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Abstract

Consumer genomics enables genetic discovery on an unprecedented scale by linking very

large databases of personal genomic data with phenotype information voluntarily submitted

via web-based surveys. These databases are having a transformative effect on human

genomics research, yielding insights on increasingly complex traits, behaviors, and disease

by including many thousands of individuals in genome-wide association studies (GWAS).

The promise of consumer genomic data is not limited to human research, however. Geno-

mic tools for dogs are readily available, with hundreds of causal Mendelian variants already

characterized, because selection and breeding have led to dramatic phenotypic diversity

underlain by a simple genetic structure. Here, we report the results of the first consumer

genomics study ever conducted in a non-human model: a GWAS of blue eyes based on

more than 3,000 customer dogs with validation panels including nearly 3,000 more, the larg-

est canine GWAS to date. We discovered a novel association with blue eyes on chromo-

some 18 (P = 1.3x10-68) and used both sequence coverage and microarray probe intensity

data to identify the putative causal variant: a 98.6-kb duplication directly upstream of the

Homeobox gene ALX4, which plays an important role in mammalian eye development. This

duplication is largely restricted to Siberian Huskies, is strongly associated with the blue-

eyed phenotype (chi-square P = 5.2x10-290), and is highly, but not completely, penetrant.

These results underscore the power of consumer-data-driven discovery in non-human spe-

cies, especially dogs, where there is intense owner interest in the personal genomic informa-

tion of their pets, a high level of engagement with web-based surveys, and an underlying

genetic architecture ideal for mapping studies.
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Author summary

The genetic underpinnings of many phenotypic traits in domestic dogs remain undiscov-

ered. Although two genetic loci are known to underlie blue eye color in dogs, these do not

explain all cases of blue eyes. By examining > 3,000 dogs from the Embark Veterinary,

Inc. customer database, representing the first genome-wide association study (GWAS)

driven by consumer genomics in dogs and the largest dog GWAS cohort to-date, we have

shown that a region of canine chromosome 18 carrying a tandem duplication near the

ALX4 gene is strongly associated with blue eye color variation, primarily in Siberian Hus-

kies. We also provide evidence that this duplication is associated with blue eye color in

non-merle Australian Shepherds. While beyond the scope of this work, future studies of

the functional mechanism underlying this association may lead to discovery of a novel

pathway by which blue-eyes develop in mammals. These results highlight the power and

promise of consumer-data-driven discovery in non-human species.

Introduction

Humans have been exerting multifarious selection on dogs since their domestication from

wolves, including strong natural selection during adaptation to a domesticated lifestyle fol-

lowed by intense artificial selection during modern breed formation [1–3]. One unintended

consequence of this selection is that the canine genome now encodes dramatic phenotypic

diversity highly amenable for genetic mapping, with moderate genome-wide divergence

between breeds except near loci under selection [4–6] and long tracts of linkage disequilibrium

that can be effectively scanned with microarrays [7]. Genetic discoveries in dogs benefit breed-

ing efforts and animal welfare, and they are valuable for translational studies in humans

because dogs and humans exhibit many analogous physical traits, behaviors, and diseases in a

shared environment [5, 8].

In humans, blue eyes first arose in Europeans [9] and may have been favored by sexual

selection due to an aesthetic preference for rare phenotypic variants [10], as an informative

recessive marker of paternity [11], and/or as a by-product of selection for skin de-pigmenta-

tion to increase UVB absorption [12]. Whatever the cause, this selection has acted on the

regulatory machinery of OCA2 (Oculocutaneous Albinism II Melanosomal Transmembrane

Protein), which controls transport of the melanin precursor tyrosine within the iris [13, 14].

Because blue eyes result from reduced melanin synthesis, other mutations affecting melano-

cyte and melanosome function in the retinal pigment epithelium (RPE) can also recapitulate

the phenotype [15].

In dogs, blue eyes are iconic of the Siberian Husky, a breed of northern latitudes. Prized

among breeders, it is not known whether blue eyes confer adaptive benefits for high latitude

dogs as has been hypothesized for humans, and the genetic basis has not yet been discovered.

