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ABSTRACT By sequencing the genomes of 34 mutation accumulation lines of a mismatch-repair defective
strain of Escherichia coli that had undergone a total of 12,750 generations, we identified 1625 spontaneous
base-pair substitutions spread across the E. coli genome. These mutations are not distributed at random
but, instead, fall into a wave-like spatial pattern that is repeated almost exactly in mirror image in the two
separately replicated halves of the bacterial chromosome. The pattern is correlated to genomic features,
with mutation densities greatest in regions predicted to have high superhelicity. Superimposed upon this
pattern are regional hotspots, some of which are located where replication forks may collide or be blocked.
These results suggest that, as they traverse the chromosome, the two replication forks encounter parallel
structural features that change the fidelity of DNA replication.
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A little more than 50 years ago, Seymour Benzer published a paper
entitled “On the Topology of the Genetic Fine Structure” (Benzer
1961). In that seminal report he asked “whether mutable sites are
distributed at random, or whether there exist portions of the map
that are unusually crowded with or devoid of sites.” The advent of
accessible whole-genome sequencing has now made it possible to
begin to answer Benzer’s question for the entire genome. In the study
reported here, we analyzed the distribution of spontaneous base-pair
substitutions (BPSs) that accumulated in a mismatch-repair defective
strain of E. coli, MutL–, whose mutation rate is approximately 150
times that of its wild-type parent (Lee et al. 2012). To recover an
unbiased spectrum of mutations we used the mutation accumulation
(MA) strategy pioneered by Mukai (Mukai 1964; Halligan and Keightley
2009). The basic protocol starts with a founder individual from
which parallel lines of clonal populations are established. Each line
is then subjected to repeated single-individual bottlenecks. Because

the effective population of each line is one, the ability of natural
selection to fix or eliminate mutations is minimized. Applied to
bacteria, the MA protocol consists of repeatedly streaking parallel
lines for single colonies on agar plates; since colonies develop from
a single cell, each passage is a one-cell bottleneck followed by
approximately 28 generations of growth. Because most new muta-
tions arise when the population is large, selection within the colony
is minimal. In addition, most mutations have negligible fitness
effects (Kibota and Lynch 1996; Lynch and Walsh 1998; Elena
and Lenski 2003). Application of whole-genome sequencing to
parallel MA lines allows an unprecedented picture of nearly un-
biased mutational profiles.

Although replicative DNA polymerases make errors of the order of
1024-1025 per nucleotide, DNA repair pathways reduce these to
1029-10211 (Fijalkowska et al. 2012). Perhaps the most important
of these pathways is the methyl-directed mismatch repair (MMR)
system, which recognizes errors, destroys the newly synthesized
DNA strand, and forces repolymerization templated by the old, pre-
sumably correct, DNA strand (reviewed in Marinus 2010). Eliminat-
ing MMR not only increases the error rate of replication but can also
reveal the nature of the mistakes that are made by the DNA
polymerases.

By sequencing the genomes of 34 parallel MA lines of the
MutL– strain, each of which had gone through 19 single-colony
bottlenecks for a total of 12,750 generations, we identified 1625
BPSs. The mutational spectrum of these mutations has recently
been described (Lee et al. 2012). In this report we describe and
analyze the spatial distribution of these BPSs across the E. coli
genome.
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MATERIALS AND METHODS

Bacteria strains and media
The bacterial strains and media used are described in Lee et al. (2012).
The E. coli strain is PFM5, which is MG1655 rph+ D(mutL).

MA protocol
MA lines of PFM5 were established from single colonies isolated on
Miller Luria-Bertani (Miller 1992) agar plates. Subsequently, each day
a well-isolated colony closest to a line drawn down the center of the
plate was chosen for single-colony purification. After 19 such pas-
sages, resulting in 375 generations per line, genomic DNA purified
from 34 lines was sequenced by the Beijing Genome Institute using
the Illumina HiSeq2000 platform. Further details about the MA pro-
tocol, DNA extraction, sequencing, quality control, and single-nucleotide
polymorphism (SNP) calling protocols are given in (Lee et al. 2012).
Both the sequence reads and SNP calls have been deposited in the
National Center for Biotechnology Information Sequence Read Ar-
chive, http://www.ncbi.nlm.nih.gov/sra, accession no. SRA054031,
and the SNP calls are available at the IU Scholar Works Repository,
http://hdl.handle.net/2022/15192.

