. Its sensitivity and specificity scores were very unbal-
anced and its sensitivity score was very low. All models performed 
better in terms of specificity than sensitivity. This indicates that un-
invaded areas (true absence rate) were better identified and classi-
fied than invaded areas (true presence rate).

3.3 | Prosopis fractional cover

Comparing the results of different models, we found considerable 
variation in the extent of invaded areas, even though we used the 
same input datasets for all algorithms. The most extreme estimates 
of the total area invaded by Prosopis were generated; the highest 
was from the DNN model (34.8% invaded) and the lowest was from 
the SVM model (11.2% invaded). The best‐performing RF model, cal-
culated the total invaded area to be 12.33% of the Afar Region. The 
other four models—the GBM‐BRT, the ensemble model, the GBM, 
and the GLM estimated the total invaded area by Prosopis at 16.1%, 
14.9%, 14.7%, and 20.1%, respectively (Figure 3 and Table 3). Hence, 
the results produced by the ensemble model, the SVM, and the GBM 
were fairly close to that produced by the RF model (Table 3).

Following the evaluation of the different models, the best‐perform-
ing RF model was used to map the current fractional cover of Prosopis 
in the Afar Region. The RF model's sensitivity and specificity values 
suggest that the model is robust, and its AUC value indicates that the 
presence of Prosopis was correctly mapped with a probability of 97%. 
A threshold value of 0.326 was calculated from the model for the min-
imum cover level of Prosopis presence, which corresponds to 0.4% 
Prosopis fractional cover found on the ground (Figure 4). According to 
the RF prediction, about 1.173 million ha of land is invaded by Prosopis 
at different stages of cover abundances in the Afar Region.

4  | DISCUSSION

4.1 | Model optimization

During model optimization, the number of trees (for the GBM‐
BRT, GBM, and RF), the learning rate (sets the weight applied to 
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individual trees), and the bag fraction (which sets the proportion 
of observations) had the greatest influence on model performance 
(Elith & Leathwick, 2009). For example, the lower of two learning 
rates tested in the GBM‐BRT required more trees, which improved 
the result without causing overfitting (Mining, 2009; Hijmans & 
Elith, 2013, 2015). Consequently, the lower learning rate of 0.005 
with 6,050 trees performed better than that of 0.01 with 3,100 
trees. However, a learning rate of 0.0025 with 10,000 trees did not 
perform better than that of 0.005 in the GBM‐BRT even though 
the increase in the number of trees reduced deviance, eventually 
stabilizing the model. This indicates that lowering the learning rate 
without comparing model performance would have resulted in two 
disadvantages: a poorer model fit and longer computational time 
without improving the model's accuracy.

Variable reduction contributed to model stability, which is 
evident in the GBM‐BRT and GLM models. Similar studies in the 
GBM showed model stability after variable reduction (Getis & Ord 
1992; Burnham & Anderson, 2002). Removal of the topographic 

variables such as Rugged, Landform, Relief, and Slope from most 
of the tested models indicates that these variables contributed lit-
tle to the models’ performances. Also, except through Elevation, 
topography does not seem to add significant information regard-
ing the current distribution and cover of Prosopis in the study area. 
This is probably because the study area is largely flat. The DNN 
model produced one of the least accurate results. The ROCs of 
GLM and DNN showed different from other MLAs (Supporting in-
formation Figure S2). The ROC curve in the GLM nears quickly the 
100% true positives rate but the ROC curve in the DNN remains 
flat achieving a comparably high amount of false‐positive rate 
compared to its true‐positive rate. Different reasons could have 
led to a poor performance, for example, batch size may be small to 
the DNN. But then there are things like to check for hidden dimen-
sion layers, analyze the gradient checks. Further tuning might have 
been necessary to improve the DNN (change a different optimizer, 
change regularization, check and adjust weights at initialization, 
etc). However, this requires further investigation.

