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SCIENCE FORUM

How failure to falsify in high- 
volume science contributes to 
the replication crisis
Abstract  The number of scientific papers published every year continues to increase, but scientific knowledge 
is not progressing at the same rate. Here we argue that a greater emphasis on falsification – the direct testing 
of strong hypotheses – would lead to faster progress by allowing well- specified hypotheses to be eliminated. 
We describe an example from neuroscience where there has been little work to directly test two prominent but 
incompatible hypotheses related to traumatic brain injury. Based on this example, we discuss how building strong 
hypotheses and then setting out to falsify them can bring greater precision to the clinical neurosciences, and argue 
that this approach could be beneficial to all areas of science.

SARAH M RAJTMAJER, TIMOTHY M ERRINGTON AND FRANK G HILLARY*

Background and motivation
The “replication crisis” in various areas of research 
has been widely discussed in journals over the 
past decade [see, for example, Gilbert et  al., 
2016; Baker, 2016; Open Science Collabora-
tion, 2015; Munafò et al., 2017]. At the center 
of this crisis is the concern that any given scien-
tific result may not be reliable; in this way, the 
crisis is ultimately a question about the collective 
confidence we have in our methods and results 
(Alipourfard et al., 2012). The past decade has 
also witnessed many advances in data science, 
and “big data” has both contributed to concerns 
about scientific reliability (Bollier and Firestone, 
2010; Calude and Longo, 2017) and also offered 
the possibility of improving reliability in some 
fields (Rodgers and Shrout, 2018).

In this article we discuss scientific progress in 
the clinical neurosciences, and focus on an example 
related to traumatic brain injury (TBI). Using this 
example, we argue that the rapid pace of work in 
this field, coupled with a failure to directly test and 
eliminate (falsify) hypotheses, has resulted in an 
expansive literature that lacks the precision neces-
sary to advance science. Instead, we suggest that 
falsification – where one develops a strong hypoth-
esis, along with methods that can test and refute 
this hypothesis – should be used more widely by 
researchers. The strength of a hypothesis refers to 

how specific and how refutable it is (Popper, 1963; 
see Table 1 for examples). We also argue for greater 
emphasis on testing and refuting strong hypotheses 
through a “team science” framework that allows us 
to address the heterogeneity in samples and/or 
methods that makes so many published findings 
tentative (Cwiek et al., 2021; Bryan et al., 2021).

Hyperconnectivity hypothesis in brain 
connectomics
To provide a specific example for the concerns 
outlined in this critique, we draw from the litera-
ture using resting- state fMRI methods and network 
analysis (typically graph theory, see Caeyenberghs 
et  al., 2017 to examine systems- level plasticity 
in TBI). Beginning with one of the first papers 
combining functional neuroimaging and graph 
theory to examine network topology (Nakamura 
et al., 2009), an early observation in the study of 
TBI was that physical disruption of pathways due 
to focal and diffuse injury results in regional expan-
sion (increase) in strength or number of functional 
connections. This initial finding was observed in a 
small longitudinal sample, but then similar effects 
were observed in other samples (Mayer et  al., 
2011; Bharath et al., 2015; Hillary et al., 2015; 
Johnson et  al., 2012; Sharp et  al., 2011; Iraji 
et  al., 2016) and animal models of TBI (Harris 
et  al., 2016). These findings were summarized 
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in a paper by one of the current authors (FGH) 
outlining potential mechanisms for hyperconnec-
tivity and its possible long- term consequences, 
including elevated metabolic demand, abnormal 
protein aggregation and, ultimately, increased risk 
for neurodegeneration (see Hillary and Grafman, 
2017). The “hyperconnectivity response” to neuro-
logical insult was proposed as a possible biomarker 
for injury/recovery in a review summarizing findings 
in TBI brain connectomics (Caeyenberghs et  al., 
2017).