Analysis of the gap-size distribution
The distribution of the sizes of the intervals (gaps) between random
events occurring either in time or in space is described by the
exponential distribution; the mean of this distribution is the total
length of time or distance divided by the number of events (Rice
1995). Thus, the mean gap-size predicted for the BPS data is the
length of the chromosome, 4640 kb, divided by the number of BPS,
1625, and equals 2.86 kb. However, analysis of the distribution of the

gap-sizes was complicated by the fact that the location of BPSs in
repeated sequences [insertion sequence (IS) elements, rRNA operons,
and other smaller repeat sequences] could not be defined and thus
were excluded from the data. To account for this complication, we
eliminated all the gaps that included IS or rRNA operons (other re-
peated sequences are too small to bias the results). This adjustment,
which left 1581 BPSs over 4284 kb for a mean gap-size of 2.71 kb,
made little difference—with or without the repeat elements the dis-
tribution was significantly different from the expected distribution.
Removal of these repeat elements did not change the pattern of mu-
tational density across the chromosome (see Supporting Information,
Figure S1A).

Bin analysis
The 1625 BPSs that accumulated in the MutL2 strain were collected
into 46 bins, each bin approximately 100 kb in size, starting at the
origin of replication (see Table S1). The mean number of BPSs per bin
was 35.3 with a variance of 95.2. The number of bins was chosen to be
46 because that number: (1) is close to the square-root of the sample
size, a common “rule of thumb” for choosing the number of intervals
for a histogram; (2) describes the data clearly (see Figure 5); and, (3)
divides into the total number of nucleotides in the genome with an
acceptably small remainder. However the mutation-density pattern
was stable against changes in bin-size from about 50 kb (91 bins),
which gave a mean number of BPSs per bin of 17.9 with a variance of
35.7, to about 220 kb (21 bins), which gave a mean number of BPS per
bin of 77.4 with a variance of 307 (see Figure 5). The pattern was also
unaffected by a 50% displacement of the bin starting point and was
preserved when the binning started at the traditional zero point of the
E. coli chromosome instead of at the origin of replication (see Figure S2).

n Table 1 Correlations of the numbers of mutations per bin with various genomic features

Pearson’s Product-Moment Correlation Coefficienta

Feature rp p q Data Reference

Sequence features
A:T content 0.325 0.027 0.045 NCBIb

Gene expression
Average gene CAI 20.373 0.011 0.023 (Puigbo et al. 2008)

Genomic structural features
No. of HU sensitive genes 0.141 0.347 0.217 (Berger et al. 2010)
No. of genes up-regulated in HU2 mutant 20.266 0.074 0.096 (Berger et al. 2010)
No. of genes down-regulated in HU2mutant 0.387 0.008 0.022 (Berger et al. 2010)
HU response per genec 0.397 0.006 0.022 (Berger et al. 2010)
HU response per gene minus hupAB 0.455 0.001 0.006 (Berger et al. 2010)
Gyrase binding distributiond 20.360 0.007 0.022 (Jeong et al. 2004)
No. of gyrase sensitive genesd 0.382 0.009 0.022 (Jeong et al. 2004)
No. of genes up-regulated in gyrA mutant 20.110 0.466 0.282 (Jeong et al. 2004)
No. of genes down-regulated in gyrA mutant 0.481 0.001 0.006 (Jeong et al. 2004)
No. of FIS sensitive genes (mid-log)e 0.365 0.013 0.024 (Blot et al. 2006)
No. of genes up-regulated in Fis2 mutant 0.457 0.001 0.006 (Blot et al. 2006)
No. of genes down-regulated in Fis2 mutant 0.059 0.698 0.358 (Blot et al. 2006)
SeqA binding sitesf 20.322 0.029 0.045 (Sanchez-Romero et al. 2010)

NCBI, National Center for Biotechnology Information; CAI, codon adaptation index.
a
rp is the correlation coefficient; p is a measure of the false positive rate; q is a measure of the false discovery rate appropriate for evaluating multiple comparisons
(see Material and Methods).

