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Abstract: Patients with coronary microvascular dysfunction (CMD) have significantly higher
rates of cardiovascular events, including hospitalization for heart failure, sudden cardiac death,
and myocardial infarction (MI). In CMD, several pathophysiological changes lead to functional and
structural abnormalities in the coronary microvasculature, which disrupt the ability of the vessels to
vasodilate and augment myocardial blood flow in response to increased myocardial oxygen demand,
causing ischemia and angina. With the advent of more advanced non-invasive cardiac imaging
techniques, the coronary microvasculature has been subjected to more intense study in the past two
decades—this has led to further insights into the diagnosis, pathophysiology, treatment, prognosis
and follow-up of CMD. This review will highlight and compare the salient features of the currently
available non-invasive imaging modalities used in these patients, and discuss the clinical utility of
these techniques in the workup and management of these patients.
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1. Introduction

In the past 10 to 15 years, coronary microvascular dysfunction (CMD) has gained more recognition
and is being increasingly diagnosed as a cause of angina and morbidity in patients who have
objective evidence of myocardial ischemia but do not have obstructive coronary artery disease
(CAD) on angiography. These patients often experience “microvascular angina” [1,2], which is as
debilitating as patients who have obstructive CAD. Their prognosis is also not benign as previously
believed, and they have higher rates of cardiovascular events, including myocardial infarction (MI),
hospitalization for unstable angina, heart failure and sudden cardiac death, as well as a reduced quality
of life [3–5]. Diagnostic testing, either in the cardiac catheterization laboratory, or via noninvasive
imaging modalities, is useful to confirm the diagnosis, improve risk stratification, guide therapy and
provide objective disease monitoring tools in these patients.

2. Overview of the Coronary Microvascular Circulation

2.1. Anatomic and Physiological Considerations

The coronary microvasculature represents the distal-most compartment of the coronary arterial
system and comprises intramural arterioles with diameters of less than 100 µm (Figure 1) [6]. Their role
is to match myocardial blood supply and oxygen consumption to demand by regulating coronary
blood flow. This is achieved by coordinating the vascular resistance within the different arterioles
and smaller, distal vessels in the coronary arterial tree in response to the release of metabolites by the
myocardium, which occurs when there is an increase in myocardial oxygen consumption [7,8].
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Figure 1. Anatomical and functional classification of the coronary macro and micro-arterial system. 

Coronary microvascular function is a crucial determinant of perfusion. Coronary autoregulatory 
mechanisms maintain a relatively constant coronary perfusion despite wide range of variations in 
perfusion pressures [9,10]. This is achieved through changes in coronary resistance. Coronary flow 
decreases significantly, causing myocardial ischemia, once perfusion pressure falls below the 
accepted range. The complex control of the resistance in the coronary arterial tree and 
microcirculation involves shear-mediated neurohormonal regulation, metabolic regulation, and 
myogenic control [6]. 

2.2. Pathogenesis 

CMD results from heightened sensitivity of the coronary microcirculation to vasoconstrictor 
stimuli associated with a limited microvascular vasodilator capacity. This manifests as suboptimal 
coronary vasodilator response to exercise or pharmacological stress, which can be measured by 
various invasive and noninvasive techniques [3,7,11,12]. The role of microvascular inflammation as 
a trigger of CMD has been a subject of research in the field of preventive cardiology—there is 
significant evidence that microvascular dysfunction is associated with increased systemic 
inflammation, and may precede or coexist with coronary atherosclerosis [10]. Patients with systemic 
inflammatory conditions, such as systemic lupus erythematosus or rheumatoid arthritis found to 
have nonobstructive coronary artery disease (CAD) by angiography, often demonstrate impaired 
coronary flow reserve (CFR), which is directly related to the disease duration [9,13,14]. 

Many patients with CMD also have macrovascular atherosclerosis, albeit usually nonobstructive 
disease [15]. CMD plays an important role in the pathogenesis of several cardiovascular syndromes 
such as HFpEF, and the cardiomyopathies associated with stress, obesity and diabetes [16,17]. 