Nearly simultaneously, other researchers 
offered a distinct – in fact, nearly the opposite 
– set of findings. Several studies of moderate to 
severe brain injury (as examined above) found 
that white matter disruption during injury resulted 
in structural and functional disconnection of 
networks. The authors in these papers outline a 
“disconnection” hypothesis: the physical degra-
dation of white matter secondary to traumatic 
axonal injury results in reduced connectivity of 
brain networks, which is visible both structurally 
in diffusion imaging studies (Fagerholm et  al., 
2015) and functionally using resting- state fMRI 
approaches (Bonnelle et al., 2011). These find-
ings were summarized in a high- profile review 
(Sharp et al., 2014) where the authors argue that 
TBI “substantially disrupts [connectivity], and that 
this disruption predicts cognitive impairment …”.

When juxtaposed, these two hypotheses hold 
distinct explanations for the same phenomenon 
with the first proposing that axonal injury results 
in a paradoxically enhanced functional network 
response and the second that the same pathophys-
iology results in reduced functional connectivity. 

Both cannot be true as they have been proposed, 
so which is correct? Even with two apparently 
contradictory hypotheses in place, there has been 
no direct testing of these positions against one 
another to determine the scenarios where either 
may have merit. Instead, each of these hypoth-
eses remained unconditionally intact and served to 
support distinct sets of outcomes.

The most important point to be made from 
this example is not that competing theories in this 
literature exist. To the contrary, having competing 
theories for understanding a phenomenon places 
science in a strong position; the theories can be 
tested against one another to qualify (or even elimi-
nate) one position. The point is that there have been 
no attempts to falsify either a hyperconnectivity or 
disconnection hypothesis, allowing researchers 
to evoke one or the other depending upon the 
finding for a given dataset (i.e., disconnection due 
to white matter loss, or functional “compensation” 
in the case of hyperconnectivity). What has contrib-
uted to this problem is that increasingly complex 
computational modeling also increases the inves-
tigator degrees of freedom, both implicitly and 
explicitly, to support their hypotheses. In the case 
of the current example of neural networks, these 
include selection from a number of brain atlases or 
other methods for brain parcellation and likewise 
numerous approaches to neural network defini-
tion (see Hallquist and Hillary, 2019). Figure  1 
provides a schematic representation of two distinct 
and simultaneously supported hypotheses in head 
injury.

To be clear, the approach taken by investi-
gators in this TBI literature is consistent with a 

Table 1. Examples of hypotheses of different strength.
Exploratory research does not generally involve testing a hypothesis. A Testable Association is a 
weak hypothesis as it is difficult to refute. A Testable/Falsifiable Position is stronger, and a hypothesis 
that is Testable/Falsifiable with Alternative Finding is stronger still.

Type of research/hypothesis Example

Exploratory

“We examine the neural correlates of cognitive deficit after brain 
injury implementing graph theoretical measures of whole brain 
neural networks”

Testable Association
“We hypothesize that graph theoretical measures of whole brain 
neural networks predict cognitive deficit after brain injury”

Testable/Falsifiable Position
(offers possible mechanism and direction/
magnitude of expected finding)

“We hypothesize that memory deficits during the first 6 months 
post injury are due to white matter connection loss and maintain 
a linear and positive relationship with increased global network 
path length”

Testable/Falsifiable with Alternative Finding
(indicates how the hypothesis would and 
would not be supported)

“We hypothesize that memory deficits during the first 6 months 
post injury are due to white matter connection loss and maintain 
a linear and positive relationship with increased global network 
path length. Diminished global path length in individuals with 
greatest memory impairment would challenge this hypothesis”

https://doi.org/10.7554/eLife.78830
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research agenda designed to meet the demands 
for high publication throughput (more on this 
below). Examiners publish preliminary find-
ings but remain appropriately tentative in their 
conclusions given that the sample is small and 
unexplained factors are numerous. Indeed, a 
common refrain in many publications is the “need 
for replication in a larger sample”. As opposed to 
pre- registering and testing strong hypotheses, 
investigators are reinforced to identify significant 
results (any result) for publication. In brain injury 
work examining network plasticity, investigators 
have often made general claims that brain injury 
results in “different” or “altered” connectivity (a 
problem dating back to early fMRI studies in TBI; 
Hillary, 2008). While unintentional, imprecise 
hypotheses increase the likelihood that chance 
findings are published. The primary conse-
quence is that all findings are “winners”, permit-
ting growing support for either position without 
movement toward resolution.