b
The reference genome sequence was NC_000913.2 (MG1655).

c
HU response per gene is the average ratio of gene expression in a wild-type strain to that in a hupAB mutant strain based on microarray analysis. hupA and hupB
encode the two subunits of HU and are strongly downregulated in the hupAB mutant strain.

d
Data obtained from http://www.ncbi.nlm.nih.gov/geo/. Gyrase binding distribution is based on ChIP-chip microarray experiments and has been normalized to the
number of genes analyzed. Gyrase sensitive genes had a ratio of gene-expression in a wild-type strain to that in a gyrA mutant either $ 1.5 (up-regulated) or #
0.975 (down-regulated). The gyrA mutant has reduced gyrase activity (Jeong et al. 2004).

e
FIS-sensitivity is the ratio of gene expression in a wild-type strain to that in a Dfis mutant strain, based on microarray analysis of cells in mid-exponential phase.

f
SeqA binds to hemi-methylated GATC sequences; one of its functions is to regulate replication initiation. The data are from ChIP-chip analyses.
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Wavelet transformation
Fourth-order Daubechies wavelet transforms were performed on the
binned mutational data using the built-in program in Wolfram
Mathematica 8.

Correlations and linear regressions with
chromosomal features
Data describing various chromosomal features were obtained from the
referenced sources (see Table 1 and Table S2) and collected into the
same 46 bins used for the mutational data. Discrete data (such as
number of transcription factor binding sites) were summed. Qualita-
tive data (such as gene expression) were both summed and averaged
and correlations with the mutational data calculated for each result; in
every case the average value in each bin gave the best correlation.
Pearson’s product-moment correlation coefficient rp, was calculated
for each of the 38 features listed in Table 1 and Table S2 compared
with the binned mutation values. The product-moment correlation
tests for a linear relationship; to ensure that no correlations were
missed, we also calculated Spearman’s rank correlation coefficient
(corrected for ties), which is distribution free. With one exception,
the rank correlation coefficients were similar to or less than the linear
ones, indicating the relationships were better described by linear compar-
isons. The single exception was the relationship between the mutations
and the number of relaxation-induced genes, which had a non-significant
(p and q = 0.09) rank correlation coefficient of 0.235 but a linear
coefficient of 0.077 (see Table S2).

The significance of the correlation coefficients was evaluated from
the two-tailed t-distribution [using the web-based tools at http://www.
wessa.net/ (Wessa 2012)]. The resulting p-values give the probable
false positive rate, i.e., the probability that a correlation that is actually
zero will have a coefficient equal to or greater than the given value; the
traditional p-value cutoff for accepting the correlation is 0.05. We also
computed q-values, which are a measure of the false discovery rate
commonly used when multiple comparisons are being simultaneous
considered (Storey and Tibshirani 2003). These were computed using
the Qvalue program (Storey and Tibshirani 2003) with the false dis-
covery rate set to 0.05. The q-values give the probability that a corre-
lation considered to be significant is actually zero; applied to our
results, among the eleven correlations with a q-value# 0.05 (see Table 1)
the probable number of false-positive results is less than one. The
q-values so calculated are conservative because many of the compa-
risons were not independent (e.g., up-regulated and down-regulated
genes are subsets of the total number of affected genes) and so the
number of comparisons is inflated.

Linear regressions were performed using the built-in function of
the XLSTAT package (Addinsoft SARL) for Microsoft Excel (Microsoft
Corp). The best model was chosen by minimizing Akaike’s Information
Criterion (Akaike 1973).

RESULTS
The E. coli strain used for this study has a nonpolar deletion of the
mutL gene, which encodes MutL, a protein required for MMR (Lee
et al. 2012). A total of 1625 BPSs were recovered from the MutL2

strain and their spatial distribution across the 4640 Kb E. coli genome
is shown in Figure 1. Although the distribution appears to be random
by eye, it is not. If the BPSs were distributed at random, the size of the
gaps between adjacent BPSs would have an exponential distribution.
However, the actual distribution is significantly different from
expected (x2 �104; p � 0.0001). Below a gap size of about 0.2 kb
the observed distribution fits the expected distribution fairly well, but

gap-sizes began to deviate from expected at values greater than 0.2 kb
(Figure 2). Over most of the range the gap sizes are smaller than
expected, meaning that the mutations are clustered.

