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Deep Learning based Convolutional Neural Networks (CNNs) are the state-of-the-art

machine learning technique with medical image data. They have the ability to process

large amounts of data and learn image features directly from the raw data. Based on

their training, these networks are ultimately able to classify unknown data and make

predictions. Magnetic resonance imaging (MRI) is the imagingmodality of choice for many

spinal cord disorders. Proper interpretation requires time and expertise from radiologists,

so there is great interest in using artificial intelligence to more quickly interpret and

diagnose medical imaging data. In this study, a CNN was trained and tested using

thoracolumbar MR images from 500 dogs. T1- and T2-weighted MR images in sagittal

and transverse planes were used. The network was trained with unremarkable images

as well as with images showing the following spinal cord pathologies: intervertebral

disc extrusion (IVDE), intervertebral disc protrusion (IVDP), fibrocartilaginous embolism

(FCE)/acute non-compressive nucleus pulposus extrusion (ANNPE), syringomyelia and

neoplasia. 2,693 MR images from 375 dogs were used for network training. The network

was tested using 7,695 MR images from 125 dogs. The network performed best in

detecting IVDPs on sagittal T1-weighted images, with a sensitivity of 100% and specificity

of 95.1%. The network also performed very well in detecting IVDEs, especially on

sagittal T2-weighted images, with a sensitivity of 90.8% and specificity of 98.98%. The

network detected FCEs and ANNPEs with a sensitivity of 62.22% and a specificity of

97.90% on sagittal T2-weighted images and with a sensitivity of 91% and a specificity of

90% on transverse T2-weighted images. In detecting neoplasms and syringomyelia, the

CNN did not perform well because of insufficient training data or because the network

had problems differentiating different hyperintensities on T2-weighted images and thus

made incorrect predictions. This study has shown that it is possible to train a CNN in

terms of recognizing and differentiating various spinal cord pathologies on canine MR

images. CNNs therefore have great potential to act as a “second eye” for imagers in the

future, providing a faster focus on the altered image area and thus increasing workflow

in radiology.
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INTRODUCTION

Magnetic Resonance Imaging (MRI) has become indispensable
in the diagnosis of neurological diseases and is considered
the diagnostic tool of choice for spinal cord pathologies
of various etiologies. Not only is MRI considered the gold
standard for intervertebral disc disease (1), which is among
the most common spinal cord disorders in dogs (2), but
it also contributes to accurate diagnosis with regard to
other spinal cord disorders such as ischemic myelopathies,
acute non-compressive nucleus pulposus extrusion (ANNPE),
syringomyelia, or spinal cord neoplasia (3–6). The correct
interpretation of image data is essential for an accurate
diagnosis from which treatment and prognosis are determined.
It is common practice in the evaluation of the images
to look for certain patterns that could be indicative of
a disease.

The principle of Deep Learning, a certain type of machine
learning, is based on the fact that so-called Artificial Neural
Networks (ANNs) use large amounts of data to create an
algorithm that can ultimately correctly assign unknown data
based on its “experience”. In doing so, the network always
recognizes the same patterns and thus learns to assign them to
certain categories, similar to radiologists. Compared to previous
machine learning techniques, Deep Learning has the ability
to process huge amounts of data and learn image features
directly from the raw data. However, Deep Learning systems
are often referred to as black boxes because it is not possible
to identify the criteria used by the network to learn and make
predictions (7).

Convolutional Neural Networks (CNNs) are the foundation of
machine learning with image data. Inspired by the human brain,
they process information in a similar way viamany intermediate
elements, also known as neurons. The neurons are part of
different layers. The first layer, through which data enters the
network, is called input layer. This is followed by one or more
layers called hidden layers. In these layers the data is transformed.
Within the layers, all neurons are interconnected. How strongly
each neuron is networked with another depends on its weight.
Weights are real numbers and represent adjustable parameters.
One could call them control knobs that define the input-output
function of the machine. These weights are adjusted until the
network can make good predictions regarding its training data.
Last is the output layer, which creates the CNN’s prediction. Once
the network is successfully trained, it can be applied to unknown
data (8–10).