F I G U R E  2   Relative influence of explanatory variables in the different algorithms after removal of the least‐contributing ones: (a) 
generalized linear model (GLM), (b) gradient boosting machine (GBM), (c) gradient boosting machine using boosted regression trees package 
(GBM‐BRT), (d) random forest (RF), (e) support vector machine (SVM), (f) deep learning neural network (DNN), (g) ensemble model (ENS)
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4.2 | Important variables

Among the infrastructure variables, DistVillage was found to be im-
portant in all models except in the GLM. Among the environmental 
variables, Elevation was the most important explanatory variable for 
the distribution and fractional cover of Prosopis in all models except 
the DNN. While NDVI and DistRiver had a high relative importance 
in the MLAs, they were removed from the GLM during variable re-
duction. From a methodological perspective, this suggests that the 
GLM is not able to relate variables having a linear or radial spatial 
pattern to the samples used in the models, and therefore, is less 
suited to explain Prosopis distribution and fractional cover. It is 
well known that Prosopis is primarily spread by livestock (Shiferaw, 
Teketay, Nemomissa, & Assefa, 2004), human transport and along 
watercourses, thereby promoting discontinuity or jump dispersal 
(Wilson, Dormontt, Prentis, Lowe, & Richardson, 2009). However, 
the GLM was not able to fully capture these phenomena. In the 
DNN model, Landform exceptionally ranked second in importance, 
following DistRiver.

The influences of the tested explanatory variables varied in 
terms of magnitude and direction depending on each model's sensi-
tivity. In the case of NDVI, this is in line with the general observation 
of greenness, and therefore, also NDVI, increases with increasing 
Prosopis cover. It suggests that particularly NDVI captured during 
dry season is a good variable for explaining the current distribution 
of Prosopis due to the plant's evergreen behavior in the study area 
unlike other plant species shed their leaves during the dry season. 
The explanatory power of NDVI is further supported by the fact that 
greenness or NDVI is a consequence of Prosopis presence and cover 
level but not a cause of its distribution. Our results also show that 
Prosopis cover increases with increasing temperature. Prosopis grows 
best in arid and semi‐arid environments and can stand air tempera-
tures of up to 50°C (Mohamed, 1997). Besides temperature, eleva-
tion had a strong influence on Prosopis distribution in the study area 
as Prosopis cover increases with decreasing elevation.

As mentioned above the main causes of dispersal are by live-
stock, human transport and by water which explains well the strong 
influence of these factors in most models. In contrast to Menuz & 
Kettenring (2013), our data suggest that landscape structure vari-
ables are more relevant for species distribution/invasion at the 
current stage of invasion than climatic factors (precipitation and 
temperature), which describe the environmental niche of plant 
species (Guisan & Thuiller, 2005). However, at larger spatial scales 
climatic factors might additionally capture well the distribution pat-
tern of the species (Coutts, Klinkenvan, Yokomizo, & Buckley, 2011; 
Cabra‐Rivas, Saldana, Castro‐Dıez, & Gallien, 2016).

4.3 | Fractional cover of Prosopis

Different algorithms produced different results with varying accura-
cies. Thus, these algorithms differ in their sensitivity (power to dis-
tinguish Prosopis distribution from other vegetation) across spatial 
variabilities. In this study, we found the RF to be the best‐performing TA
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algorithm (AUC = 0.971, κ = 0.797). Surprisingly, the ensemble 
model (AUC = 0.962, and κ = 0.771) performed slightly less than the 
RF, although other studies had suggested that an ensemble model 
would be able to overcome some of the individual models’ limita-
tions (Kim, 2017) and expected to obtain better performance. Our 
finding indicates that some of the models included in the ensemble 
model might have introduced errors, thereby impairing or penalizing 
its performance. Also, the DNN did not perform well which we can-
not fully explain. Reasons could be the DNN may not be appropriate 
for species distribution mapping and requires further investigations.

Application of a threshold level to produce binary maps of pres-
ence and absence has been tested (Zhou, Chen, Cao, & Chen, 2015). 
In this study, we also applied threshold levels to distinguish invaded 
from uninvaded areas with a threshold level of the RF model at 
0.326. Based on this threshold, we found a very large area (~1.173 
million ha) to be invaded. Our result is in line with the amount of 
invaded areas estimated by MoLF (2017) to be about 1.2 million ha.