A more interesting departure from random is revealed by the
locations of the mutations. In Figure 3A the 1625 BPSs are collected in
46 bins, each bin approximately 100 kb wide, starting at the origin of
replication. The left and right sides of Figure 3A display the same data
collected in opposite directions, reproducing the movement of the two
replication forks as they traverse the chromosome, but arranged as if
each fork continued around the chromosome and back to the origin
(i.e., the lower left quadrant is the inverted mirror image of the upper
right quadrant, and vice versa); the color changes from blue to ma-
genta at the midpoint of the chromosome. Figure 3A reveals that the
mutations are distributed across the genome in a large-scale, periodic
pattern that is repeated nearly in mirror-image in the two replichores.
The distributions of the mutations per bin between the two repli-
chores are highly correlated (Pearson’s correlation coefficient, rp, =
0.701, p = 0.0002) (Figure 3B); thus, the pattern appears to reflect
genomic features that affect the fidelity of the two replisomes in
parallel as they move from the origin to the terminus. Starting from
OriC (the top of Figure 3A) the density of mutations in each repli-
chore drops for about 500 kb (bins 226, 45242), then increases,
reaching a peak at about 1000 kb from OriC (bins 10 and 37). The
density then drops to another low at about 1400 kb from OriC (bins
13215, 34232) before climbing to a second peak at about 2100 kb
from OriC (bins 20, 25), which is immediately before the terminus
region. The density of mutations drops again at the point where each
fork would pass the strong termination sites TerD and TerA (located

Figure 1 The distribution of BPSs across the genome. The 4640-kb E.
coli chromosome is shown with the traditional zero point at the top.
Each blue line with a red cap indicates the position of a BPS that
accumulated in the MutL2 strain; the thickness of each line is equiva-
lent to approximately one kb, centered on the position of the BPS.
OriC, the origin of replication at 3924 kb; TerD, TerA, TerC, and TerB,
strong termination sites at 1279 kb, 1340 kb, 1607 kb, and 1682 kb,
respectively (Duggin and Bell 2009). Clockwise (rightward) moving
forks are halted at TerC or TerB and counterclockwise (leftward) mov-
ing forks are halted at TerA or TerD.
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in bins 20 and 21, respectively) for the clockwise-moving fork and
TerB and TerC (both located in bin 24) for the counter-clockwise
moving fork. Within the inner termination region (bins 21224) the
mutation density is relatively constant and close to the average across
the whole genome.

The pattern shown in Figure 3A is unlikely to be obtained by
chance. A random distribution of 1625 mutations in 46 bins is
expected to be Poisson with a variance equal to the mean of 35.3.
But the actual distribution has a variance of 95.2 and differs signifi-
cantly from the Poisson (x2 = 143, p � 10212). We performed 1000
Monte Carlo simulations of 1625 mutations reproducing the MutL–

mutational spectrum, distributed at random across the genome and
then gathered into 46 bins. The variances of the 1000 distributions
averaged 35.7 and ranged from 15.3 to 63.6. Thus, the maximum
variance of 1000 random distributions was only two-thirds that of
the actual data. Comparisons of a subset of 100 of the simulations
to the actual data showed that all the distributions were significantly
different from the symmetrical pattern shown in Figure 3A
(the minimum x2 = 103, p = 2 · 1026).

The underlying symmetrical pattern of the mutational density is
revealed clearly by the Daubechies wavelet transform shown in Figure
4A. Applying this wavelet smoothing across continuously varying bin
sizes preserved the underlying histogram structure in the range of bin
sizes from roughly 50 kb (91 bins) to 220 kb (21 bins), with degra-
dation outside that range (Figure 5). The Daubechies wavelet trans-
form also reveals two regional hotspots, one 6002700 kb from the
origin (bin 7) in the right replichore and one before the terminal
region in the left replichore (bin 27), that do not fit the symmetrical
pattern.