3. Prognosis and Outcomes 

Patients with CMD do not have a benign prognosis as was traditionally believed. They have a 
higher incidence of cardiovascular events, including hospitalization for heart failure, sudden cardiac 
death, and MI as compared to age-matched controls, irrespective of gender [18–22] Older age, 
hypertension, diabetes, and smoking have been associated with increased mortality, whereas 
hyperlipidemia, family history of premature CAD, or pretest CAD likelihood do not impact the 
prognosis significantly [2]. The risk of adverse outcomes is higher in women, in whom angina first 
occurs in the perimenopausal period. In a systematic review of 1694 patients with CMD by 
Vermeltfoort et al., the rate of MI, revascularization or death at 5 years was 1.5%, and rate of overall 
cardiac events (including new CAD, heart failure and cardiovascular events) was 4.8% [23]. In the 
WISE study, women without obstructive CAD but with evidence of myocardial ischemia (diagnosed 
by abnormal magnetic resonance spectroscopy) were similarly noted to have more adverse 
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Coronary microvascular function is a crucial determinant of perfusion. Coronary autoregulatory
mechanisms maintain a relatively constant coronary perfusion despite wide range of variations in
perfusion pressures [9,10]. This is achieved through changes in coronary resistance. Coronary flow
decreases significantly, causing myocardial ischemia, once perfusion pressure falls below the accepted
range. The complex control of the resistance in the coronary arterial tree and microcirculation involves
shear-mediated neurohormonal regulation, metabolic regulation, and myogenic control [6].

2.2. Pathogenesis

CMD results from heightened sensitivity of the coronary microcirculation to vasoconstrictor
stimuli associated with a limited microvascular vasodilator capacity. This manifests as suboptimal
coronary vasodilator response to exercise or pharmacological stress, which can be measured by various
invasive and noninvasive techniques [3,7,11,12]. The role of microvascular inflammation as a trigger of
CMD has been a subject of research in the field of preventive cardiology—there is significant evidence
that microvascular dysfunction is associated with increased systemic inflammation, and may precede
or coexist with coronary atherosclerosis [10]. Patients with systemic inflammatory conditions, such as
systemic lupus erythematosus or rheumatoid arthritis found to have nonobstructive coronary artery
disease (CAD) by angiography, often demonstrate impaired coronary flow reserve (CFR), which is
directly related to the disease duration [9,13,14].

Many patients with CMD also have macrovascular atherosclerosis, albeit usually nonobstructive
disease [15]. CMD plays an important role in the pathogenesis of several cardiovascular syndromes
such as HFpEF, and the cardiomyopathies associated with stress, obesity and diabetes [16,17].

3. Prognosis and Outcomes

Patients with CMD do not have a benign prognosis as was traditionally believed. They have a
higher incidence of cardiovascular events, including hospitalization for heart failure, sudden cardiac
death, and MI as compared to age-matched controls, irrespective of gender [18–22] Older
age, hypertension, diabetes, and smoking have been associated with increased mortality,
whereas hyperlipidemia, family history of premature CAD, or pretest CAD likelihood do not impact
the prognosis significantly [2]. The risk of adverse outcomes is higher in women, in whom angina first
occurs in the perimenopausal period. In a systematic review of 1694 patients with CMD by Vermeltfoort
et al., the rate of MI, revascularization or death at 5 years was 1.5%, and rate of overall cardiac events
(including new CAD, heart failure and cardiovascular events) was 4.8% [23]. In the WISE study,
women without obstructive CAD but with evidence of myocardial ischemia (diagnosed by abnormal
magnetic resonance spectroscopy) were similarly noted to have more adverse cardiovascular outcomes,
notably higher rates of hospitalization with unstable angina, repeat catheterization, and greater
treatment costs [1].
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4. Clinical Variants of CMD

CMD can be differentiated into three major categories: [6,12]

A. Primary CMD:

Microvascular dysfunction in the absence of imaging and clinical evidence of obstructive CAD
or myocardial disease constitutes this category. It can be a precursor of CAD and/or can result from
vasomotor instability secondary to genetic or acquired cardiovascular risk factors. This condition has
also been variably termed microvascular angina or syndrome X [24].

B. Secondary CMD:

This is further classified in to two categories.

(i) CMD in the presence of obstructive CAD. Microvascular dysfunction can concomitantly
exist with stable and unstable CAD.

(ii) CMD in the presence of myocardial disease. Microvascular dysfunction can occur secondary
to arterial remodeling, intimal hypertrophy along with interstitial and perivascular fibrosis
resulting from various cardiomyopathies.

