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ABSTRACT Acute bacterial meningitis is a medical emergency, and delays in initiat-
ing effective antimicrobial therapy result in increased morbidity and mortality.
Culture-based methods, thus far considered the “gold standard” for identifying bac-
terial microorganisms, require 24 to 48 h to provide a diagnosis. In addition, antimi-
crobial therapy is often started prior to clinical sample collection, thereby decreasing
the probability of confirming the bacterial pathogen by culture-based methods. To
enable a fast and accurate detection of the most important bacterial pathogens
causing meningitis, namely, Streptococcus pneumoniae, Haemophilus influenzae, Neis-
seria meningitidis, Streptococcus agalactiae, and Listeria monocytogenes, we evaluated
a commercially available multiplex LightMix real-time PCR (RT-PCR) in 220 cerebro-
spinal fluid (CSF) specimens. The majority of CSF samples were collected by lumbar
puncture, but we also included some CSF samples from patients with symptoms of
meningitis from the neurology department that were recovered from shunts. CSF
samples were analyzed by multiplex RT-PCR enabling a first diagnosis within a few
hours after sample arrival at our institute. In contrast, bacterial identification took
between 24 and 48 h by culture. Overall, a high agreement of bacterial identification
between culture and multiplex RT-PCR was observed (99%). Moreover, multiplex RT-
PCR enabled the detection of pathogens, S. pneumoniae (n � 2), S. agalactiae (n �

1), and N. meningitidis (n � 1), in four culture-negative samples. As a complement to
classical bacteriological CSF culture, the LightMix RT-PCR assay proved to be valu-
able by improving the rapidity and accuracy of the diagnosis of bacterial meningitis.
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Bacterial meningitis is the most common and notable infection of the central
nervous system, leading to sudden onset of fever, headache, nausea, and altered

mental status, and it can rapidly cause death (1). Although the majority of patients with
bacterial meningitis survive, neurological sequelae or permanent debilitation persist in
as many as one-third of all survivors, especially in newborns and children (2, 3).
Predisposing factors like deficiencies of the immune system (e.g., immunosuppressive
medication, cancer, diabetes mellitus, alcoholism, human immunodeficiency virus in-
fection) increase the risk of bacterial meningitis (4).

Different bacterial pathogens cause meningitis. However, Streptococcus pneumoniae,
Neisseria meningitidis, Streptococcus agalactiae, Haemophilus influenzae, and Listeria
monocytogenes were the most prevalent pathogens in bacterial meningitis reported
over the last years (5). The prevalence of bacterial pathogens in patients with menin-
gitis also depends on the age of the patient. S. agalactiae is the main cause of neonatal
sepsis and meningitis in Western Europe and the United States and an emerging
pathogen in immunocompromised adults (6).
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N. meningitidis, S. pneumoniae, and H. influenzae are the leading causes of bacterial
meningitis worldwide (4, 7–9) with more than 1.2 million cases each year, and neuro-
logical sequelae occurring in up to 50% of survivors (10). All three pathogens are carried
asymptomatically in the human nasopharynx, and transmission occurs through respi-
ratory droplets or saliva. The introduction of conjugated vaccines (11) reduced the
overall incidence of bacterial meningitis. Moreover, it affected the distributions of
causative pathogens of bacterial meningitis and the age groups most often affected (4,
11, 12). Another important causative microorganism of meningitis is L. monocytogenes.
It is spread by contaminated food, but it is also found in soil, water, and sewage (13, 14).
L. monocytogenes has been reported as a common cause of meningitis in young
children (15), elderly patients (�60 years), and patients with acquired immunodefi-
ciency (16).

The initial approach to management in a patient with suspected bacterial meningitis
includes lumbar puncture (LP) and microbiological examination of the cerebrospinal
fluid (CSF) specimen. Empirical treatment with selected third-generation cephalospo-
rins should be initiated as quickly as possible (i.e., ceftriaxone or cefotaxime) after LP
(17). However, rapid identification of L. monocytogenes is crucial for optimal outcome,
since it is not eradicated by empirical therapy, requiring an additional antibiotic (e.g.,
ampicillin, amoxicillin, or meropenem) as part of the empirical regimen.