In supervised learning, the corresponding data, usually labeled
by human experts in the respective field, are provided to the
algorithm in a training phase. The annotated data is then
considered as the so-called ground truth for the algorithm (11).
In the case of medical images, networks can be trained to
independently make diagnoses or predictions on unknown data
and serve as a second-opinion tool for radiologists. The goal is
not to dispense with the expertise and experience of radiologists,
but to provide a more rapid focus on the altered image area,
thus facilitating diagnostic workup. In addition, evidence-based
algorithms could also help less experienced imagers make more
accurate diagnoses and reduce interobserver variability.

In veterinary medicine, there are already pioneering studies
in the imaging field that have taken advantage of the principle
of Deep Learning. Yoon et al. trained a CNN using canine
chest radiographs to discriminate between normal and abnormal
findings in terms of cardiac silhouette, lung patterns, position
of the mediastinum, and pleural cleft. The CNN was able to
make predictions with an accuracy of 92.9–96.9%, sensitivity of
92.1–100%, and specificity of 93.8–96.0% (12).

Using a similar objective and approach, Boissady et al., Burti
et al., and Li et al. trained CNNs that successfully detected lesions
on canine thoracic radiographs (13–15). In these studies, artificial
intelligence (AI) achieved identical or even better diagnostic
results compared to radiologists. In the study by Boissady et
al., primary thoracic lesions of dogs and cats were detected
by the network with a significantly smaller error rate than by
radiologists or by radiologists aides by the network (10.7 vs. 16.8
vs. 17.2%).

The study by Burti et al. achieved area under the curve
values of >0.9 in the diagnosis of cardiomegaly. In the study
by Li et al., the network achieved identical results in terms of
accuracy (82.71%), sensitivity (68.42%), and specificity (87.09%)
in detecting left atrial enlargement on thoracic radiographs of
dogs compared to board certified radiologists.

Banzato et al. developed a CNN to detect degenerative
liver disease on ultrasound images of dogs. In addition, the
accuracy in diagnosis was to be compared with cytologic liver
findings and blood serum biomarkers. The CNN predicted
diagnoses with 91% accuracy, 100% sensitivity, and 82.8%
specificity, outperforming all other diagnostic tests (16). Further
studies by Banzato et al. not only developed a CNN that
could successfully distinguish betweenmeningiomas and gliomas
on canine cranial MR images (17) but was also able to
classify canine meningiomas into different grades (18). A recent
study by Spiteri et al. successfully used machine learning to
understand neuromorphological changes and identify image-
based biomarkers in Cavalier Kings Charles Spaniels with Chiari-
like malformation-associated pain and syringomyelia. They
concluded that machine learning can aid in the diagnosis of
Chiari-like malformation and syringomyelia (19).

The aim of this study was to train a Deep Learning based
CNN via supervised learning, which should be able to detect and
discriminate different spinal cord pathologies on thoracolumbar
MR images of dogs. It was hypothesized that the CNN would
have the ability to detect and discriminate various spinal cord
diseases on canine thoracolumbar MR images. This study could
provide first insights on the approach, limitations, and sensitivity
and specificity of CNNs in MRI interpretation.

MATERIALS AND METHODS

Case Selection
Thoracolumbar MR images of 500 dogs served as the basis for
the study in order to generate a sufficiently large data set for
the neural network. MR images were obtained from the archives
of the Department of Small Animal Medicine and Surgery,
University of VeterinaryMedicine, Hannover, Germany, between
January 2016 and August 2020, as well as from the archives of
the Royal Veterinary College, Small Animal Referral Hospital,
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London, England, between January 2002 and March 2014. Both
T1- and T2-weighted images in transverse and sagittal planes,
totaling 2,693 images, were used as the basis for network training.