C. Iatrogenic CMD:

Coronary microcirculation can become dysfunctional subsequent to a percutaneous coronary
intervention that can lead to vasoconstrictor response and/or distal embolization caused at the time
of revascularization.

5. Assessment of Microvascular Blood Flow

Direct assessment of microvascular flow is complex as no technique allows direct visualization of
the coronary microcirculation. Microvascular perfusion cannot be directly assessed through coronary
blood flow [25]. Myocardial blood flow (MBF) represents an integrated flow through both the macro and
microcirculation (Figure 1). Thus, the assessment of MBF, via dynamic imaging modalities, provides the
basis of CMD assessment. In the absence of obstructive epicardial disease, any reduction in the MBF is
assumed to be caused by disruption in the coronary microcirculation causing CMD.

In clinical practice, non-invasive measurement of CMD relies on the principle of the coronary flow
reserve (CFR). CFR represents the increase in coronary blood flow (CBF) that is achieved in going from
basal coronary perfusion to maximal coronary vasodilation in response to a vasodilatory stimulus [26].
In patients with CAD, the extent of the reduction in CFR is directly related to the severity of stenosis,
whereas in those with angiographically normal arteries, it is a marker of microvascular dysfunction.
Thus, CFR does not differentiate epicardial from microvascular disease per se, but once angiography
shows an absence of stenosis, it can be used as an index of CMD.

CFR is determined by taking measurements of coronary blood flow both at rest (basal flow) and
with maximal hyperemia achieved by pharmacological/vasodilator stress. CFR is then expressed as
the ratio of blood flow during hyperemia to the blood flow at rest [6,9,12,27,28]. There is no unified
range for a normal CFR. This is because CFR measurements are affected by age, sex, the method used
for its determination, rate–pressure product, unrecognized cardiovascular risk factors in supposedly
healthy individuals, and test–retest variability [1,22,29]. A coronary flow reserve of less than 2.0 is
often considered abnormal. Stress MBF is usually measured in day to day clinical practice via either
PET or CMR. If an institution does not have either of these modalities, one can employ dynamic
SPECT acquisition as described using solid state detectors, or MCE. Both of these are less sensitive
than the two aforementioned techniques, but can be coupled with a diagnostic history to establish a
clinical diagnosis.

The reference standard for measurement of CFR and hence diagnosis of CMD used to be invasive
coronary reactivity testing (CRT). This involves the use of vasoactive substances to test endothelial



Diagnostics 2020, 10, 0679 4 of 15

and nonendothelial-dependent coronary function. CMD measured by CRT predicts adverse events
in both men and women with and without obstructive CAD [3,22]. Standard noninvasive imaging
techniques (stress echo and myocardial perfusion SPECT) are not reliable sources for the estimation
of MBF and hence CFR and are often normal in CMD. Advancements in cardiovascular imaging
techniques have revolutionized the noninvasive detection of CMD. Another concept in the evaluation
of epicardial stenosis concerns the growing clinical application of fractional flow reserve (FFR). FFR is
a pressure-derived index, expressed as a ratio of the maximal achievable CBF in the presence of an
epicardial coronary stenosis to the maximum achievable flow if that artery were normal. This can be
measured using a pressure wire in the coronary artery after administration of a vasodilator such as
adenosine. In this case, pressure is used as a surrogate for flow using Poiseuille’s formula. Thus, FFR is
calculated as the ratio of mean pressure distal (Pd) to a stenosis to the pressure proximal to the stenosis
i.e., the aortic pressure, Pa, during maximal hyperemia. In stable coronary artery disease (CAD),
the evidence base supports revascularization of lesions with an FFR of ≤0.80, whereas CAD associated
with an FFR of >0.80 can be managed medically. The FAME-2 trial showed that FFR-guided PCI with
drug-eluting stents plus medical therapy, as compared with the medical therapy alone, resulted in
significantly improved clinical outcomes among patients with functionally significant stenoses and
stable coronary artery disease [30]. The difference between the two strategies was driven by an increase
in the need for urgent revascularization in the medical-therapy group. Computation fluid dynamics
have now made it possible to assess FFR noninvasively using cardiac CT—this technique, called FFRCT,
relies on myocardial segmentation and simulated flow using Navier-Stokes equations and correlates
well with invasively measured values.