This study was designed as a prospective method evaluation study for rapid
identification of bacterial pathogens causing meningitis, namely, S. pneumoniae, H.
influenzae, N. meningitidis, S. agalactiae, and L. monocytogenes, using automated DNA
extraction (QIAsymphony) from CSF specimens and multiplex real-time PCR (RT-PCR)
(�4 h).

MATERIALS AND METHODS
CSF specimens and culture. This study was performed in the diagnostic laboratory at the Depart-

ment of Medical Microbiology, University of Zurich from January to July 2017. We received cerebrospinal
fluid (CSF) samples from patients with meningitis symptoms in sterile screw-cap containers that were
collected in secondary and tertiary care hospitals in the Zurich metropolitan area (Switzerland, Europe).
In our laboratory routine, first CSF was used for culture, and if there was more than 500 �l leftover CSF,
DNA extraction and real-time PCR (RT-PCR) were performed.

CSF specimens were inoculated onto agar plates (5% sheep blood agar, thioglycolate agar, and
chocolate agar plates) and into brain heart infusion (BHI) liquid medium. Samples inoculated onto the
agar plates were stored in an incubator at 37°C for 24 to 48 h. If growth occurred on the plates,
identification of the bacteria was done by matrix-assisted laser desorption ionization–time of flight mass
spectrometry (MALDI-TOF MS) (Bruker, Bremen, Germany).

DNA extraction and multiplex RT-PCR assay. Five hundred microliters of leftover CSF was stored
a maximum of 24 h at 4°C (without freezing and thawing) before DNA extraction and RT-PCR were
performed. Prior to DNA extraction, the CSF specimens were spiked with 110 �l of phocine herpesvirus
(PhHV) virus (105 virus particles/ml) (European Virus Archive) as extraction and internal RT-PCR amplifi-
cation control. Virus DNA was coextracted with the clinical samples and coamplified with specific primers
in the multiplex RT-PCR. This ensured an accurate control of the whole molecular assay and excluded
false-negative results due to inhibition of the PCR. DNA was directly extracted from CSF samples on the
QIAsymphony instrument (Qiagen), according to the manufacturer’s instructions using the QIA DSP
virus/pathogen kit.

The following genetic targets were used in the multiplex LightMix RT-PCR assay. For S. agalactiae
detection, the highly specific cfb gene, encoding group B streptococcal CAMP factor, was chosen as the
LightMix RT-PCR target, as it has shown sensitive and specific detection in previous studies (18). For
RT-PCR detection of S. pneumoniae, a specific segment of the pneumococcal autolysin gene (lytA) is
recommended as the target (19). LytA is a virulence factor involved in autolysis and highly conserved
within S. pneumoniae. Furthermore, it has been shown to best separate S. pneumoniae from the
genotypically similar species Streptococcus mitis, Streptococcus oralis, and Streptococcus pseudopneu-
moniae (19). For detection of N. meningitidis, the ctrA gene, which encodes an outer membrane protein
involved in capsule transport, was used in the LightMix RT-PCR as the target. The ctrA gene is highly
conserved among the major disease-causing serogroups of N. meningitidis (20). Therefore, it can be used
for detection of all encapsulated and most nonencapsulated N. meningitidis isolates (20, 21). H. influenzae
RT-PCR detection is based on the protein D gene (hpd), which has previously demonstrated excellent
sensitivity against a clinically diverse collection of H. influenzae isolates (22). The hlyA gene was used as
the target in the LightMix RT-PCR, and it has previously demonstrated highly specific and sensitive L.
monocytogenes detection (23).