Overall, the TBI connectomics literature pres-
ents a clear example of a failure to falsify and 
we argue that it is attributable, at least in part, 
to the publication of large numbers of papers 
reporting the results of studies in which small 

samples were used to examine under- specified 
hypotheses. This “science- by- volume” approach 
is exacerbated by the overuse of inappropriate 
statistical tests, which increases the probability 
that spurious findings will be reported as mean-
ingful (Button et al., 2013).

The challenges outlined here, where there 
is a general failure to test and refute strong 
hypotheses, are not isolated to the TBI literature. 
Similar issues have been expressed in preclin-
ical studies of stroke (Corbett et  al., 2017) in 
the translational neurosciences where investiga-
tors maintain flexible theory and predictions to 
fit methodological limitations (Macleod et  al., 
2014; Pound and Ritskes- Hoitinga, 2018; 
Henderson et al., 2013), and in cancer research 
where only portions of published data sets 
provide support for hypotheses (Begley and 
Ellis, 2012). These factors have likely contributed 
to the repeated failure of clinical trials to move 
from animal models to successful Phase III inter-
ventions in clinical neuroscience (Tolchin et  al., 
2020). This example in the neurosciences also 
mirrors the longstanding problems of co- existing 
yet inconsistent theories in other disciplines like 
social psychology (see Watts, 2017).

Figure 1. Two competing theories for functional network response after brain injury. Panel A represents the typical 
pattern of resting connectivity for the default mode network (DMN) and the yellow box shows a magnified area of 
neuronal bodies and their axonal projections. Panel B reveals three active neuronal projections (red) that are then 
disrupted by hemorrhagic lesion of white matter (Panel C). In response to this injury, a hyperconnectivity response 
(Panel D, left) shows increased signaling to adjacent areas resulting in a pronounced DMN response (Panel D, 
right). By contrast a disconnection hypothesis maintains that signaling from the original neuronal assemblies 
is diminished due to axonal degradation and neuronal atrophy secondary to cerebral diaschisis (Panel E, left) 
resulting in reduced functional DMN response (Panel E, right).

https://doi.org/10.7554/eLife.78830
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Big data and computational methods as 
friend and foe
The big data revolution and advancement of 
computational modeling powered by enhanced 
computing infrastructure, on the one hand, 
has magnified concerns about scientific reli-
ability through unprecedented flexibility in data 
exploration and analysis. Sufficiently large data-
sets provably contain spurious correlations and 

the number of these coincidental regularities 
increases as the dataset size increases (Calude 
and Longo, 2017; Graham and Spencer, 1990). 
Adding flexibility, predictive algorithms built 
on top of these large datasets typically involve 
a great number of investigator decisions – the 
combined effects of which undermine reliability of 
findings [for an example in connectivity modeling 
see Hallquist and Hillary, 2019]. Results of 

Figure 2. The role of falsification in pruning high volume science to identify the fittest theories. Panels A 
and B illustrate the conceptual steps in theory progression from exploration through confirmation and finally 
application. The x- axis is theoretical progression (time) and the y- axis is the number of active theories. Panel A 
depicts progression in the absence of falsification with continued branching of theories in the absence of pruning 
(theory reduction through falsification). By contrast the “Confirmatory Stage” in Panel B includes direct testing 
and refutation of theories/explanations resulting in only the fittest theories to choose from during application. 
Note: both Panels A and B include replication, but falsification during the “confirmation” phase results in a linear 
pathway and fewer choices from the “fittest” theories at the applied stage.

https://doi.org/10.7554/eLife.78830
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machine learning models, for example, are sensi-
tive to model specification and parameter tuning 
(Pineau, 2021; Bouthillier et  al., 2019; Cwiek 
et al., 2021). Computational approaches permit 
systematically combing through a great number 
of potential variables of interest and their statis-
tical relationships (specifically, at scales which 
would be manually infeasible). Consequently, the 
burden of reliability falls upon the existence of 
strong, well- founded hypotheses with sufficient 
power and clear pre- analysis plans. It has even 
been suggested that null hypothesis significance 
testing should only be used in the neurosciences 
in support of pre- registered hypotheses based 
on strong theory (Szucs and Ioannidis, 2017).