According to breeders, blue eyes in Siberian Huskies are a common and dominant trait,

including solid blue and complete heterochromatism (one blue and one brown eye), whereas

blue eyes appear to be a rare and recessive trait in breeds like the Border Collie, Pembroke

Welsh Corgi, and Old English Sheepdog. The only genetic factors known to produce blue eyes

are two cases associated with coat coloration: “Merle” and “piebald” dogs have patchy coat col-

ors due to mutations in Premelanosome Protein (PMEL17) and Melanogenesis Associated

Transcription Factor (MITF) that can lead to one or two blue eyes, or slices of sectoral hetero-

chromia, when de-pigmented regions extend across the face [16, 17]. PMEL is regulated by

MITF, the master regulator of melanocyte development [18]. Rarely, non-merle Australian
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Shepherds have unexplained cases of solid blue eyes or complete heterochromia, as in huskies,

and the genetic basis of this trait is similarly unknown [19].

We employed a novel genomic resource—a panel of 6,070 dogs genetically tested on a high-

density 214,661-marker platform, with owners that had contributed phenotype data via web-

based surveys and photo uploads—to examine the genetics of blue eyes in a diverse panel of

purebred and mixed-breed dogs.

Results

A novel association with blue eye color near ALX4
Using a discovery panel of 3,180 dogs, we performed a genome-wide association study and

detected two significant associations with blue eyes, one on chromosome 10 at PMEL17
(“merle”; canFam3.1 position 292,851; P = 7.5x10-49) and a novel locus on chromosome 18

(CFA18) that had not been previously characterized (position 44,924,848; P = 1.3x10-68; Fig

1A, S1 Fig). Markers near MITF were not significantly associated with blue eyes (P = 0.02–0.90

Fig 1. A) Manhattan plot of associations with blue vs. brown eyes across the genomes of 3,180 dogs. Horizontal lines represent the thresholds for suggestive (grey;

P< 1x10-5) and significant (black; P< 5x10-8) associations. B) Read depth (scaled by the average depth across the interval for each dog) in 10-kb sliding windows

across the CFA18 GWAS peak region, for the six Siberian Huskies with publicly available whole genome sequence data (blue) and 11 dogs from other breeds

(grey). Five of the six huskies and five of the 11 other breeds carry the GWAS allele associated with blue eyes (dot at 44,924,848). Black vertical lines indicate

paired-end reads that aligned 98.6-kb from their mate and in an opposite orientation. Photo credit: Aleksey Gnilenkov (Flickr).

https://doi.org/10.1371/journal.pgen.1007648.g001
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from positions 21,834,567–21,848,176 on CFA20), likely because piebald coat color causes

blue eyes in only a small subset of cases.

The novel association on CFA18, located in the first intron of ALX4, was robust to whether

heterochromia (complete or sectoral) was considered (solid blue only P = 3x10-71, heterochro-

mia only P = 1x10-12; S2 Fig), and remained strong when we restricted our analysis to only

purebred or mixed-breed dogs (purebred P = 3x10-9, mixed-breed P = 3x10-63; S3 Fig).

Although the minor allele (A) at the CFA18 locus was carried (in one or two copies) by only

10% of dogs in this dataset (both blue- and brown-eyed), it was carried by 78% of non-merle

blue-eyed dogs (32% homozygous, 68% heterozygous) and 100% of blue-eyed purebred Sibe-

rian Huskies (N = 22).

Identification and characterization of a 98.6 kilobase duplication linked to

the associated allele in ALX4
Supplemental Illumina microarray data, specifically log-transformed probe intensity data

(log R), were available for 87% of the discovery panel dogs (N = 2,769 total, N = 108 blue-eyed

dogs) and from these we defined a fine-mapping panel using 314 dogs that did not carry merle

and carried at least one copy of the CFA18 allele associated with blue eyes. Of these, 87 (26%)

had at least one blue eye. All blue-eyed dogs homozygous for the CFA18 marker (N = 26)

shared a long haplotype in the region containing that SNP (S4 Fig; positions 44,633,453–

45,170,144), and 92% were homozygous for that haplotype (N = 18) or a core subset of that

haplotype from positions 44,737,897–45,170,144 (N = 6). Within this core haplotype, however,

we observed four SNPs (positions 44,800,358, 44,822,014, 44,825,760 and 44,849,276) that

were frequently heterozygous, suggesting a non-balanced structural variant overlapping those

markers in dogs carrying the blue-eyed haplotype (S4 Fig).