Since the network should be able to distinguish between
different spinal cord pathologies, MR images with the following
diagnoses were used for network training: unremarkable,
intervertebral disc extrusion (IVDE or Hansen Type I),
intervertebral disc protrusion (IVDP or Hansen Type II),
presumptive fibrocartilaginous embolism (FCE), or acute
non-compressive nucleus pulposus extrusion (ANNPE) (were
combined due to their similar presentation on MRI; only
T2-weighted images were used), syringomyelia and neoplasia.
MR images of dogs with disc herniation or protrusion were
only included if surgery was performed in order to confirm the
suspected pathology and localisation. In the case of neoplasia,
a pathologic report (either biopsy or postmortem report) was
considered as appropriate evidence. Clinical signs and well-
defined MRI variables (3, 4, 20, 21) were considered sufficient
evidence for syringomyelia and ANNPE/FCE cases. In this
study, the cause of syringomyelia was not further specified.
Cases were included in which syringomyelia had spread to the
thoracolumbar spinal cord.

Magnetic Resonance Imaging
MR images were obtained using either a 3.0 T high-field
MRI scanner (Achieva 3.0, PhilipsMedical Systems, Best, The
Netherlands) or a 1.5 T high-field MRI scanner (Intera 1.5T,
Philips Medical Systems, Eindhoven, The Netherlands). All dogs
underwent general anesthesia and were positioned in dorsal
recumbency during the imaging process.

Data Set Preparation
All MR images were exported in Digital Imaging and
Communications in Medicine (DICOM) format and anonymized.
In the next step, data from the 500 dogs were divided into a
training set (75% or 375 dogs) and a test set (25% or 125 dogs).
Randomization of both training and test set was performed
via www.random.org.

The distribution of the assessed diagnoses within the 500 dogs
was as follows: 284 dogs with IVDE (213 for training, 71 for
testing), 38 dogs with IVDP (28 for training, 10 for testing),
108 dogs with FCE/ANNPE (81 for training, 27 for testing), 13
dogs with syringomyelia (10 for training, 3 for testing), and 18
dogs with neoplasia (14 for training, 4 for testing), including the
following pathologies: meningioma (n = 2), hemangiosarcoma
(n = 2), hemangioma (n = 2), multiple myeloma (n = 1),
nephroblastoma (n = 1), osteosarcoma (n = 2), lymphoma (n
= 3), fibrosarcoma (n= 1), round cell tumor (n= 1), metastases
frommammary carcinoma (n= 2), and metastases from prostate
carcinoma (n = 1). Furthermore, 39 dogs with unremarkable
MR images (29 for training, 10 for testing) were included.
Supplementary Table 1 includes signalment and diagnoses of all
500 dogs.

Deep Learning Model and Method
The CNN model was trained from scratch using a single-hold-
out set and was trained to simultaneously classify multiple output

classes. A batch size of 64 was used for training for a total of
15,000 iterations. For training, images were resized to 640 x
640 pixels. For each DICOM image the pixel data of the first
accessible frame was exported and converted to a JPEG-Image.
Specifically, a YCbCr color space was used together with the
provided LUT transformations.

The architecture of the CNN is shown schematically in
Figure 1.

Network Training and Validation
A platform, which served to upload and mark the data,
was programmed exclusively for this project. The anonymized
DICOMs from the training set were uploaded into this database
and labeled. The labels “extrusion,” “protrusion,” “FCE/ANNPE,”
“neoplasia,” and “syringomyelia” were implemented as selection
options. The label “edema” was added later to mark hyperintense
areas on the MR images that did not show disc herniation
or FCEs/ANNPEs. During labeling, the visible pathological
alteration was marked by hand if applicable and given the
appropriate label. The correct assignment of labels was matched
with clinical and pathological reports and observations. This
process is called supervised learning. If there were several changes
on one image, several labels could also be assigned.

After completing the labeling phase of the data, the CNN was
first validated and then trained. In this process, the network was
trained for each diagnosis individually. During the validation
phase, 100 individual images from the training data were
randomly selected. In the first step, it was tested whether the CNN
was able to distinguish between “lesion” or “no lesion.” This step
was repeated and weights were adjusted until satisfactory results
were obtained. Next, it was validated whether the CNN can
distinguish between different pathologies on the altered images.

The network was trained with a total number of 2,693 images,
of which 1,575 images were assigned 1,622 labels (multiple labels
could be assigned on one image).