All LightMix primers and probes (TIB Molbiol, Berlin, Germany) used in this study are commercially
available and are currently labeled “for research use only.” For RT-PCR, extracted DNA was added to a
mixture consisting of PCR-grade water, a LightCycler DNA multiplex master mix (Roche, Rotkreuz,
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Switzerland), and the LightMix primers and probes (TIB Molbiol, Berlin Germany). RT-PCR master mix
composition and the LightCycler (LC) amplification protocol were in accordance with the guidelines
provided by TIB Molbiol. The RT-PCR was performed using a LightCycler 480-II (Roche). S. pneumoniae,
N. meningitidis, H. influenzae, S. agalactiae, L. monocytogenes, and the PhHV internal control were
detected in individual LC channels on the LightCycler 480-II (Roche).

Retrospective evaluation of the analytical performance of the multiplex RT-PCR. Culture-
negative CSF specimens were pooled and extracted on the QIAsymphony instrument, according to the
manufacturer’s instructions using the QIA DSP virus/pathogen kit. The analytical sensitivity for each
bacterial pathogen was determined by serial dilution of the respective positive-control plasmid in the
CSF extracts (5 to 1,000 DNA copies per RT-PCR mixture; see Fig. S1 in the supplemental material). This
allowed the generation of a standard curve and the quantification of positive samples. The linearity and
measuring range of the RT-PCR were determined for each bacterial pathogen over a range of 3-log-unit
dilutions (10 to 1,000 DNA copies per RT-PCR mixture).

To assess the analytical specificity of the multiplex RT-PCR, bacterial strains that are commonly found
in clinical specimens or that are part of the human microbial flora were analyzed (see Table S1 in the
supplemental material).

Seventeen clinical specimens that have been tested positive by singleplex RT-PCR assay were used
for comparative analysis with the LightMix multiplex RT-PCR (Table S2 and Table S3). These singleplex
RT-PCRs are routinely used in the reference laboratories in Graz (Austria) and detect ctrA (N. meningitidis),
lytA (S. pneumoniae), bexA (H. influenzae), and hlyA (L. monocytogenes). Twenty-nine clinical specimens
that have been tested positive by PCR amplification of the 16S rRNA genes were analyzed by LightMix
multiplex RT-PCR (Table S2 and Table S3). We used 5 �l of DNA that was extracted on the QIAsymphony
instrument from clinical specimens and performed PCR amplification of the 16S rRNA genes using the
primers, master mix composition guidelines, and the PCR amplification protocol of Bosshard et al. (24).
16S rRNA gene amplification products were purified with the QIAquick PCR purification kit (Qiagen,
Hilden, Germany) and sequenced with the forward primer using the BigDye kit and an automated DNA
sequencer (ABI PRISM 3130 genetic analyzer; AB Applied Biosystems). SmartGene IDNS software and
databases (SmartGene GmbH, Zug, Switzerland) were used for sequence analysis. Homology analysis and
species identification were conducted as described previously (24).

Prospective evaluation of the performance characteristics of the multiplex RT-PCR in compar-
ison to culture. We evaluated the performance of the multiplex RT-PCR in comparison to culture, which
is considered the “gold standard” for the diagnosis of bacterial meningitis, in 220 CSF specimens. In case
the two methods showed discrepant results (culture-positive and multiplex RT-PCR-negative test result
or vice versa), 5 �l of the extracted DNA from clinical CSF specimens was used for PCR amplification of
the 16S rRNA genes and ABI sequencing was performed as described previously (24).

Statistical methods. The 2 � 2 contingency table and Cohen’s kappa (�) were used to calculate
agreement between the results of the multiplex RT-PCR and the reference methods (25, 26). All data
analysis and data visualization were done in R (27).

Ethics. The research was conducted in accordance with the Declaration of Helsinki and national and
institutional standards. The act on medical research involving human subjects does not apply to this
study. This study was approved by the ethical committee of the canton of Zurich, Switzerland (Req-
2017-00605).