6. Review of Non-Invasive Modalities for CMD Assessment

6.1. Echocardiography

Exercise stress or dobutamine contrast echocardiography can detect ischemia in the presence
of a hemodynamically significant epicardial stenosis; however, it has limited utility in the diagnosis
of CMD if an ultrasound contrast agent is not employed. The reason for this is that CMD usually
produces subendocardial ischemia, whereas gross hypokinesis by qualitative visual examination, as is
done frequently for large vessel stenosis, requires a greater amount of transmural ischemic burden
in the myocardial segments subtended by the stenotic artery. Similarly, patchy CMD would not be
detected. In addition, there can be significant inter-observer variability in the interpretation of mild
localized hypokinesia and hence results are not very reproducible [31,32]. The use of echocardiography
to detect CMD relies mainly on myocardial contrast echocardiography (MCE), which is a low-risk
bedside and inexpensive procedure to quantify MBF. Calculation of MBF, during a constant venous
infusion of microbubble contrast, depends on the microvascular cross-sectional area as well as the
mean velocity of microbubbles [33]. The rate of reappearance of microbubbles after destruction with
ultrasound waves gives the mean velocity, whereas measuring their concentration in the myocardium
provides the cross-sectional area [34]. Vogel et al. validated this method against PET with a correlation
coefficient of 0.88 when measuring MBF in healthy volunteers [32]. Coronary flow velocity reserve
(CFVR), using pulsed-wave Doppler sampling of the proximal left anterior descending coronary artery,
provides another echocardiographic method of MBF assessment [35–37]. It is the ratio of CFV at stress
to rest. CFVR correlates well with flow acquired from an intracoronary Doppler wire [35,38] and was
able to identify a high prevalence of CMD in patients with heart failure with preserved ejection fraction
in the PROMIS-HFpEF trial [39,40]. However, this technique correlated poorly with the gold standard,
PET-estimated MPR, in the iPOWER study [31]. Echocardiographic assessment of CMD is limited since
MBF assessment using contrast or CFVR is operator-dependent. Image quality is affected by artifacts,
particularly in obese and patients with lung disease. Difficulties in post-processing due to movement
of the imaging frame during the replenishment of microbubbles also poses a challenge. The use of
microbubbles for myocardial perfusion assessment is currently not reimbursed in the United States,
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further hampering its clinical adoption. Nevertheless, it can provide an initial, inexpensive and crude
assessment of microvascular perfusion and CMD.