The label edema was assigned 59 times, the label IVDE 833
times, the label IVDP 149 times, the label FCE/ANNPE 379 times,
the label neoplasia 167 times and the label syringomyelia 35
times. 1,118 images had no label, thus were unremarkable.

After the training phase was completed, the data from the
remaining 125 dogs were used to test how accurate, specific, and
sensitive the CNN was in terms of detecting and distinguishing
between different spinal cord pathologies.

Figure 2 shows the workflow used in the process of data
collection, training and testing of the CNN.

STATISTICS

Sensitivities, specificities, positive predictive values, negative
predictive values, and accuracies were calculated based on
contingency tables with true positive, true negative, false positive
and false negative decisions per image for each diagnosis, plane,
and sequence. 95% confidence intervals (95% CI) for sensitivity,
specificity, and accuracy were calculated using the Clopper-
Pearson method. 95% CIs for the positive and negative predictive
values are the standard logit CIs given by Mercaldo et al. (22).
Certainty per image was calculated by the CNN using its training
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FIGURE 1 | Diagram of the workflow used in the process of data collection, training and testing of the Convolutional Neural Network. MRI, Magnetic Resonance

Images.

approach. For analysis, the means of the highest certainties given
per patient’s image set for each correct diagnose, plane and
sequence were calculated, if appropriate. In addition, 95% CIs
of the mean of certainty were calculated. For the comparison of
certainties across planes and sequences per diagnose, one-way
ANOVA followed by Holm-Šidák’s multiple comparisons test or
paired t-test were used, where appropriate.

For statistical and graphical analysis, MedCalc
(www.medcalc.org) and Prism 9 software from GraphPad
(La Jolla, CA, USA) were used. Two-sided tests were used and a
p ≤ 0.05 was considered significant.

RESULTS

The network was tested using 7,695 images of 125 dogs. The
results can be found in Supplementary Table 2. The network
detected IVDEs on sagittal T1-weighted images with a sensitivity
of 75.44% [95% CI: 62.24–85.87%] and a specificity of 95.85%
[95% CI: 93–97.77%]. On transverse T1-weighted images,
sensitivity was 73.46% [95% CI: 67.65–78.73%] and specificity
was 67.61% [95% CI: 63.30–71.71%] (Figure 3).

On sagittal T2-weighted images, sensitivity was 90.80% [95%
CI: 85.5–94.65%] and specificity was 98.98% [95% CI: 98.18–

99.49%], and on transverse T2-weighted images, sensitivity was
82.03% [95% CI: 79.22–84.60%] and specificity was 78.96% [95%
CI: 76.56–81.22%] (Figure 3).

The network yielded the following results in the detection
of IVDPs: sensitivity of 100% [95% CI: 87.23–100%] on
sagittal T1-weighted images and specificity of 95.10% [95% CI:
88.93–98.39%] (Figure 3). On transverse T1-weighted images,
it achieved a sensitivity of 95.59% [95% CI: 87.64–99.08%] and
a specificity of 78.39% [95% CI: 72.02–83.90%] (Figure 3). On
sagittal T2-weighted images, the network achieved a sensitivity
of 67.86% [95% CI: 47.65–84.12%] in detecting IVDPs and a
specificity of 96.43% [95% CI: 91.11–99.02%] (Figure 3). The
sensitivity on transverse T2-weighted images was 77.27% [95%
CI: 67.11–85.53%] and the specificity was 74.88% [95%CI: 68.47–
80.58%] (Figure 3).

FCE/ANNPE were detected on sagittal T2-weighted images
with a sensitivity of 62.22% [95% CI: 46.54–76.23%] and
specificity of 97.90% [95% CI: 96.05–99.03%] (Figure 3).
Sensitivity on transverse T2-weighted images was 90.98% [95%
CI: 88.12–93.35%] and specificity 90.12% [95% CI: 85.66–
93.57%] (Figure 3). Sensitivity for detecting syringomyelia on
sagittal T1-weighted images was 0% [95% CI: 0.00–45.93%]
and specificity was 100% [95% CI: 86.28–100.00%] (Figure 3).
Sensitivity on transverse T1-weighted images was 0% [95%
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FIGURE 2 | Diagram of the workflow used in order to train and test the

Convolutional Neural Network. CNN, Convolutional Neural Network; MRI,

magnetic resonance images.