We have attempted to correlate the periodic pattern shown in
Figure 3A with various features of the chromosome gathered into the
same 46 bins. Table 1 gives the significant correlations; nonsignificant
correlations are listed in Table S2. The MutL2 mutational spectrum is

dominated by A:T . G:C transitions (Lee et al. 2012); thus, the
number of mutations and the A:T content of each bin are correlated
(Table 1). However, the mutational pattern is not simply due to the
distribution of A:T base pairs across the genome; if the numbers of
mutations at A:T and G:C base pairs are normalized by the A:T and
G:C content of each bin, the pattern does not differ significantly from
the one shown in Figure 3A (x2 = 0.3, p = 1.00; see Figure S1B).

Gene expression, as measured by the number of genes that are
transcriptionally active under a variety of conditions, has been found
to oscillate across the genome with periodicities of 6002800 kb (Allen
et al. 2003, 2006). These oscillations, particularly in the terminus re-
gion, correspond roughly to some of the peaks and valleys in the
mutational density pattern. However, although the distribution of
mutations is symmetrical in the two replichores, the distribution of
gene expression is not, and the overall correlation between the number
of mutations and gene expression values used in Allen et al. (2006) is
low (Table S2). Gene expression measured in a number of other
studies was also poorly correlated with the pattern of mutational
density reported here (Table S2). There is a significant negative cor-
relation between the number of mutations and the average gene Co-
don Adaptation Index (CAI) (Table 1); because CAI is indicative of
gene expression, this correlation suggests that mutation rates are low
in regions of the chromosome that contain a high density of highly
expressed genes. However, the average CAI and the A:T content per
bin are negatively correlated (rp = 20.744, p � 0.0001), so it is not
clear which of these two is the most important causal factor.

In a recent study, Martincorena et al. (2012) analyzed the numbers
of synonymous BPSs in 2659 genes in 34 diverged E. coli genomes.
The distribution of synonymous diversity values (related to BPSs per
gene) across the genome has some similarity to the mutational pattern
we observe, again particularly in the terminus region (see Figure 1A in
Martincorena et al. 2012). The synonymous diversity values in the
right replichore declined near the positions of TerD and TerA, the

Figure 2 The distribution of the gaps between BPSs.
Shown are the four quartiles of a quantile-quantile (Q-Q)
plot (Rice 1995) of the observed sizes of the intervals
(gaps) between BPSs vs. the sizes predicted by an ex-
ponential distribution. For this analysis, gaps that con-
tained large repeat elements have been removed (see
Materials and Methods); this procedure left 1581 BPSs
distributed over 4284 kb of the chromosome, giving
a mean gap size of 2.71 kb. The observed distribution
is significantly different than expected (x2 �104; p �
0.0001).
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same point at which the mutational densities reported here also de-
clined. In the left replichore, the synonymous diversity values declined
at about 2.1 Mb, well before the replisome would reach TerB and TerC
but still within the general terminus region. There may be other
correlations between the distribution of synonymous BPSs and the

mutational patterns we observed that are yet to be discovered by
further analysis of the data. However, the examples given by Martin-
corena et al. (2012) of a cold spot at 848 kb and a hot spot extending
from 4314 kb to 4334 kb are not corroborated by our data; when the
number of BPSs that we observed in each of these regions was

Figure 3 The distribution of binned BPSs across the genome. (A) The 1625 BPSs that accumulated in the MutL2 strain collected into 46 bins, each
bin approximately 100 kb in size, starting at the origin of replication. Each side of the histogram displays the binning in opposite directions,
reproducing the movement of the two replication forks as if each continued across the whole chromosome (i.e., the lower left quadrant is the
inverted mirror image of the upper right quadrant, and vice versa); the color changes from blue to magenta at the midpoint of the chromosome.
The strong termination sites, TerA and TerC, in bins 21 and 24, respectively, are indicated; not indicated are the alternative strong termination
sites, TerD in bin 20 and TerB in bin 24. The four MDs defined by the efficiency of recombinational exchange within each domain (Niki et al. 2000;
Valens et al. 2004) are indicated: green, Ori MD; cherry, left MD and right MD; cyan, terminal MD. (B) The bins in (A) reoriented so to directly
compare the mutational pattern of the two replichores. Note that the Ter sites are not symmetrically oriented with respect to the origin; the
midpoint of the chromosome lies between bins 23 and 24, close to TerC. Thus, the peaks in mutational density in bins 20 and 25 surround the
terminal region bounded by TerA and TerC, whereas the peak in bin 27 is well outside of this region.
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normalized to size of the region in nucleotides, the density of BPSs
was lower in the “hot” spot than in the “cold” spot. In addition, the
mutation-density distribution reported here is not correlated with the
gene expression data reported in Martincorena et al. (2012) (see Table
S2), whereas they reported a negative correlation of their synonymous
diversity values with gene expression (Martincorena et al. 2012).