So, while there is concern that Big Data moves 
too fast and without the necessary constraints 
of theory, there is also emerging sentiment that 
the tremendous computational power coupled 
with unparalleled data access has the potential 
to transform some of the most basic scientific 
tenets, including introduction of a “third scien-
tific pillar” to be added to theory and experi-
mentation (see National Science Foundation, 
2010). While this latest position received criti-
cism (Andrews, 2012), computational methods 
have been reliably demonstrated to offer novel 
tools to address the replication crisis – an issue 
addressed in greater detail in “solutions” below.

Operating without anchors in a sea of 
high-volume science
One challenge then is to determine where the 
bedrock of our field (our foundational knowl-
edge) ends, and where areas of discovery that 
show promise (but have yet to be established) 
begin. By some measure neurology is a fledgling 
field in the biological sciences: the publication of 
De humani corporis fabrica by Vesalius in 1543 
is often taken to mark the start of the study of 
human anatomy (Vesalius, 1555) Jean- Martin 
Charcot – often referred to as the “founder of 
neurology” – arrived approximately 300  years 
later (Zalc, 2018). If we simplify our task and start 
with the work of Milner, Geschwind and Luria in 
the 1950s, it is still a challenge to determine what 
is definitively known and what remains conjec-
tural in the field. This challenge is amplified by 
the pressure on researchers to publish or perish 
(Macleod et al., 2014; Kiai, 2019; Lindner et al., 
2018). The number of papers published per year 
continues to increase without asymptote (Born-
mann and Mutz, 2015). When considering all 
papers published in the clinical neurosciences 
since 1900, more than 50% of the entire literature 

has been published in the last 10 years and 35% 
in the last five years (see supplementary figures 
S1a,b in Priestley et  al., 2022). In the most 
extreme examples, “hyperprolific” lab directors 
publish a scientific paper roughly every 5  days 
(Ioannidis et al., 2018). It is legitimate to ask if 
the current proliferation of published findings has 
been matched by advances in scientific knowl-
edge, or if the rate of publishing is outpacing 
scientific ingenuity (Sandström and van den 
Besselaar, 2016) and impeding the emergence 
of new theories (Chu and Evans, 2021).

We argue that a culture of science- by- volume 
is problematic for the reliability of science, 
primarily when paired with research agendas not 
designed to test/refute hypotheses. First, without 
pruning possible explanations through falsifica-
tion, the science- by- volume approach creates an 
ever- expanding search space where finite human 
and financial resources are deployed to maxi-
mize breadth in published findings as opposed 
to depth of understanding (Figure 2A). Second, 
and as an extension of the last point, failure to 
falsify in a high- volume environment challenges 
our capacity to know which hypotheses repre-
sent foundational theory, which hypotheses are 
encouraging but require further confirmation, 
and which hypotheses should be rejected. Finally, 
in the case of the least- publishable- unit (Broad, 
1981) a single data set may be carved into several 
smaller papers resulting in circles of self- citation 
and the illusion of reliable support for a hypoth-
esis (or hypotheses) (Gleeson and Biddle, 2000).

There have even been efforts internationally 
to make science more deliberate through de- em-
phasis of publication rates in academic circles 
(Dijstelbloem et al., 2013). Executing this type of 
systemic change in publication rate poses signif-
icant challenges and may ultimately be counter-
productive because it fails to acknowledge the 
advancements in data aggregation and analysis 
afforded by high performance computing and rapid 
scientific communication through technology. So, 
while an argument can be made that our rate of 
publishing is not commensurate with our scientific 
progress, a path backward to a lower annual publi-
cation rate seems an unlikely solution and ignores 
the advantages of modernity. Instead, we should 
work toward establishing scientific foundation by 
testing and refuting strong hypotheses and these 
efforts may hold the greatest benefit when used to 
prune theories to determine the fittest prior to repli-
cation (Figure 2B). This effort maximizes resources 
and makes the goals for replication, as a confronta-
tion of theoretical expectations, very clear (Nosek 
and Errington, 2020a). The remainder of the paper 

https://doi.org/10.7554/eLife.78830
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outlines how this can be achieved with focus on 
several contributors to the replication crisis.