To examine this putative structural variant, we used 17 canine whole genome sequences

available on the NCBI Sequence Read Archive (SRA). These sequences included five Siberian

Huskies and five representatives of other breeds that were heterozygous or homozygous for

the CFA18 allele associated with blue eyes (S1 Table). Genome-wide read depth for the Sibe-

rian Huskies carrying one or two copies of the allele abruptly increased across an intergenic

region from 44.79–44.89-Mb that encompasses the four frequently heterozygous SNPs in our

microarray data (Fig 1B; S1 Table). Furthermore, 30% of the paired-end reads spanning

44,791,417–44,791,584 had a mate that mapped in an opposite orientation to positions

44,890,024–44,890,166 (S5 Fig), consistent with a 98.6-kb tandem duplication for which the

midpoint span was less than the insert size of the paired end reads (< 350-bp) [20, 21].

Increased read depth and evidence of a duplication from paired-end mapping was not

observed in a sixth Siberian Husky that did not carry the CFA18 allele associated with blue

eyes, nor was it observed in other breeds related to Siberian Huskies for which whole genome

sequences were available through SRA (e.g. East Siberian Laika, Alaskan Malamute, Samoyed,

German Shepherd Dog; Fig 1B).

In the resequenced data, the haplotype bearing the associated CFA18 allele, and the 98.6-kb

duplication identified from read depth and paired-end read orientation, contained 48 other

variants within a 1Mb window that were not seen on other haplotypes (28 SNPs, and 19

indels that ranged from 1-bp to 30-bp in length; S2 Table). Only two of these candidate SNPs

occurred in coding regions (at 45,253,714 and 45,253,740 in the first exon of CHID1), and

both were synonymous changes. Two small insertions occurred at 44,963,936 in ALX4 and at

45,140,589 in an ACS homolog, but the variants fell in the 3’ untranslated regions (UTRs) of

both genes. We therefore prioritized the duplication for further investigation as it was most
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likely to be the causal variant underlying the phenotype, or very closely associated with the

causal variant.

To characterize the duplication, we designed forward and reverse PCR primers to amplify

the midpoint span of the duplication (mapping to CanFam3.1 chr18: 44,890,025–44,890,047

and chr18: 44,791,538–44,791,564 respectively), as well as the 5’ and 3’ ends of the duplicated

region as controls (Fig 2; S3A Table). Midpoint products amplified from three blue-eyed pure-

bred huskies, and three mixed-breed dogs with Siberian Husky ancestry: one blue-eyed, pre-

dicted to carry the duplication based on log R data, and two brown-eyed, also predicted to

carry the duplication based on log R data but with German Shepherd Dog ancestry. Sequenc-

ing for all midpoint products in all dogs were identical (S3B Table) and were approximately

300-bp in size. This was consistent with a tandem or near-tandem duplication, which we

inferred based on 118-bp of sequence between our forward primer and midpoint, 123-bp of

sequence between the reverse primer and midpoint break, and 50-bp of the forward and

reverse primers themselves, leading to an 289-bp product in the event of a clean tandem

duplication. The sequence aligned with greater than 98% homology to CanFam3.1 chr18:

44,791,409–44791566 and chr18: 44,890,025–44,890,185, as predicted.

Linkage- and microarray intensity-based inference of associated

duplication

We tested for the presence of the core haplotype associated with the blue-eyed phenotype

(N = 43 markers, excluding those located within the duplication; S4 Fig), and compared log R
for SNPs located inside vs. outside the duplicated region (Δ log R) for dogs that did not carry

the haplotype, or were heterozygous or homozygous (Fig 3).

The presence of the duplication-associated haplotype (in one or two copies) explained 75%

of blue-eyed cases (N = 81 / 108) and was rare in brown-eyed dogs (N = 46 / 2,661). Indeed,

the haplotype bearing the duplication predicts the blue-eyed phenotype considerably better

than the most associated SNP in our GWAS analysis (chi-square duplication P = 5.2x10-290;

GWAS SNP P = 4.9x10-120; S4 Table). Atypical coat pigmentation or facial markings explained

the remaining 25% of cases (Supplementary Information), with the exception of three blue-

eyed mixed-breed dogs that possessed recombinant versions of the core haplotype (S7 Fig).