The E. coli chromosome has been divided into four macrodomains
(MDs) defined by the efficiency of recombinational exchange within
each domain (Niki et al. 2000; Valens et al. 2004); the approximate
borders of the MDs are shown on the histograms in Figure 3A and
Figure S2. The mutational density pattern does not correspond well to
the MDs because, unlike the mutation pattern, the MDs are not
symmetrically located in the two replichores. In general, mutational
densities reported here tended to be low in the Ori MD and in the
right and left MDs, and greater in the terminal MD and in the non-
structured regions that flank the Ori MD (Figure 3A and Figure S2).
Comparative studies of diverged strains have also indicated that mu-
tation rates are greater at the terminus than at the origin (Touchon
et al. 2009; Martincorena et al. 2012); although this conclusion is not
well supported by experimental data in bacteria (Ochman 2003), it is
supported by studies of Saccharomyces cerevisiae (Agier and Fischer
2012).

The E. coli chromosome is organized into supercoiling domains
that are constrained by nucleoid-associated proteins (NAPs) (Travers
and Muskhelishvili 2005). Long-range periodicities in supercoiling-
sensitive gene expression have been found across the E. coli genome
and correlated to gyrase binding sites (Jeong et al. 2004). Clusters of
supercoiling-sensitive genes have also been found at the edges of the
Ter domain, corresponding to binding sites for two NAPs, FIS and H-
NS (Ussery et al. 2001; Scolari et al. 2011). The histone-like protein,
HU, does not have well defined binding sites, but genes that respond
positively to loss of HU are located toward OriC and genes that re-
spond negatively to loss of HU are located toward the terminus
(Sobetzko et al. 2012). The mutational patterns reported here corre-
spond in part to these patterns (Table 1). The distribution of BPS-
density is positively correlated to the distributions of genes that are
up-regulated in the absence of FIS (presumably genes that are re-
pressed by FIS binding), genes that are down-regulated in a gyrase
mutant (presumably genes that are activated by negative supercoiling),
and genes that are down-regulated in the absence of HU (presumably
genes that are activated by HU binding). The last two correlations
may reflect the fact that HU and gyrase act together to promote
superhelicity (Malik et al. 1996) and suggest that the mutation rate
is increased in regions of the genome with high superhelical density.

To find a predictive model for the observed pattern of mutational
densities, we performed linear regressions with 10 chromosomal
features that were significantly correlated with the binned mutational

Figure 4 Wavelet transformations of the mutational distribution. (A)
The numbers of BPSs in each of 46 bins are plotted in green with the
bins arranged proceeding clockwise across the chromosome starting
and ending at the origin of replication (OriC). The Daubechies wavelet
transform is plotted in blue. (B) Two-factor model. A linear regression
of the number of mutations against 10 chromosomal features
significantly correlated with the mutational data (see Table S3) pro-
duced an optimal two-factor model. The model is: mutations = 16 +
(7.8 · HU) + (1.5 · FIS), where HU indicates the HU response per
gene minus hupAB and FIS indicates the number of genes up-regulated
in a Fis2 mutant (see Table 1). For this model, r2 = 0.335, p = 0.0002.
The numbers of mutations per bin predicted by this model (dashed,
magenta) and the corresponding Daubechies wavelet transform curve
(blue) are compared to the observed numbers of mutations per bin
(green). (C) Five-factor model. To produce the five factor model, a lin-