6.2. Computerized Tomographic (CT) Angiography

The advent of multi-detector dynamic CT imaging has improved the capability of CT to go beyond
anatomic assessment of coronary luminal stenosis alone. Newer technological advances such as 256
and 320 row detectors allow for single heartbeat acquisition, which permits serial myocardial and left
ventricular cavity sampling for quantifying the MBF [41]. Iodinated contrast is injected with prospective
ECG triggering and scanning is performed every other RR interval to follow the first pass of contrast
through the myocardium at frequent intervals. Mathematical modeling is then applied to these data
to produce estimates of absolute myocardial flow. Various modeling techniques can be used, such as
arterial input function, upslope analysis, or model-based deconvolution. Current state-of-the-art CT
scanners have a spatial resolution of 0.5 mm that permits one to track the difference in attenuation
between the endocardium and the epicardium. This delta gradient can be used to model MBF via
the microcirculation. Patients with CMD will have a lower ratio of endocardial attenuation values to
that of epicardial attenuation values, signifying reduced subendocardial perfusion. This technique
relies heavily on adequate spatial resolution and a lack of beam hardening artifacts which are not
just theoretical concerns, and thus it is not widely used in clinical practice currently. Furthermore,
thinner myocardial wall thickness as in dilated cardiomyopathy can make transmural gradients of
attenuation difficult to appreciate. Lastly, the rapid flow of contrast medium via the microcirculation
itself can produce transient endothelial functional changes as well as epicardial vasodilatation, all of
which can confound the normal physiology [6,42,43]. Coronary anatomic and myocardial perfusion
assessment can be obtained using CT angiography (CTA) in combination with CT perfusion (CTP) [44].
CTA-derived FFR (FFRCT) is a sensitive tool for hemodynamic evaluation of lesion specific ischemia.
It involves quantification of MBF and FFRCT at a specified point in the coronary vasculature through
computational fluid dynamics and uses a 3-D derived coronary model that simulates maximal
hyperemia. The relationship between FFRCT and CMD is not fully defined yet [12,43,45], but Nørgaard
et al. showed that a low ratio of CTA-derived coronary luminal volume to myocardial mass was an
independent predictor of ischemia in nonobstructive coronary disease [46]. Grover and colleagues
expanded on the same concept and used coronary CTA derived mean total coronary luminal volume
(V) and the mean myocardial mass (M) to compute the V/M ratio (Figure 2). The mean ratio of coronary
luminal volume to myocardial mass (V/M) was significantly lower in the CMD group (25.6 ± 5.9 mm3/g
vs. 30.0 ± 6.5 mm3/g; p = 0.007) [47]. The major advantages of this method are the superior spatial
resolution of CT and rapid scan time. It also provides the opportunity to perform accurate anatomical
and functional assessment of both the myocardium and the coronary circulation within one examination.
Even though this technology can potentially identify CMD, CTA has limitations and is thus not routinely
used for CMD assessment—some limitations include radiation exposure, caution regarding the use of
iodinated contrast agents in renal insufficiency, and the potential for contrast-mediated vasodilation to
overestimate the MBF [48,49].
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Figure 2. Calculation of V/M ratio from coronary computed tomography angiography (CTA) involves
computation of the coronary volume (V, shown in green) and myocardial mass (M, shown in orange).
A ratio of <2 denotes coronary microvascular dysfunction (CMD) in the absence of significant
epicardial stenosis.

6.3. Single-Photon Emission Computed Tomography

SPECT imaging has had limited diagnostic utility in the past for assessment of CMD,
largely because of pharmacokinetics of the radiotracers used for SPECT myocardial imaging. The most
commonly used technetium-based SPECT perfusion radiotracers (99mTc-sestamibi, 99mTc-tetrofosmin
and 99m Tc-teboroxime) have relatively low first-pass extraction, show significant roll-off of radiotracer
uptake at higher flow rates, and have significant liver or intestinal uptake. This, along with poor
camera sensitivity and temporal resolution (with the common sodium-iodide cameras), accounts for
the suboptimal quantification of MBF [6,29].

However, with the recent advent of high-sensitivity cardiac cameras, iodinated rotenone
compounds (123I-ZIROT,123I-CMICE-013) and solid-state high sensitivity cadmium-zinc-telluride
detectors (CZT), dynamic SPECT can be used for quantification of MBF and hence for the assessment of
CMD [6,50]. Agostini et al. assessed the feasibility of MBF and MFR estimation using dynamic SPECT
in the prospective WATERDAY study. They validated dynamic CZT-SPECT (against 15O–water PET)
as having a high diagnostic value for detecting impaired MFR in patients with stable CAD [50].

Dynamic SPECT protocols for MBF assessment might not achieve the accuracy and robustness of
PET imaging, but could allow clinically useful measurements of MFR in a larger number of sites that
do not have access to PET, and at a lower cost. Multi-center studies with larger cohort of patients are
needed to confirm the robustness and reproducibility of these SPECT-derived measurements.

6.4. Positron Emission Tomography (PET)

PET provides global and regional measurements of perfusion, quantitative MBF and function,
both at stress and rest, in a single examination. Quantification of MBF has been extensively validated
with PET and it is the most widely used noninvasive modality for the clinical assessment of
CMD [51]. Dynamic first pass PET scanning provides accurate MBF measurements. It involves
the use of post-processing software that performs automated segmentation and arterial input function
measurements to compute the regional and global stress and rest MBF (in milliliters of blood per
minute per gram of myocardium) [25,52,53].

The commonly used PET radiotracers are 13N-ammonia, 82Rb, and 15O-water. 82Rb is the most
commonly used radiotracer because it requires only an on-site generator as opposed to a cyclotron [54].
It has the disadvantage of low extraction fraction, significant roll-off at high coronary flows, and higher
radiation as compared to 13N-ammonia and 15O-water, which are better agents for MBF estimation
considering higher first pass uptake (100% for 15O-water) and minimal roll-off. However, the latter 2
are not as readily available for day-to-day clinical use.