Heterozygotes and homozygotes exhibited distinct distributions of Δ log R (P = 2.0x10-13)

consistent with the haplotype also carrying the duplication in these breeds (Fig 3; S8 Fig), with

the exception of one blue-eyed mixed-breed dog with low Δ log R that exhibited log R values at

Fig 2. PCR genotyping of a tandem duplication upstream of ALX4 associated with blue eye color. A)� Schematic view of brown- and blue-eyed alleles (not to

scale). The duplication sits head to tail to the ancestral sequence. Three sets of primers were used to amplify three regions (primers denoted with single headed arrows).

Sanger sequencing of the duplication midpoint show nearly perfect synteny to canFam3.1 chr18:44791409–44791553 and 44890066–44890185. A single basepair

difference, highlighted in red, show a T in the duplication sequence that corresponds to a G at chr18:44791413 in the ancestral sequence. B) PCR genotyping of one

brown-eyed and one blue-eyed dog. Primer pairs denoted above each PCR lane. The 5’ and 3’ flanking regions amplify in both the brown- and blue-eyed alleles; the

duplication midpoint amplifies only in the blue-eyed allele.

https://doi.org/10.1371/journal.pgen.1007648.g002
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individual SNPs suggestive of a partial duplication (Supplemental Information). Dogs that did

not carry the associated haplotype had similar log R intensity at SNPs within the duplicated

region compared to flanking regions, with a lower Δ log R distribution that overlapped with

zero (P = 2.2x10-16 comparing dogs without the haplotype to those with it), indicating that

they did not possess the duplication (with the exception of the three recombinant haplotypes

discussed above).

The duplication upstream of ALX4 remains strongly associated with blue-

eyed phenotype in a 2,890 dog validation panel

We compiled a dataset of 2,890 diverse dogs distinct from those included in our GWAS panel

to perform a validation test of the association between the duplication and blue eyes. The hap-

lotype existed at low frequency in this panel (41 homozygotes, 26 heterozygotes) and all but

two carriers had Δ log R values above the minimum bounds observed for heterozygotes in the

discovery panel (N = 67 / 2,890 with Δ log R> 0.15), indicating that the duplication was almost

always present on this haplotype. Most dogs that possessed the haplotype and the duplication

were Siberian Huskies (N = 59 / 67; 41 homozygotes, 17 heterozygotes; S9 Fig), and the

remainder were Klee Kai (a breed derived from Siberian Husky; N = 2), Australian Shepherd

(N = 5), and one Australian Cattle Dog (S10 Fig; S5 Table). Profile photos were available for

67% of dogs with the haplotype and duplication (N = 46 / 68), and all but one had blue or het-

erochromic eyes instead of solid brown. The exception was a Siberian Husky with brown eyes

despite having one copy of the haplotype (S9 Fig) and Δ log R values consistent with being het-

erozygous for the duplication on that haplotype (0.31). The owner/breeder of this dog was able

to provide additional information that confirmed it was a likely carrier of the duplication: It

had blue-eyed parents and had sired all blue-eyed or heterochromic litters. The two haplotype

carriers with low log R (suggesting that the duplication was not present on the haplotype in

their case) were both Australian Shepherds, one brown-eyed and one with unknown eye color

(no profile photo available).

Fig 3. Scaled density plot of Δ log R distributions for discovery panel dogs with zero, one, or two copies of the associated haplotype, demonstrating that the

presence of the haplotype tracks the presence of the duplication in almost all cases. Dogs carrying the haplotype exhibited elevated log R at SNPs within the

duplicated region compared to flanking regions (high Δ log R) relative to non-carriers, and dogs heterozygous vs. homozygous for the haplotype exhibited distinct

distributions, consistent with being heterozygous vs. homozygous for the duplication itself. Although the duplication appeared to act dominantly in Siberian Huskies,

brown-eyed heterozygotes in other breeds or mixed breed dogs also had log R data consistent with carrying the duplication. Exceptions included three high-log R dogs

with alternative, recombinant versions of the associated haplotype (asterisks, top panel; S7 Fig) and one low-log R dog with a partial duplication (asterisk, middle panel;

Supplementary Information). Individual log R values contributing to each density curve are represented with vertical ticks, and counts of blue-eyed vs. brown-eyed

dogs are indicated for each haplotype category.

https://doi.org/10.1371/journal.pgen.1007648.g003
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Discussion

In this study, we discovered a haplotype containing a 98.6-kb duplication that is strongly

predictive of blue eyes and heterochromia in dogs. While we cannot definitively rule out a

different typed or untyped variant on this haplotype causing the trait, we feel that the dupli-

cation is a plausible causal candidate worthy of further functional investigation. We were

able to validate the presence of this duplication with three independent methods: log R inten-

sity from our microarray data, PCR and Sanger sequencing, and read-depth analysis of 17

whole-genome sequences. Further, we showed strong concordance between log R intensity

and a consistent haplotype identified from blue-eyed cases in phased haplotype data.