ear regression of the number of mutations was performed against the
ten features that were used to generate the two-factor model plus
seven additional features that had positive or negative correlation
coefficients with the mutational data of � 0.2 (see Table S3). The
model is: mutations = 68 – (97 · CAI) + (5.0 · HU) + (1.0 · FIS) +
(0.9 · RR) – (0.8 · H-NS), where HU and FIS are defined as previously;
CAI indicates the average gene CAI; H-NS indicates the number of
genes down-regulated in an H-NS mutant; and RR indicates the num-
ber of relaxation repressed genes. For this model, r2 = 0.435, p =
0.0003. The numbers of mutations per bin predicted by this model
(dashed, magenta) and the corresponding Daubechies wavelet trans-
form curve (blue) are compared to the observed numbers of mutations
per bin (green).
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data (positive or negative correlation coefficients . 0.3; see Table S3).
Just two features, the average HU response (HU-activated genes) and
the number of FIS-repressed genes, account for 33.5% of the variation
in the mutational data (Figure 4B). The inclusion of seven additional
features that are less well correlated with the mutational data (positive
or negative correlation coefficients � 0.2; see Table S3), increased the
predictive power of the model. The five-factor model (Figure 4C),
which accounts for 43.5% of the variation in the mutational data, adds
as a positive factor the number of relaxation repressed genes and as
negative factors the average gene CAI and the number of genes down-
regulated in a H-NS mutant. Adding more features contributed little
to the predictive value of the resulting models.

Although both the two- and five-factor models predict the general
shape of the mutational pattern, both also fail to account for the high
density of mutations in certain bins, particularly 7, 20, and 25. If the
values in these bins are replaced by the average, linear regressions will
yield models accounting for up to 50% of the variation in the
mutational data. It is, of course, possible to fit the mutational pattern
with nonlinear combinations of many parameters (e.g., a 35-parameter
nonlinear equation achieves an 80% predictive value), but the biological
meaning of such complex combinations of parameters is not obvious.

DISCUSSION
The BPSs that accumulated in the MutL2 strain fell into wave-like
patterns of increasing and decreasing mutational densities that are
symmetrically arranged in the two replichores (Figures 3 and 4). This
pattern suggests that as the chromosome is replicated, the DNA poly-

merases encounter parallel chromosomal features that change the
fidelity of replication. In general the mutational density was high in
regions of the chromosome where gene expression is responsive to
NAPs. Specifically, the mutation density was positively correlated to
the density of HU-activated genes and FIS-repressed genes (Table 1,
Figure 4B). Both of these NAPs are strong determinants of chromo-
some architecture; HU contributes to negative superhelicity by con-
straining supercoils and compacting the DNA into nucleosome-like
particles, whereas FIS also constrains supercoils but produces
branches in the supercoiled DNA (Schneider et al. 2001). We interpret
the correlation of the mutational density to regions where genes re-
spond to these NAPs to be due to the structure of the chromosome,
not to the gene expression per se. That is, the gene response is an
indicator of regions of high chromosomal structure, and these regions
result in high mutation rates when encountered by the replicating
polymerases.

Additional evidence for this interpretation comes from the
correlation of the mutational density with genes that are down-
regulated in a gyrA mutant (presumably genes that are activated
by negative supercoiling) (Table 1) and the inclusion of relaxation-
repressed genes as a positive factor in the 5-factor model (Figure 4C).
This hypothesis was not supported by the inclusion of the number of
genes down-regulated in an H-NS mutant (presumably H-NS-acti-
vated genes) as a negative factor in the 5-factor model. However, H-
NS, which also compacts DNA, acts antagonistically to FIS in gene
regulation (Travers and Muskhelishvili 2005), suggesting that FIS and
H-NS may have different effects on chromosome structure. All of
these NAPs have patterned distributions and contribute to the spatial
and temporal regulation of the superhelicity of the chromosome
(Sobetzko et al. 2012). Recently, the density of the somatic mutations
in human cancer cells was found to be correlated with chromatin
organization (Schuster-Bockler & Lehner 2012).