RESULTS
Retrospective evaluation of the analytical performance of the multiplex RT-

PCR. The analytical sensitivity of the multiplex RT-PCR was evaluated using serial
dilutions (1,000 to 5 DNA copies per RT-PCR mixture) of the positive-control plasmids.
For all bacterial pathogens analyzed, the limit of detection (LOD) was determined to be
at least 10 DNA copies per RT-PCR mixture (2 � 103 DNA copies/ml) (see Fig. S1 in the
supplemental material). To determine the analytical specificity of the multiplex RT-PCR,
different bacterial isolates were analyzed and tested negative, except one S. pseudo-
pneumoniae isolate that showed a positive RT-PCR amplification result, indicating
cross-reactivity with the S. pneumoniae primer/probe set (Table S1).

Moreover, clinical specimens, in which S. pneumoniae, N. meningitidis, H. influenzae,
S. agalactiae, and L. monocytogenes were detected by singleplex RT-PCR assays (n � 17)
or 16S rRNA gene sequencing (n � 29), were retrospectively analyzed by multiplex
RT-PCR (Table S2 and Table S3). Perfect agreement was found for the detection of N.
meningitidis, S. pneumoniae, H. influenzae, and L. monocytogenes in 17 clinical speci-
mens by singleplex RT-PCRs, used in the reference laboratories in Graz, Austria, and
multiplex RT-PCR (Table S3). Moreover, comparison of threshold cycle (CT) values
between the singleplex RT-PCRs and multiplex RT-PCR showed lower CT values in the
multiplex RT-PCR for most samples analyzed (Fig. S2). In addition, the results from 16S
rRNA gene sequencing and multiplex RT-PCR of 29 clinical specimens agreed com-
pletely (Table S2 and Table S3).
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Prospective evaluation of the diagnostic performance of the multiplex RT-PCR
in comparison to culture. In total, 220 CSF samples were analyzed in parallel by
culture and multiplex RT-PCR (Table 1). Overall, 16/220 CSF samples were positive by
culture. In 10 of these 16 samples, bacteria were found that are not included in the
multiplex LightMix RT-PCR panel, namely, Escherichia coli (n � 2), Klebsiella pneumoniae
(n � 1), Serratia marcescens (n � 1), Staphylococcus epidermidis (n � 4), and Staphylo-
coccus hominis (n � 2). All 10 specimens gave negative test results by multiplex RT-PCR
(Table 1). In 6/16 CSF samples, S. pneumoniae was detected by culture. Ten of 220 CSF
samples revealed positive results by the multiplex RT-PCR. S. pneumoniae was detected
in the six culture-positive CSF specimens by multiplex RT-PCR. Additionally, in four
culture-negative CSF specimens, N. meningitidis (n � 1), S. pneumoniae (n � 2), and S.
agalactiae (n � 1) were detected by multiplex RT-PCR (Table 1 and Table 2). Amplifi-
cation of the 16S rRNA genes and ABI sequencing detected the same pathogen as
identified by multiplex RT-PCR in these four CSF specimens (Table 1). Overall, a high

TABLE 1 Detection of bacterial pathogens in CSF (n � 220) by multiplex LightMix RT-PCR
and culturea

Bacterium

No. of CSF samples positive for
the indicated bacterial
pathogen by:

16S rRNA gene sequencing resultaCulture
Multiplex LightMix
RT-PCR

H. influenzae 0 0 NDb

L. monocytogenes 0 0 NDb

N. meningitidis 0 1 N. meningitidis identified
S. agalactiae 0 1 S. agalactiae identified
S. pneumoniae 6 8 S. pneumoniae identified
E. colic 2 0 E. coli identified
K. pneumoniaec 1 0 K. pneumoniae identified
S. marcescensc 1 0 S. marcescens identified
S. epidermidisc 4 0 S. epidermidis identified
S. hominisc 2 0 S. hominis identified
a16S rRNA gene sequencing was used to resolve discrepant results.
bND, not done.
cNot included in the multiplex LightMix RT-PCR panel.