Using those phased haplotypes, we found that the duplication-carrying haplotype was more

strongly associated with the blue-eyed phenotype than any single marker on our genotyping

array (chi-square duplication P = 5.2x10-290; GWAS SNP P = 4.9x10-120; S4 Table). Further

investigation of variant calls in resequencing data, a comparison of sequences between carri-

ers and non-carriers of the duplication, interestingly revealed no convincing functional tar-

gets (S2 Table). While direct functional validation of the duplication is outside of the scope

of this research, we suggest that the proximity of this duplication to ALX4 makes it a prime

candidate for functional investigation.

To date, the most familiar examples of duplications affecting phenotype are those related

to dosage, cases where one or more duplication events increased gene copy number and,

therefore, the amount of translated protein product available for cellular function [22, 23].

However, this duplication sits in an intergenic region between the tetraspanin CD82 and

Homeobox gene ALX4 (NCBI; UCSC Genome Browser [24]). Two non-coding RNAs

(ncRNAs) are annotated on the complementary strand, including an uncharacterized long

noncoding RNA (lncRNA) that overlaps the 3’ breakpoint of the duplication (Fig 1; S4 and S6

Figs). We could find no evidence that CD82 is functionally associated with eye color in humans

or any other animal, but ALX4 and its paralogs play an important role in both mammalian eye

development [25, 26] and pigmentation [27].

Research on the genetics of striping patterns in African striped mouse (Rhabdomys pumilio)

and Eastern chipmunk (Tamias striatus) demonstrated that a close paralog of canine ALX4,

ALX3, is a repressor of MITF with dorsally striped expression, leading to reduced melanin con-

tent and lighter coat color where ALX3 is upregulated [27]. Gene expression studies in humans

have additionally demonstrated that ALX4 itself is expressed in the RPE [28], and in zebrafish

(Danio rerio), expression of ALX4 orthologs, alx4a and alx4b, are enriched in iridophores,

which originate in common with melanocytes from the neural crest [29]. Given the impor-

tance of cis-regulatory elements in local gene regulation [30, 31] and the location of the dupli-

cation upstream of ALX4, we propose that this large duplication in a candidate regulatory

region could cause blue eyes by increasing expression of ALX4 in the RPE, leading to repres-

sion of MITF and a reduction in melanin in the iris.

The high proportion of blue-eyed heterozygotes in our analyses (53% of blue-eyed dogs)

suggests that the duplication, if causal, is dominant in its phenotypic effect. However,

the existence of 46 brown-eyed heterozygotes with similarly elevated Δ log R (P = 0.35 com-

paring blue and brown heterozygote distributions) suggests that one or more additional

genetic factors may modify or mask the duplication’s effect on eye color (Fig 3; S8 Fig). This

effect is not completely explained by an individual’s genotype at four previously character-

ized pigmentation genes (A, E, B, and K loci; S6 Table), although carriers of the duplication

that also carry at least one copy of the dominant melanistic mask (Em) allele are signifi-

cantly more likely to have brown eyes than duplication carriers without melanistic mask

(P = 0.0018).
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Functional follow-up studies are needed to explicitly assay regulatory changes in ALX4
caused by this duplication; however, we have shown that this mutation is highly (but not

completely) penetrant and most common in Siberian Huskies. The presence of the duplication

explains at least 75% of blue-eyed cases in our discovery panel of customer dogs (81 / 108 blue-

eyed dogs carried the associated haplotype and have elevated Δ log R values consistent with

duplicated markers).

In summary, by using consumer genomic data to drive this research, we were able to

build the largest canine GWAS dataset to date, determine the prevalence of a putatively causal

variant, a duplication upstream of ALX4 highly associated with blue eyes, across a diverse pop-

ulation, and utilize our relationship with owners of specific dogs to learn more about the inher-

itance of the trait. As more canine genetic testing is done on high-density array platforms,

these databases hold particular promise for unlocking the genetic basis of complex phenotypes

for which dogs are a particularly useful model, including cancer, behavior, and aging.