PET has been validated against invasive modalities of flow estimation in numerous studies. Absolute
quantification of MBF and CFR is highly reproducible over a wide range of MBF (0.5–6 mL/g per minute) [6].
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PET can also simultaneously assess all three coronary distributions, thus allowing for a more accurate
assessment of CMD, which can have heterogeneous regional myocardial distribution [55].

CMD detected by PET as abnormal myocardial perfusion reserve (MPR) has also been correlated
with adverse outcomes (Figure 3). Ziadi et al. reported that MPR quantified using 82Rb PET predicted
hard cardiac events independent of the summed stress score and other parameters. They also suggested
that routine assessment of 82Rb PET–quantified MBF and MPR could improve risk stratification for
patients being investigated for ischemia. PET has also been used to validate CMD seen in metabolic
syndrome patients [56]. These findings are particularly profound in women, indicating important
sex-related differences in the pathogenesis of CMD [1,15,19,22]. Despite the diagnostic and well
validated prognostic data in PET-derived MBF/CFR, it is not without its limitations. It entails high
radiation exposure and cost, depending on which radiotracer is used [57].
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Figure 3. Rubidium-82 regadenoson stress-rest PET (positron emission tomography) in a 64-year-old
man with persistent, recurring angina and only mild epicardial CAD (coronary artery disease) on
invasive angiography done at an outside hospital. There is abnormal global myocardial perfusion
reserve (MPR) <2 consistent with CMD (coronary microvascular dysfunction). He was prescribed
Ranolazine and high intensity statin therapy, and had dramatic improvement in 1 months’ time.
LAD = Left anterior descending coronary artery, RCA = Right coronary artery, LCX = Left circumflex
artery, TOT = Total, LV = Left ventricle, RV = Right ventricle.

6.5. Cardiac MRI

Cardiac magnetic resonance (CMR) is an ideal noninvasive modality for assessing patients with
microvascular angina/CMD. Two types of stress CMR modalities have been tested—stress perfusion
and stress T1 mapping.

Stress CMR perfusion can detect myocardial perfusion abnormalities with high spatial resolution
without exposure to ionizing radiation. The qualitative evaluation is done by the visual analysis of
first-pass gadolinium images [58,59]. This approach does provide a reliable diagnostic tool for single
or two-vessel CAD. However, visual assessments can be less accurate when MBF is globally reduced,
i.e., in three-vessel disease or in CMD. It also lacks reliable quantification of the severity of anatomic
stenosis or distinguishing diffuse three-vessel disease from CMD.

Quantitative and semi-quantitative evaluation of the first-pass perfusion images can be used to
calculate objective parameters of perfusion, such as the global stress myocardial flow reserve (SMFR)
and the myocardial perfusion reserve index (MPRI), which is an indexed ratio of perfusion-time
intensity curve upslopes in response to vasodilator stress (Figure 4). Other, more complex approaches
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focus on the detection of diffuse myocardial fibrosis, noninvasive measurement of cellular oxygenation,
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regional stress MBF <1.94 mL/g/min were likely to have obstructive one- or two-vessel disease. Global 
stress MBF <2.25 mL/g/min with visual perfusion defects was likely to be obstructive three-vessel 
disease (Figure 5) [61]. 

Figure 4. Stress CMR (Cardiovascular Magnetic Resonance) perfusion in a 67-year-old woman with
angina and negative coronary CTA (computed tomography angiography) that had shown minimal
calcific plaque with <10% stenosis in the proximal left anterior descending artery. After regadenoson
stress, no visual reversible perfusion defect was noted, indicating the absence of ischemia from epicardial
stenosis; however, the MPRI (myocardial perfusion reserve index) is computed at 1.97, consistent with
the diagnosis of CMD (coronary microvascular dysfunction). She was initiated on amlodipine, a high
intensity statin and long-acting nitrate therapy and had resolution of anginal symptoms after 2 weeks.
In the top panel, Green contours depict epicardium of the left ventricle, Red depicts the endocardial
border, and White is the mid myocardium. In the bottom panel, the Orange curve is the signal
intensity of blood pool in the left ventricle plotted against time—during Stress regadenoson imaging
on the right, and at Rest on the left. The other colored curves depict various segments of the left
ventricular myocardium.