Detection of the spread and establishment of an invasive plant 
species is highly important for an effective management at an early 
stage of invasion (i.e., low to medium cover levels). Soft classification, 
as performed in this study, based on satellite data, climatic, topo-
graphic, and other relevant data enables not only identification of a 
particular species but also retrieval of that species’ fractional cover 
even at low cover fractions. Another interesting finding is that all mod-
els performed better in terms of specificity than sensitivity (Table 3). 
This indicates that uninvaded areas (true absence rate) were better 
identified and classified than invaded areas (true presence rate). A 
reason for this may be that the model sometimes misinterpreted aca-
cia shrubs present in invaded areas as Prosopis; otherwise the unbal-
anced of sample size between presence and absence doesn't affect 
the quality the output (Jiménez‐Valverde & Lobo, 2006) as long as 
enough sample size were used from each group.

Machine learning algorithms have attracted significant atten-
tion in the modeling community. First, shallow Neural Networks 

F I G U R E  3   The current fractional 
cover maps of Prosopis distribution were 
produced by using different machine 
learning algorithms. (a) generalized linear 
model (GLM), (b) gradient boosting 
machine (GBM), (c) gradient boosting 
machine using boosted regression trees 
package (GBM‐BRT), (d) random forest 
(RF), (e) support vector machine (SVM), (f) 
deep learning neural network (DNN), (g) 
ensemble model (ENS)
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(NN) attracted a lot of attention and were widely applied to many 
different research problems (Zhou et al., 2015). In the remote sens-
ing community, the DNN was soon followed by other MLAs: the 
GBM‐BRT, the SVM, and the RF, which provided better results both 
in regression and classification (Ashby et al., 2017; Pal & Mather, 
2005, 2017). Our regression analyses in the present study indi-
cated that the RF, the ensemble model, and the GBM outperformed 
the SVM. A similar finding was reported by Lorena et al. (2011), 
who compared the performances of the RF and the SVM in model-
ing the potential distribution of 35 species in Brazil. The study by 
Mi, Huettmann, Guo, Han, and Wen (2017) also indicated that the 
RF performed better than other algorithms tested to model crane 
species.

Our finding confirms that the RF is a suitable algorithm for 
fractional cover mapping of plant species. However, based on our 
experiences gained during this study five important points should 
be considered in order to achieve good results while applying the 
RF regression: (a) sufficient and well‐distributed field data samples 
should be collected in the study area; (b) the number of presence 
and absence field samples should be proportional to the shares of 
the study area where the species is present and absent, respectively;  

(c) the field data values for the dependent variable should be within 
the range of the expected prediction values, (d) as shown by previous 
study, the values of explanatory variables used for training need to 
represent the entire range of values present in the study area (Hengl 
et al., 2015), and (e) fine‐tuning of algorithm parameters and variable 
reduction are recommended for improved model fitness and better 
regression outputs.

5  | CONCLUSIONS

Fine‐scaled fractional cover maps of IAPS are a key requisite for es-
timating the environmental and socio‐economic impacts of IAPS and 
for designing spatially explicit management strategies. Our findings 
show that the RF regression is outperformed other algorithms and 
is a suitable for mapping the fractional cover of species distribution 
in agro‐climatic contexts similar to those of the Afar Region. While 
the GBM and the SVM achieved only slightly less accurate results, 
the GLM, the GBM‐BRT, and the DNN did not perform well when 
looking at sensitivity, specificity, kappa, and the AUC. Nevertheless, 
performances of MLAs might be different if a much larger amount of 
data (i.e., predictor variables) is used, or if less training data is avail-
able or if the study is done in a different agro‐ecological context. For 
this reason, we recommend evaluating the performances of two or 
more algorithms regarding the specific tasks required and the spe-
cific environmental settings prevailing in the context of plant species 
distributions.
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