Accelerating science by falsifying 
strong hypotheses

In praise of strong hypotheses
Successful refutation of hypotheses ultimately 
depends upon a number of factors, not the 
least of which is the specificity of the hypothesis 
(Earp and Trafimow, 2015). A simple, but well- 
specified, hypothesis, brings greater leverage to 
science than a hypothesis that is far reaching with 
broad implications but cannot be directly tested 
or refuted. Even Popper wrote about concerns 
in the behavioral sciences regarding the rather 
general nature of hypotheses (Bartley, 1978), a 
sentiment that has recently been described as 
a “crisis” in psychological theory advancement 
(Rzhetsky et al., 2015). As discussed in the TBI 
connectomics example, hypotheses may have 
been broad and "exploratory" because authors 
remained conservative in their claims and conclu-
sions because studies have been systematically 
under- powered (one report estimating power at 
8%; Button et al., 2013). While exploration is a 
vital part of science (Figure 2), it must be recog-
nized as scientific exploration as opposed to an 
empirical test of a hypothesis. Under- developed 
hypotheses have been argued to be at least one 
contributor to repeated failure of clinical trials 
in acute neurological interventions (Schwamm, 
2014) yet, paradoxically, strong hypotheses may 
offer increased sensitivity to subtle effects even 
in small samples (Lazic, 2018).

If we appeal to Popper, the strongest hypoth-
eses make “risky predictions”, therefore prohib-
iting alternative explanations (see Popper, 1963). 
Moreover, the strongest hypotheses make clear 
at the outset the findings that would support the 
prediction, and also those that would not. Practi-
cally speaking this could take the form of teams 
of scientists developing opposing sets of hypoth-
eses and then agreeing on both the experiments 
and the outcomes that would falsify one or both 
positions (what Nosek and Errington refer to as 
precommitment; Nosek and Errington, 2020b). 
This creates scenarios a priori where strong hypoth-
eses are matched with methods that can provide 
clear tests. This approach is currently being applied 
in the “accelerating research on consciousness” 
programme funded by the Templeton World 
Charity Foundation. Strong hypotheses must be 
matched with methods that can provide clear tests, 
a coupling that cannot be overstated. In the brain 

imaging literature alone, there are poignant exam-
ples where flawed methods (or misunderstanding 
of their applications) has resulted in the repeated 
substantiation of spurious results (in structural cova-
riance analysis see Carmon et al., 2020 in resting- 
state fMRI see Satterthwaite et al., 2012; Van Dijk 
et al., 2012).

Addressing heterogeneity to create 
strong hypotheses
One approach to strengthen hypotheses is to 
address sample and methodological heterogeneity 
which plagues the clinical neurosciences (Bene-
dict and Zivadinov, 2011; Bennett et al., 2019; 
Schrag et al., 2019; Zucchella et al., 2020; Yeates 
et al., 2019). To echo a recent review of work in 
the social sciences, the neurosciences require a 
“heterogeneity revolution” (Bryan et  al., 2021). 
Returning again to the TBI connectomics example, 
investigators relied upon small datasets heteroge-
neous with respect to age of injury, time post injury, 
injury severity, and other factors that could criti-
cally influence the response of the neural system to 
injury. Strong hypotheses determine the influence 
of sample characteristics by directly modeling the 
effects of demographic and clinical factors (Bryan 
et al., 2021) as opposed to statistically manipulating 
the variance accounted for by them – including 
the widespread and longstanding misapplication 
of covariance statistics to “equilibrate” groups in 
case- control designs (Miller and Chapman, 2001; 
Zinbarg et al., 2010; Storandt and Hudson, 1975). 
Finally, strong hypotheses leverage the pace of our 
current science as an ally, where studies designed 
specifically to address sample heterogeneity can 
test the role of clinical and demographic predictors 
in brain plasticity and outcome.