Kotecha et al. showed that an automated pixel-wise quantitative myocardial perfusion mapping
technique can be used to detect and differentiate CMD from three-vessel disease with good accuracy.
They suggested an algorithm for the detection of obstructive coronary artery disease and CMD based
on regional and global stress MBF (Figure 3). Patients with global stress MBF < 2.25 mL/g/min without
visual defects are likely to have CMD. In comparison, patients with regional perfusion defect and regional
stress MBF <1.94 mL/g/min were likely to have obstructive one- or two-vessel disease. Global stress MBF
<2.25 mL/g/min with visual perfusion defects was likely to be obstructive three-vessel disease (Figure 5) [61].
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Another novel CMR technique, known as T1 mapping, represents a breakthrough in the
non-invasive assessment of microvascular ischemia when performed during vasodilatory stress [62,63].
It has the ability to noninvasively diagnose and differentiate between epicardial CAD and CMD using
T1 relaxation time without the use of gadolinium contrast. T1 represents the exponential recovery
of the longitudinal component of magnetization (Mz) back towards its thermal equilibrium and is a
fundamental magnetic resonance property. It is influenced by intrinsic tissue properties, the extrinsic
tissue environment, as well as the hardware and software used for the measurement [63]. T1 mapping
displays the T1 values of imaged tissues on a voxel-by-voxel basis, enabling quantitative myocardial
tissue characterization [64]. T1 predominantly detects free water, and increased free water content in
tissue, such as edema or water collecting in the expanded interstitial space and hence native myocardial
T1 time is prolonged with increased free water content [65,66].

Assessment of the coronary vasculature using T1 mapping relies on the principle of coronary
vasodilatory reserve and myocardial blood volume (MBV). In healthy myocardium and coronary
vasculature, MBV may increase two-fold during coronary vasodilatory stress, representing significant
coronary reserve. This corresponds to a 6% increase in myocardial T1 during adenosine vasodilatory
stress [62]. In patients with obstructive CAD, the coronary vasodilatory reserve is diminished,
because the microcirculation in resting ischemic myocardium downstream from the significant stenosis
undergoes compensatory vasodilation to maintain myocardial perfusion [67,68]. This process increases
the resting MBV and hence the free water content in the ischemic myocardium, which is detectable by
using T1 mapping. Liu et al. verified these findings by showing that the myocardium downstream
of non-obstructive coronary arteries had normal resting T1 with an increase of >4% during stress.
Myocardial territories downstream of obstructive epicardial CAD (i.e., those with invasive fractional
flow reserve of <0.8) had an elevated resting T1, which augmented minimally with adenosine stress,
leading to a near-zero stress T1 response (delta T1 < 1.5%). The presence of CMD (FFR > 0.8 and index
of microvascular resistance >25 units) was characterized by a blunted but detectable stress T1 response
(delta T1 1.5 to 4%) compared with myocardium downstream of obstructive epicardial CAD [64].

The difference in diagnostic performances of perfusion CMR and stress T1 mapping is due to
different mechanisms for ischemia detection as described above. Hence, although MBF, as assessed
quantitatively by perfusion CMR, is similar downstream of obstructive and nonobstructive coronary
arteries, there is a significant observed difference in resting myocardial T1.

Arterial spin labeling (ASL) is an emerging technique that has been used successfully in non-cardiac
MR modalities in the past to measure regional cerebral, renal and skeletal muscle blood flow [69–71].
In ASL, there is a magnetic tag given to the protons in arterial blood. This is different in magnetization
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from that of the surrounding soft tissue. Once a ‘control’ scan is obtained without tagging of the
arterial blood, we can measure the signal difference of the tagged blood flow from the untagged image.
The difference between these two images reflects the amount of tagged blood that has been delivered
to the imaging region and, with appropriate tagging and imaging methods, reflects local tissue blood
flow [72,73]. Zun et al. showed that ASL CMR detects a clinically relevant increase in MBF with
vasodilation and these measurements were consistent with ranges established by quantitative PET [73].
Currently, ASL is in the technological developmental stage and holds future promise in detection
of CMD.

More recently, arterial blood deoxygenation techniques with hyperventilation have been used to
detect CMD in heart transplant recipients using oxygen sensitive CMR sequences. CMD can occur even
in the absence of overt allograft vasculopathy and increases the risk of adverse cardiac outcomes [74].