Methods

Discovery samples

We solicited phenotype data from customers whose dogs have been genetically tested by

Embark Veterinary, and who have agreed to participate in research, by implementing an

online survey about their dog’s morphological traits at http://embarkvet.com and encourag-

ing participation via email. We initiated the survey on February 7, 2017, and, as of November

23, 2017, owners of 3,248 adolescent and adult dogs whose eye color can be assumed to be

developmentally complete (6 months or older) had submitted a response to the section of

that survey that asks about eye color (S11 Fig). Most were owners of mixed-breed dogs, and

21% were owners of purebred dogs (N = 668 / 3,180). A subset of owners (N = 68) selected

"other", indicating that their dog had an eye color not represented by any of the seven

options. In total, 156 dogs in this dataset were reported to have either solid blue eyes

(N = 73) or heterochromic eyes (partially blue; N = 83), compared to 3,024 with some shade

of solid brown. We encoded this trait as a binary phenotype in case-control format (0:

brown, 1: blue) and considered both solid blue and heterochromic dogs as cases. Ancestry

from 185 different dog breeds, landraces (village dogs) and gray wolves was represented in

this dataset.

Genotyping & quality control

Customer dogs were genotyped on Embark’s custom high-density 214,661-marker platform

(213,245 filtered to autosomal, chromosome X, and pseudoautosomal region markers). Total

genotyping rate was 99.5%, and all dogs (N = 3,180) had less than 2.5% missing data and

passed standard filtering in PLINK [32]. After filtering, 90% of variant sites (192,108 / 213,245)

were genotyped across at least 95% of individuals and were included in subsequent analyses.

Genome-wide association

We constructed a relatedness matrix from centered genotypes and ran a genome-wide associa-

tion test based on a univariate linear mixed-model in GEMMA [33], using the eigenvalues and

eigenvectors of the relatedness matrix to control for confounding effects of shared ancestry,

particularly among dogs of the same breed or breed group (groups of closely related or recently

derived breeds). We identified significant associations by applying a threshold of P< 5.0 x

10−8 to the Wald test statistic.
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Whole genome sequence analysis

We downloaded whole genome sequence data for 17 dogs from the NCBI Sequence Read

Archive [34], conducted an end-to-end alignment using Bowtie2 in—very-sensitive alignment

mode [35] calculated read depth coverage across sites using SAMtools [36], and investigated

mapped paired-end reads in regions of interest using the Integrative Genomics Viewer (IGV)

[37, 38]. For each dog, we calculated the change in read depth between the putative duplicated

region, demarcated by discordantly mapping paired-end reads (44791417 to 44890166-bp),

and 5Mb of flanking sequence immediately surrounding it (chr18:42999825-44791417 and

chr18:44890166-48000173). We called variants across a 1-Mb region surrounding the most

associated GWAS SNP using HaplotypeCaller from the Genome Analysis Tool Kit (GATK)

[39] for 9 SRA samples (ERR911199, ERR911200, ERR1014362, ERR1990016, SRR1122359,

SRR1124049, SRR1124304, SRR1784129, SRR2095539) with robust read depth and compatible

alignment formatting (including four huskies with the duplication, and one husky and four

other breeds without the duplication). Following batch variant-calling for SNPs and indels

independently, we refined the call set by filtering variants that did not meet QC requirements

for minimum read depth (SNPs and indels < 2), the phred-scaled p-value from a Fisher’s

exact test for strand bias (SNPs > 60, indels> 200), the variant position relative to the end of

the read (Mann-Whitney rank sum test, SNPs < -8, indels < -20) and, for SNPs, mapping

quality (root mean square < 40, Mann-Whitney rank sum test < -12.5). We then identified 47

SNPs or indels present in the dogs with the duplication, and absent from those without the

duplication (S2 Table). Since eye color phenotypes were not available for datasets archived to

SRA, this approach was able to identify additional variants that co-segregate with the duplica-

tion (and are therefore at least as explanatory for the phenotype), but it was not possible to

scan for variants that perform better (i.e. those that might additionally explain brown-eyed

duplication carriers).