TABLE 2 Case study of clinical CSF specimens that were culture negative and tested positive by multiplex LightMix RT-PCR

Case study Sample Multiplex RT-PCR result Microscopic examination result Clinical feature(s)

70-year-old female CSF S. pneumoniae Cytospin preparations showed mononuclear and
polymorphonuclear leukocytes (cell count of
�103/ml)

Clinical suspicion of pneumococcal
sepsis

No bacteria were detected by microscopic
examination

Patient under antibiotic treatment

39-year-old male CSF S. pneumoniae Cytospin preparations showed mononuclear and
polymorphonuclear leukocytes (cell count of
�103/ml)

Clinical suspicion of pneumococcal
meningitis

No bacteria were detected by microscopic
examination

Patient under antibiotic treatment

58-year-old male CSF S. agalactiae Cytospin preparations showed mononuclear and
polymorphonuclear leukocytes (cell count of
�103/ml)

Clinical suspicion of
meningoencephalitis

No bacteria were detected by microscopic
examination

Patient under antibiotic treatment

26-year-old male CSF N. meningitidis Cytospin preparations showed mononuclear and
polymorphonuclear leukocytes (cell count of
�103/ml)

Clinical suspicion of meningococcal
meningitis

Gram-negative diplococci were detected by
microscopic examination

Patient under antibiotic treatment
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agreement of 99% was found for the detection of bacterial pathogens included in the
LightMix RT-PCR panel between culture and multiplex RT-PCR (Table 3).

DISCUSSION
This study assesses the performance of a commercial multiplex RT-PCR (Light-

Mix RT-PCR) for the detection of bacterial pathogens causing meningitis. Retro-
spective analysis of clinical specimens showed perfect agreement between singleplex
RT-PCR, 16S rRNA gene PCR, and multiplex RT-PCR results. The cycle threshold values
of the multiplex RT-PCR were similar to those of the singleplex RT-PCR assays, indicating
excellent PCR efficacy. In the prospective evaluation, 16/220 CSF samples were culture
positive, and 10/220 CSF samples revealed positive results in the multiplex RT-PCR.
Moreover, the detection rates of S. pneumoniae, N. meningitidis, and S. agalactiae in CSF
specimens were improved by multiplex RT-PCR in comparison to culture. As Switzer-
land is a country with a low prevalence for bacterial meningitis (28), the low positivity
rates observed in this study are reasonable.

Bacterial meningitis is an infectious disease emergency. Prompt diagnosis is essen-
tial for targeted antibiotic therapy and optimal outcome (29, 30). Empirically guided
meningitis therapy with third-generation cephalosporins is effective against most
bacterial pathogens. However, the natural resistance of L. monocytogenes against
cephalosporins must be considered (31). Furthermore, rapid identification of N. men-
ingitidis is important in order to promptly administer antimicrobial prophylaxis to close
contacts of infected patients (32) and prevent secondary meningococcal meningitis
cases. Culture still remains the diagnostic gold standard for detection of pathogens in
CSF specimens, which is however handicapped by slow turnaround time (24 to 48 h)
and low diagnostic yield when antibiotics were administered to the patient prior to CSF
sampling (33). In previous studies, CSF culture was positive in 66% to 88% of patients
who were not pretreated with antibiotics, decreasing to a culture positivity rate of 62%
to 70% when the patients received antibiotics before lumbar puncture (34, 35).
Antibiotic treatment lowers sensitivity of culture which potentially explains why CSF
specimens tested negative by culture, but bacterial pathogens were identified by
multiplex RT-PCR in four patients included in our prospective study. RT-PCR does not
require viable cells, and its diagnostic performance is therefore less affected by anti-
biotic treatment. Rapid identification of bacterial pathogens by RT-PCR within a few
hours after lumbar puncture may help to guide administration of antibiotics and may
be especially important if culture yields negative results (17). We propose a rapid
diagnostic workflow with low per sample costs (�20 EUR) using an automated DNA

TABLE 3 Detection of bacterial pathogens in CSF specimens (n � 220) by multiplex
LightMix RT-PCR and agreement between culture and multiplex RT-PCR results
(� statistics)

Bacterial pathogen
Multiplex LightMix
RT-PCR result

No. of CSF samples
with the following
culture result:

� statisticsaNegative Positive

H. influenzae Negative 220 0 � � 1
Positive 0 0

L. monocytogenes Negative 220 0 � � 1
Positive 0 0

N. meningitidis Negative 219 0 � � 0.99
Positive 1 0

S. agalactiae Negative 219 0 � � 0.99
Positive 1 0

S. pneumoniae Negative 212 0 � � 0.99
Positive 2 6

a� statistics show the overall agreement between culture and multiplex RT-PCR results.
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extraction device (QIAsymphony) and multiplex LightMix RT-PCR detection. Up to 24
samples can be analyzed in parallel in this workflow within less than 4 h. Therefore, it
is suitable for rapid high-throughput routine screening of multiple bacterial pathogens
causing meningitis.

There has been much interest in the development of standardized molecular tests
for the diagnosis of meningitis (36). Several PCR assays for the simultaneous detection
of S. pneumoniae, H. influenzae, and N. meningitidis have been established (20, 37). Also,
highly multiplexed assays have been developed that detect viral, fungal, and bacterial
pathogens (e.g., BioFire FilmArray meningitis/encephalitis panel; bioMérieux, Marcy
l’Etoile, France). However, their application as a first-line test in diagnostics remains
controversial (38), as highly multiplexed assays have shown high proportions of false-
positive results (36). False-positive CSF test results have the potential to cause signifi-
cant harm if they lead to the administration of unnecessary, potentially toxic treatment
or unwarranted invasive procedures. Alternatively, a negative test result, even when
using highly multiplexed assays, does not exclude infection due to organisms that are
not included in the panel.

S. pneumoniae was the most frequent false-positively detected organism by the
BioFire FilmArray meningitis/encephalitis panel. A suggested explanation for these
false-positive results is contamination when CSF specimens were not handled appro-
priately in the laboratory (36).

By testing 220 CSF specimens, we found high specificity of our multiplex RT-PCR for
the detection of bacterial pathogens causing meningitis, as we observed no cross-
reactivity of the primer/probe sets. Although the lytA gene has been reported to be a
very specific target for S. pneumoniae detection, we observed one false-positive am-
plification signal with an S. pseudopneumoniae culture. This issue has been reported
previously (39). There will probably be rare false-positive or false-negative results for
virtually any RT-PCR assay for pneumococcal identification, due to recombination
events that occur between pneumococci and closely related streptococci and high
genomic variability between S. pneumoniae isolates (40). However, the risk of cross-
reactivity in CSF is low, because meningitis with other streptococci of the S. mitis group
is a rarity without underlying disease (sinusitis, brain abscess).

Our study has several limitations. Our study was designed as a single-center,
laboratory-based, prospective method evaluation study. The total number of samples
that tested positive for individual organisms in the panel was low in the prospective
study, as Switzerland is a country with a low prevalence for meningitis. This did not
allow us to calculate the negative and positive predictive values of the LightMix RT-PCR.
Furthermore, a negative test result in the multiplex RT-PCR does not exclude infection
as a result of organisms that are not included in the panel. Therefore, multiplex RT-PCR
will not be able to replace culture but may serve as a valuable complement in routine
diagnostics.

In summary, the implementation of new rapid diagnostic tests, like multiplex
RT-PCR, as a complement to culture in routine diagnosis of meningitis is crucial. In this
prospective study, we evaluated a multiplex RT-PCR that enables rapid identification of
the major pathogens of bacterial meningitis, namely, S. pneumoniae, S. agalactiae, H.
influenzae, N. meningitidis, and L. monocytogenes in 220 CSF specimens. The multiplex
RT-PCR provides a more rapid identification of bacterial pathogens included in the
LightMix RT-PCR panel compared to conventional culture. Rapid pathogen identifica-
tion enables clinicians to adapt the empirical antibiotic regimen, especially if Listeria
monocytogenes is detected, and to administer antimicrobial prophylaxis to close con-
tacts of patients with a N. meningitidis infection. This results in better patient manage-
ment by facilitating targeted therapy and potentially improved clinical outcome.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/JCM
.01492-17.

SUPPLEMENTAL FILE 1, PDF file, 0.5 MB.
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