CI: 0.00–9.03%] and specificity 100% [95% CI: 15.81–100.00%]
(Figure 3).

On sagittal T2-weighted images, the network detected
syringomyelia with a sensitivity of 10% [95% CI: 0.25–44.50%]
and a specificity of 100% [95% CI: 90.97–100.00%] (Figure 3).
The sensitivity on transverse T2-weighted images was 0% [95%
CI: 0.00–9.03%] and specificity 100% [95% CI: 15.81–100.00%]
(Figure 3). Neoplasia was detected by the network on sagittal
T1-weighted images with a sensitivity of 0% [95% CI: 0.00–
60.24%] and a specificity of 92.86% [95% CI: 82.71–98.02%]
(Figure 3). On transverse T1-weighted images, sensitivity was
37.50% [95% CI: 21.10–56.31%] and specificity was 94.67% [95%
CI: 86.90–98.53%] (Figure 3). On sagittal T2-weighted images,
sensitivity was 11.11% [95% CI: 0.28–48.25%] and specificity
94.12% [95% CI: 86.90–98.53%] (Figure 3). On transverse T2-
weighted images, sensitivity was 5.88% [95% CI: 0.72–19.68%]
and specificity was 60.00% [95% CI: 47.59–71.53%] (Figure 3).

Unremarkable images were detected by the network with
a specificity of 97.86% on sagittal T1-weighted images and
with a specificity of 77.38% on transverse T1-weighted images.
On sagittal T2-weighted images, sensitivity was 99% and
on transverse T2-weighted images, sensitivity was 81.64%
(Supplementary Table 2).

In case the network suspected a change on an image,
it specified a certainty [0–100%] with which it assumed
the respective diagnose on the image (Figure 4). For each
animal, the highest certainty was noted and mean values were
calculated from the certainties per diagnosis, plane and sequence
(Figure 4). Since the network did not perform well in detecting
syringomyelias and neoplasias, no mean certainty values were
calculated for these diagnoses.

Of all 7,695 images used to test the network, 1,107 images
were mislabeled by the CNN, resulting in an error rate of 14.39%.
The label IVDE was incorrectly assigned 181 times (16.35%),
the label IVDP 27 times (2.44%), the label FCE/ANNPE 397
times (35.86%), the label syringomyelia 5 times (0.45%), the label
neoplasia 200 times (18.07%), and the label edema 22 times
(1.99%). 276 times (24.93%) an image was incorrectly labeled
as inconspicuous.

DISCUSSION

In this study, a supervised Deep Learning based CNN was
trained using thoracolumbar transverse or sagittal T1- and T2-
weighted MR images from dogs with various myelopathies,
including IVDE, IVDP, FCE/ANNPE, syringomyelia and spinal
cord neoplasms. Included cases of IVDE, IVDP and neoplasms
were either histopathologically or surgically confirmed. After
training, the CNN was able to identify IVDE, IVDP and
FCE/ANNPE lesions with a high sensitivity and specificity but
lacked to reliably detect syringomyelia or neoplastic lesions.
Currently, Deep Learning with CNNs is considered the state-of-
the-art method regarding pattern recognition and classification
of image data and has the ability to process huge amounts of
data with ease (7), as was the case in our study. Especially since
the introduction of cross-sectional imaging, an ever increasing
and already vast amount of data is produced every day with a
simultaneous lack of time and skilled personnel. Therefore, the
desire for automated computer-aided image analysis is apparent.
Apart from the opportunities such new tools could bring, there
are also limitations, as shown in the current study.