Non-contrast-based CMR techniques are the future of CMR-derived CMD assessment. Besides higher
diagnostic performance, they have the potential to address the limitations of gadolinium-based MBF
assessments including imaging artifacts, long scan time, interobserver variability, problems with the
absolute quantitation of MBF, restricted use in chronic kidney disease patients and a lack of widespread
availability of quantitative first-pass sequences [29].

7. Treatment

The multifactorial pathophysiology and varied phenotypes of CMD makes it a challenging clinical
entity to manage. Treatment thus far has been empirical and involves cardiovascular disease (CVD)
risk factor modification and conventional pharmacological options for obstructive atherosclerotic CAD.
Lifestyle modification with smoking cessation, weight loss, regular exercise and improved nutrition
along with the optimization of underlying hypertension, diabetes mellitus and dyslipidemia has been
shown to improve overall ischemic burden by improving microvascular circulation [15].

Pharmacological therapies to target microvascular angina can be chosen based on specific CMD
phenotype. Antiplatelets and lipid lowering drugs are the standard of care because of the strong
association of atherosclerosis and CMD. Statins with evident mortality benefit in obstructive CAD have
been shown to improve microvascular perfusion by increasing CFR [75]. Symptomatic management
of involves use of anti-anginal agents. Beta-blockers and short acting nitrates can relieve symptoms
of microvascular angina. In cases where coronary vasospasm is suspected to be the predominant
pathophysiological mechanism, calcium channel blockers and long-acting nitrates can provide symptom
relief. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers can prove helpful
by improving microvascular perfusion. There is a theoretical benefit of using anti-anginal agents
such as ranolazine in refractory cases of CMD-mediated angina. However, recent studies have shown
no significant improvement in symptoms or change in coronary microvascular function in patients
with CMD [76,77]. Surgical management is limited to weight reduction surgery targeting the CMD
phenotype in morbidly obese patients and has been shown to improve microvascular function [78].
Novel therapies in trials are targeting the role of anti-inflammatory drugs and endothelial vasodilators.
The UMPIRE trial was designed to evaluate the effect of udenafil, a phosphodiesterase-5 inhibitor,
in female patients with CMD. It aims to study the effect of udenafil on CMD symptoms as well as
perfusion defect size using adenosine-stress CMR [79].

8. Conclusions

A number of validated, noninvasive cardiovascular imaging modalities are presently available to
measure MBF and CFR in the setting of CMD (Table 1 summarizes the strengths and weaknesses of
non-invasive imaging modalities for CMD diagnosis). Quantifiable end points and algorithms have
been developed for the diagnosis of CMD and will be helpful for future studies.
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Table 1. Strengths and limitations of the various common noninvasive modalities for the diagnosis
of CMD.

Imaging Modality Availability Accuracy Reproducibility Prognostic
Validation

Diagnostic
Parameter Cost

Echocardiography ++++ ++ +++ +++ CFVR $

Cardiac CT +++ + + n/a V/M $$

SPECT ++++ + ++ + CFR $$

PET ++ ++++ ++++ ++++ CFR $$$

CMR ++ +++ +++ ++ MPRI $$$

CFVR = coronary flow velocity ratio, V/M = coronary volume-to-myocardial mass ratio, CFR = coronary flow
reserve, MPRI = myocardial perfusion reserve index, CT = computed tomography, SPECT = single photon emission
computed tomography, PET = positron emission tomography, and CMR = cardiovascular magnetic resonance.
The plus symbols (+) refer to the degree to which that imaging modality fulfills the attribute listed in the column.
The dollar ($) signs refer to relative expense.

PET is currently the most studied and validated modality, but CMR-derived MBF and T1-mapping
measures are being increasingly used to diagnose patients and assess their response to treatment.
In clinical practice, the type of imaging modality used is dependent on individual risk–benefit ratio and
cost, in addition to local expertise and availability of the technology. Additional studies are currently
examining integrative imaging approaches and regional versus global MPR assessments. The ultimate
goal of using these modalities will be to define prognostic differences, therapeutic interventions,
and treatment approaches, such that we can make an impact on the profound morbidity and
non-negligible mortality associated with this condition.
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