PCR amplification of the duplication

We designed primers to amplify the midpoint span of the duplication, as well as the 5’ and 3’

flanking regions of the duplicated region as positive controls. Genomic DNA (gDNA)

remaining from microarray analysis (2 uL) was used for PCR reactions using the following

primer combinations: ALX4_5Fl_1F + ALX4_5Fl_1R; ALX4_Dup_2F + ALX4_Dup_2R;

ALX4_3Fl_1R + ALX4_3Fl_1R. All PCR reactions were performed using Q5 High Fidelity

Taq Polymerase (NEB Cat No M0491) in a total volume of 20 uL following the manufacturer’s

protocol. The following cycling parameters were used: 98˚C 30s, 40X (98˚C 10s, 60˚C 30s,

72˚C 30s), 72˚C 5m, 16˚C hold. PCR product was visualized on a 1% agarose gel with 1X

GelRed (Biotium Cat No 41003); product from 9 dogs were submitted for purification and

Sanger sequencing at Genewiz (Genewiz.com).

Haplotype analysis

Genotype data for all dogs was phased against a proprietary reference panel, with missing data

imputed using Eagle2 [40]. We examined phased data around the putative duplication break-

points in 26 blue-eyed dogs in the GWAS data set that were homozygous for the CFA18 A

allele. This revealed a single haplotype bearing this allele that spanned 81 markers between

positions 44,336,453 and 45,170,144 that was present in all 26 dogs in at least one copy (S4

Fig). We further defined a 43 marker core haplotype between positions 44,737,897 and

45,170,144 that was present in two copies in 24 of the 26 dogs, and in one copy in the remain-

ing two dogs. We compared the change in intensity between duplication markers and flanking

regions (Δ log R) according to both the eye color phenotype and haplotype state of each dog.
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For all remaining dogs in the discovery panel and all dogs in the validation panel, we calculated

the number of copies of the core haplotype present in their phased data (excluding the markers

inside the duplication: 44,825,760, 44,838,433, 44,849,276, 44,855,038, 44,858,831, 44,876,627).

Validation samples

The validation panel included 2,890 dogs of various breeds, none of whom carried the most

associated CFA10 marker for merle. Eye color could be scored for these individuals when

customers had uploaded high resolution profile photos. Photos were available for 70% of

dogs bearing both the associated haplotype and a log R signature of the duplication on that

haplotype.

Ethics statement

Owners of participating dogs were part of the Embark Veterinary, Inc. customer base. Owners

provided informed consent to use their dogs’ data in scientific research. Owners provided pho-

tographs of their dogs and filled out online survey questions concerning their dog’s eye color;

no invasive methods for genotype or phenotype collection were used, nor were dogs ever han-

dled by researchers. Owners were given the opportunity to opt out of the study at any time

during data collection. The discovery cohort was selected from data available before August

2017; the fine mapping cohort was selected from data available before Dec 2017. All published

data have been deidentified of all Personal Information as detailed in Embark’s privacy policy

(embarkvet.com/privacy-policy/).

Supporting information

S1 Fig. QQ plot of the association between genotype and blue vs. brown eyes across the

genomes of 3,180 purebred and mixed-breed dogs (corresponds to Manhattan plot in

Fig 1).

(PNG)

S2 Fig. Manhattan and QQ plots of genome-wide associations with A) solid blue eyes (73

cases) and B) heterochromia (83 cases) across the genomes of 3,180 purebred and mixed

breed dogs (192,550 markers). Grey and black dotted horizontal lines represent the thresh-

olds for suggestive (P< 1x10-5) and significant (P< 5x10-8) associations, respectively.

(PNG)

S3 Fig. Manhattan and QQ plots of genome-wide associations for A) 2,448 mixed-breed

dogs (192,570 markers) and B) 670 purebred dogs (191,854 markers). Grey and black dot-

ted horizontal lines represent the thresholds for suggestive (P< 1x10-5) and significant

(P< 5x10-8) associations, respectively.

(PNG)

S4 Fig. Structure of a linked haplotype block (core haplotype outlined in black) shared by

dogs homozygous for the CFA18 allele associated with blue eyes (marker position indi-

cated by an arrow), featuring four frequently heterozygous markers (asterisks) suggestive

of a non-balanced structural variant in the region between the vertical white lines. Each

row shows the nucleotide sequence of one haplotype at all markers, and haplotype pairs for

each dog are separated by horizontal white lines.