The training and testing data consisted of T1- and
T2-weighted sagittal and transverse MR images with the
aforementioned diagnoses. In the current study, we trained
the CNN only with cases where we had a high certainty in
the diagnosis, histopathologically or surgically confirmed. This
resulted in a variable data set for the different diseases on
which the CNN was trained and tested. The clinically more
common diseases were therefore easier identifiable than the not
as common ones. In addition, there was no balanced relationship
between sagittal and transverse as well as T1- and T2-weighted
images because the same number of images is usually not
generated for each animal and diagnosis for the corresponding
planes and sequences.

The most common diagnosis represented within the entire
data set was IVDE, consistent with the fact that disc herniation
is the most common spinal cord disease in dogs (2). A total
of 284 out of the 500 included dogs were considered to have
this diagnosis. As a result, the network has had solid training
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FIGURE 3 | (A–D) Sensitivity and specificity of the Convolutional Neural Network for the detection of intervertebral disc extrusion (green circle), protrusion (yellow

rhomb), fibrocartilaginous embolism/acute non-compressive nucleus pulposus extrusion (FCE/ANNPE; blue square), syringomyelia (red triangle), and neoplasia (cyan

hexagon) on T1-weighted and T2-weighted sagittal and transverse magnetic resonance images of spinal cords of dogs. 95% confidence intervals for sensitivity and

specificity are shown with vertical and horizontal bars, respectively.

success. For the sagittal T2-weighted sequences, the network
performed very well in detecting disc extrusions with a sensitivity
of 90.80% and a specificity of 98.98%. CNN learning is difficult
to comprehend as a human, as it is not clear which information
is used in the image to differentiate the various pathologies.
IVDE often presents as hypointense material in the vertebral
canal on T2-weighted images (1, 23), which could help to
distinguish them from pathologies that induce hyperintensity
on T2-weighted images like FCEs/ANNPEs or syringomyelia.
Saying this, this would only be the case on single images in the
same series, as on other images spinal cord edema secondary to
IVDE could be depicted as hyperintense lesion on T2-weighted
images. Hyperintensities on T2-weighted images are frequently
recognized for various pathologies. This fact in combination
with a small training data set could have resulted in the poor
performance for detecting syringomyelia and neoplastic lesions.
The more data a network is trained on, the better the detection
rate. A potential further limitation of this study, which should be
considered was that the MR images used as the basis of this study
were generated from two different MRI machines with different
field strengths. To what extent and if this fact had an impact
on the performance of the trained network is unknown. Future
studies need to explore how this can influence training and also
the application of CNNs in practice.

IVDP can be differentiated from IVDE and is relatively easy
diagnosed on MR images (24). IVDPs are often more midline
instead of lateralized and have a partial disc degeneration or

partial nucleus pulposus dehydration. On the other hand, IVDE
affects usually only one disc space and can have dispersed
material over multiple spaces. The CNN needed not as many
images as for IVDE to be trained and detect reliably IVDP on
the test series. It can be assumed that as clearer the pathology
presents on MR images, the less amount of image data is needed
to train the network. IVDPs present more consistently on MRI
than IVDEs because IVDEs may present right-sided, left-sided,
dorsal, or ventral. In addition, the prolapsed disc material may
spread across multiple intervertebral spaces and be of mixed
signal intensity.

A study by De Decker et al. evaluated MRI guidelines for
differentiation between thoracolumbar IVDE and IVDP in dogs.
Diagnostic accuracy was 79.6% after application of the guidelines
and interobserver agreement was moderate (kappa = 0.41). In
addition, diagnostic accuracy was significantly dependent on the
experience of the observer (25). In this study, the CNN achieved
good to very good results with regard to the accuracy with which
the diagnoses IVDE and IVDP were made. Deep Learning based
second opinion tools could therefore contribute to significantly
improve diagnoses in the future and reduce intra- and inter-
observer variability.