On the basis of previous studies (Hudson et al. 2003; Martincorena
et al. 2012), we expected mutational density to be correlated either
negatively or positively with gene expression. However, the results
were conflicting and no convincing correlations with gene expression
were found (Table S2). Mutational density was significantly negatively
correlated with the average gene CAI, and this feature appeared in the
5-factor model (Figure 4C). Because high CAI is indicative of high
gene expression, this correlation suggests that mutation rates are low
in regions of highly expressed genes. Our failure to confirm this with
gene-expression data may mean that the data that we analyzed was
inappropriate to the conditions of our experiments.

To reveal errors made during replication, we used a strain defective
in MMR. MMR is initiated when a homodimer of MutS recognizes
and binds a mismatch. MutS then recruits MutL and together they
activate the downstream events that repair the mismatch (Marinus
2010). For the experiments reported here we inactivated MMR with
a nonpolar knockout mutation of MutL. We chose to eliminate MutL
instead of MutS because we thought it possible that loss of MutS has
additional unwanted phenotypes. Examples are: MutS may travel with
the replication fork via its interaction with the beta-clamp (Lopez de
Saro et al. 2006; Pluciennik et al. 2009); MutS alone can block re-
combination between diverged DNA in vitro (Worth et al. 1994); and
certain mutS mutant strains have been reported to have an unex-
plained loss of viability (Boe 1990). Previous studies have found little
difference in the mutation rates or mutational spectra of mutL and
mutS mutant strains (Schaaper and Dunn 1987). However, loss of
MutL may also have unwanted phenotypes. After binding the mis-
match, MutS leaves the site and rapidly slides along the DNA; another
MutS homodimer may then repeat the process (Cho et al. 2012). In

Figure 5 The stability of wavelet transform against changes in bin size.
Daubechies wavelet transforms were applied to the binned data with
the number of bins per chromosome varying from 11 to 141 (corre-
sponding to bin sizes of 422 kb to 33 kb), resulting in the curves plotted
here. Black lines indicate 21, 46, and 91 bins, with the terminal black line
indicating the raw, untransformed 46-bin data.
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the absence of MutL and with the resulting persistence of the mis-
match, this process might continue for some time and possibly affect
the topology of the chromosome and/or interfere with replication fork
progression. Although this process might cause mutations to be clus-
tered, it is difficult to see how it could account for the symmetrical
pattern of mutational density that we observed unless the initiating
mismatches themselves had a symmetrical spatial pattern.

The data reported here suggest that as they traverse the chromo-
some, the two replication forks encounter in parallel regions of high
DNA structure that result in a decrease in the fidelity of replication.
Interestingly, sharp peaks of mutation density are located nearly
symmetrically around the terminus region, close to the strong
termination sites TerD and TerA on the right replichore and TerB
and C on the left replichore (Figures 3A and 4A). Ter sites create
a replication fork trap that prevents the two forks from leaving the
terminus region; the clockwise moving fork is halted at TerC or TerB
and the counterclockwise moving fork is halted at TerA or TerD [ad-
ditional Ter sites are positioned as backups (Duggin and Bell 2009)].
The E. coli terminus region is unique both structurally [with high
curvature (Pedersen et al. 2000) and low superhelicity (Sobetzko et al.
2012)] and genetically [with few genes and a high recombination rate
(Louarn et al. 1994)]. The arrangement of the peaks in mutational
density suggests that a spike in the mutation rate may occur after
a replisome traverses the terminus and is blocked at the relevant Ter
site, or when the two replisomes collide at a Ter site.

Blocking or impeding the replication fork by collisions or by DNA
structural features could impact replication fidelity in several ways.
For example, if the replicating polymerase stalls and disengages from
the DNA, one of the cell’s error-prone DNA polymerases could gain
access and synthesize a tract of error-containing DNA. Alternatively,
DNA repair pathways other than MMR may be less active in regions
of highly structured DNA than in less structured regions, or highly
structured DNA may be more susceptible to spontaneous damage.
Further research is needed to resolve these questions. The simple
linear models predict that, in general, mutation rates increase when
the replication fork encounters regions of high structure and, possibly,
low gene expression. Superimposed upon this pattern are regional
hotspots, some of which appear to be correlated with replication fork
blocks or collisions, and some of which remain a mystery.
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