(PNG)

S5 Fig. In each Siberian Husky for which read depth increased 1.5-2X across an intergenic

region from 44.79–44.89-Mb that encompassed the four heterozygous SNPs (Fig 1B), a
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subset of reads at positions 44,791,417–44,791,584 had a mate that mapped in an opposite

orientation to positions 44,890,024–44,890,166, consistent with a 98.6-kb tandem duplica-

tion for which the midpoint span was less than the insert size of the paired end reads

(< 350-bp). Visualizations generated via IGV 2.4.10 (Robinson et al. 2011; Thorvaldsdóttir

et al. 2013).

(PNG)

S6 Fig. Structural diagram for snRNA located within duplicated region (UCSC Genome

Browser).

(PNG)

S7 Fig. Matches (blue) and mismatches (black) to the core haplotype (black box) carrying

the CFA18 GWAS allele associated with blue eyes (marker position indicated by an

arrow), among blue-eyed dogs without the core haplotype. The vertical white line separates

positions upstream and downstream of the duplicated region (markers on the array within the

duplicated region are excluded). The majority of blue-eyed dogs included in the GWAS analy-

sis that did not possess the associated haplotype (N = 27), were piebald, albino, or had white

facial markings overlapping the eyes. However, three blue-eyed dogs with husky ancestry were

heterozygous for partial copies of the core haplotype.

(PNG)

S8 Fig. Matches (blue) and mismatches (black) to the core haplotype (black box) carrying

the CFA18 GWAS allele associated with blue eyes (marker position indicated by an arrow),

among brown-eyed heterozygotes. The vertical white line separates positions upstream and

downstream of the duplicated region (duplicated markers excluded). Among dogs in the

GWAS analysis, 45% of all heterozygotes for the associated haplotype were brown-eyed

(N = 46).

(PNG)

S9 Fig. Matches (blue) and mismatches (black) to the core haplotype (black box) carrying

the CFA18 GWAS allele associated with blue eyes (marker position indicated by an

arrow), among purebred Siberian Huskies. The vertical white line separates positions

upstream and downstream of the duplicated region (duplicated markers excluded). Assuming

a dominant mode of inheritance, possession of the CFA18 haplotype predicted the blue-eyed

phenotype in purebred Siberian Huskies, with one exception (one brown-eyed husky was a

heterozygote).

(PNG)

S10 Fig. Matches (blue) and mismatches (black) to the core haplotype (black box) carrying

the CFA18 GWAS allele associated with blue eyes (marker position indicated by an

arrow), among purebred non-huskies from the validation panel that possess the haplotype.

The vertical white line separates positions upstream and downstream of the duplicated region

(duplicated markers excluded).

(PNG)

S11 Fig. Participants were prompted to report their dog’s eye color as one of seven options,

guided by visual examples (images courtesy of musingsofabiologistanddoglover.blogspot.

com and quaggatale.wordpress.com).

(PNG)

S1 Table. Canine whole genome sequences available on the NCBI Sequence Read Archive

(SRA), used for duplication fine-mapping via paired-end read orientation, a comparative
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analysis of read depth, and additional variant calling across the region. �indicates Siberian

Husky samples carrying the duplication.

(DOCX)

S2 Table. 47 variants within 1-Mb of the top GWAS SNP, distinguishing huskies with the

duplication from 1 husky and other sequenced breeds available on SRA that do not carry

the duplication.

(DOCX)

S3 Table. (a) Primer sequences used for PCR assays described in Fig 2. (b) Midpoint span

product sequence. The T>G SNP that differentiates original and duplicated copies is indicated

in bold.

(DOCX)

S4 Table. Contingency table comparison for the duplication vs. the top associated GWAS

SNP, in our discovery panel of 2,769 mixed-breed and purebred dogs.

(DOCX)

S5 Table. Frequency of the CFA18 core haplotype bearing a duplication associated with

blue eyes in the discovery panel (a), and the validation panel (b). The haplotype was not

present in 195 / 201 breeds represented across the discovery and validation panels.

(DOCX)

S6 Table. A-locus ASIP (A), E-locus MC1R (B), B-locus TYRP1 (C) and K-locus CBD103

(D) genotype frequencies among blue-eyed (N = 147) and brown-eyed (N = 47) duplication

carriers, indicated as the percent of total (% blue / % brown).

(DOCX)

S1 Text.

(DOCX)
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