In addition, the success of the network is largely dependent
on the supervisor, who labels the data and thus provides the
basis for the algorithm (7). Nevertheless, the training data are
usually verified by clinical, surgical, and pathological reports
from different experts, which supports the decision of the labeler
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FIGURE 4 | Means of the highest certainties per correct diagnosis [extrusion,

protrusion, and fibrocartilaginous embolism/acute non-compressive nucleus

pulposus extrusion (FCE/ANNPE)], plane [sagittal (SAG) and transverse (TRA)],

and sequence (T1- and T2-weighted) of the Convolutional Neural Network are

shown. Bars represent 95% confidence intervals of the mean. In case of

extrusion, the detection certainty was significantly higher for transverse MR

images compared to sagittal images in each sequence (**p ≤ 0.01 and ****p ≤

0.0001 for T1- and T2-weighted images, respectively). This also applies for

FCE/ANNPE (****p ≤ 0.0001). Extrusions were detected with a significantly

higher certainty in T2-weighted images compared to T1-weighted images (*p

≤ 0.05 for sagittal and ***p ≤ 0.01 for transverse images). Concerning

extrusions, the system had the highest certainty for transverse T2-weighted

and the lowest certainty for sagittal T1-weighted images (****p ≤ 0.0001). No

significant differences between planes and sequences were detected for the

certainty of protrusions.

and thus provides a high degree of certainty for the adequate
“training method.”

This study shows that training success can be achieved even
with a small amount of data, as long as the individual labels
are not too similar. If certain patterns within the data are too
similar, training success cannot be achieved with a small amount
of data, as can be seen with the diagnoses “neoplasia” and
“syringomyelia.” In addition to the small amount of training
data for neoplasia, their expression can be very different among
patients concerning their morphology and their tissue of origin
(5). This makes it extremely difficult for the algorithm to
discern unique image characteristics of this diagnosis. In this
study, all types of spinal cord tumors were grouped together
and not differentiated. It might be possible to train a CNN
with significantly more MR images of spinal cord tumors, not
only in terms of detecting but also distinguishing the tumor
type. This might provide a challenge in veterinary medicine
as histopathologically confirmed data sets would be difficult to
retrieve and non-confirmed data set would be suboptimal.

In this study, adding spinal cord tumors did not add value to
the overall success of the CNN. Among all mislabeled images,
the label “neoplasia” was the second most common mislabeled
image, accounting for 18.07%. In order to train the CNN with

images of spinal cord neoplasms, post-contrast images were
intentionally omitted to evaluate whether the algorithm could
detect altered structures without contrast agent. However, as a
result, the CNN incorrectly assigned the label “neoplasia” more
frequently. Overall, the network showed little success in detecting
spinal cord tumors on any sequences.

Regarding the diagnosis of syringomyelia, the CNN obtained
the worst results. Although syringomyelia is fundamentally very
different from the other pathologies due to its relatively wide,
fluid filled cavities in the spinal cord, the CNN incorrectly
defined them most often as “inconspicuous.” This can likely be
explained by the fact that syringomyelia resemble the epidural
fat in parasagittal cross-sectional T2-weighted images, which also
appears to be hyperintense (26). In addition, the network was
trained with only 35 images labeled “syringomyelia.” This is due
to the fact that only thoracolumbar MR images were used for
training in this study, and syringomyelia do not in all cases extend
into the thoracolumbar spinal cord. On transverse MR images,
syringomyelia were often confused with FCEs/ANNPEs because
the network was trained with significantly more images of FCEs
and therefore may have recognized the central hyperintensity in
the spinal cord as latter more frequently. With a larger data set
of syringomyelia, it might be probable that the CNN could better
distinguish different hyperintensities.

With regard to the detection of FCEs and ANNPEs, which
were combined in this study, the CNN performed very well,
especially on transverse T2-weighted images. FCEs and ANNPEs
accounted for the second largest proportion of training data,
which is reflected in the training success. At the same time, the
FCE/ANNPE label was the most common misattributed label,
accounting for 35.86% of all misattributed labels. Other causes
of hyperintensity in the spinal cord than FCE/ANNPE would
include syringomyelia or edema due to disc herniation (27).
However, the separate label “edema” was introduced for this
event as well. In principle, the CNN is very efficient at detecting
hyperintensities in the spinal cord but cannot necessarily always
differentiate them.

In this study, FCEs and ANNPEs were combined and not
differentiated. However, Fenn et al. showed that inter-observer
agreement to differentiate FCEs and ANNPEs on MR images
based on certain criteria was moderate (kappa = 0.56) and
intra-observer agreement was moderate to good (kappa =

0.47 and 0.79, respectively) (28). This demonstrates that even
board-certified veterinary radiologists and neurologists may
have difficulty assigning hyperintensities on MR images to
the correct pathologies. In contrast, another study by Specchi
et al. yielded excellent inter-observer agreement with respect
to the differentiation of FCEs and ANNPEs on MRI using
directional patterns and length of intramedullary hyperintensity
on T2-weighted MR images as well as enhancement patterns in
postcontrast T1-weighted MR images as criteria (21).

In future, CNNs could relate image data to signalment
and clinical history simultaneously and better results in
differentiating various pathologies could be obtained. For
example, ANNPEs are often associated with traumatic events and
FCEs with a peracute onset of non-progressive and non-painful
clinical signs (3, 28), whereas syringomyelia is particularly

Frontiers in Veterinary Science | www.frontiersin.org 7 November 2021 | Volume 8 | Article 721167

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Biercher et al. Machine Learning Thoracolumbar MRI Diagnosis

common in certain breeds and develops because of congenital
anomalies, leading to spinal pain (6). It is often necessary to add
other sequences in addition to T1- and T2-weighted images, for
example, to differentiate hemorrhage or tissue-bound from free
fluid. Since this network was trained using only T1- and T2-
weighted images, it would reach its limits. However, in principle,
it would be possible to train a network using further sequences,
which could be evaluated in future studies.

Several studies on spinal cord diseases have shown that there
are not only discrepancies in the interpretation of MR images
between radiologists with different levels of experience, but also
that the same imager can make different diagnoses at different
time points on the same MR images (25, 28). Well-trained
evidence-based algorithms could contribute to less inter- and
intra-observer variability in practical application and contribute
to a more accurate diagnosis as a computer-assisted second
opinion. So far, this network is only able to mark the assumed
altered area and make a prediction regarding its pathology.
Closer image analysis with respect to localization in the vertebral
column would have to be performed by human expertise.
Particularly in the case of disc herniations worthy of surgery, it
is important in practice to analyze the MR images with respect
to the side of the disc herniation and to determine over how
many intervertebral spaces the prolapsed disc material extends.
The presence of blood also influences surgical planning (29).

Another advantage of the CNN, however, is that it assigns a
certainty to its predictions. Similarly, a radiologist would make
certain diagnoses with a high degree of certainty or may be
uncertain about a diagnosis. If the CNN is used as a second
opinion tool, the CNN’s diagnosis can be better assessed on the
basis of the certainty. Regarding this study, the network made
diagnoses on transverse MR images with higher certainties than
on sagittal MR images.

Overall, the training success of the CNN regarding the results
of sensitivities, specificities, certainties and an error rate of
14.39% can be considered successful and suggests that this CNN
is capable of detecting and differentiating various spinal cord
pathologies. Since this CNN was trained with a total of 1,622
labels, extended training with more labels could lead to an even
better performance of the network.

Limitations of this study are the comparatively small data
set with an uneven distribution of each pathological entity,
resulting in different sensitivities and specificities for detecting
each pathology. Future studies could evaluate whether CNNs
would achieve better results in detecting and differentiating
various spinal cord pathologies with larger data sets.

CONCLUSION

Deep Learning-based CNNs have the potential to successfully
learn and make predictions based on MR images in terms
of detecting and distinguishing between different spinal cord
pathologies in dogs. In this study, despite a limited data set,
the diagnoses IVDE, IVDP, and FCE/ANNPE could be detected
and distinguished from each other. In contrast, the success of
the predictions regarding the diagnoses “syringomyelia” and

“neoplasia” was insufficient. Since the success of the network is
largely dependent on the number of training data, larger data
sets should be used in future studies. Future studies also need to
explore the influence of the field strength and the brand of the
MRI machine on the performance of CNNs.

CNNs should not be viewed as the sole diagnostic tool,
but rather as a “second eye.” In this context, CNNs can be
trained with almost infinite data and their learning potential can
therefore be increased immeasurably over time.
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