Open science and sharing to bolster 
falsification efforts
Addressing sample heterogeneity requires large 
diverse samples, and one way to achieve this is 
via data sharing. While data- sharing practices 
and availability differ across scientific disciplines 
(Tedersoo et  al., 2021), there are enormous 
opportunities for sharing data in the clinical 
neurosciences (see, for example the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) and the 
Transforming Research and Clinical Knowledge 
in Traumatic Brain Injury (TRACK- TBI) initiative), 
even in cases where data were not collected 
with identical methods (such as the Enhancing 
NeuroImaging Genetics through Meta- Analysis 
(ENIGMA) Consortium; see Olsen et  al., 2021 
for more on severe brain injury, and Thompson 

https://doi.org/10.7554/eLife.78830
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et al., 2020 for a broad summary of work in clin-
ical neuroscience). However, data aggregation 
and harmonization approaches remain largely 
untested as a solution to science- by- volume 
problems in the neurosciences.

It should be stressed that data sharing as a 
practice is not a panacea to poor study design 
and/or an absence of theory. The benefits of 
data combination do not eliminate any existing 
issues related to instrumentation and data collec-
tion occurring at individual sites; it is crucial to 
understand that data sharing permits faster 
accumulation of data while retaining any existing 
methodological concerns (e.g., harmonization). If 
unaddressed, these concerns introduce magni-
fied noise or systematic bias masquerading as 
high- powered findings (Maikusa et  al., 2021). 
However, well- designed data sharing efforts with 
rigorous harmonization approaches (e.g., Fortin 
et  al., 2017; Tate et  al., 2021) hold opportu-
nities for falsification through meta- analyses, 
mega- analyses, and between site data compari-
sons (Thompson et al., 2022). Data sharing and 
team science also provide realistic opportunities 
to address sample heterogeneity and site- level 
idiosyncrasies in method.

Returning to the TBI connectomics example 
above, data sharing could play a central role 
in resolving this literature. The neural network 
response to injury most likely depends upon 
where one looks (specific neural networks), 
time post injury, and perhaps a range of clinical 
and demographic factors such as age of injury, 
current age, sex, and premorbid status. Clinically 
and demographically heterogeneous samples 
of n~40–50 subjects do not have the resolution 
necessary to determine when hyperconnectivity 
occurs and when it may give way to disconnec-
tion (see Caeyenberghs et al., 2017; Hillary and 
Grafman, 2017). Data sharing and team science 
organized to test strong hypotheses can provide 
clarity to this literature.

Harnessing big data to advance 
metascience
Metascience (Peterson and Panofsky, 2014) 
has become central to many of the issues raised 
here. Metascience uses the tools of science to 
describe and evaluate science on a macro scale 
and to motivate reforms in scientific practice 
(Munafò et  al., 2017; Ioannidis et  al., 2015; 
Gurevitch et  al., 2018). The emergence of 
metascience is at least partially attributable to 
advances in web search and indexing, network 
science, natural language processing, and 

computational modeling. Amongst other aims, 
work under this umbrella has sought to diag-
nose biases in research practice (Larivière et al., 
2013; Clauset et al., 2015; Huang et al., 2020), 
understand how researchers select new work to 
pursue (Rzhetsky et al., 2015; Jia et al., 2020), 
identify factors contributing to academic produc-
tivity (Liu et al., 2018; Li et al., 2018; Pluchino 
et al., 2019; Janosov et al., 2020), and forecast 
the emergence of new areas of research (Prabha-
karan et  al., 1959; Asooja et  al., 2016; Sala-
tino et al., 2018; Chen et al., 2017; Krenn and 
Zeilinger, 2020; Behrouzi et al., 2020).

A newer thread of ongoing efforts within 
the metascience community is working to build 
and promote infrastructure for reproducible and 
transparent scholarly communication (see Konkol 
et al., 2020 for a recent review, Wilkinson et al., 
2016; Nosek et al., 2015). As part of this vision, 
primary deliverables of research processes 
include machine- readable outputs that can be 
queried by researchers for meta- analyses and 
theory development (Priem, 2013; Lakens 
and DeBruine, 2021; Brinckman et  al., 2019). 
These efforts are coupled with recent major 
investments in approaches to further automate 
research synthesis and hypothesis generation. 
The Big Mechanism program, for example, was 
set up by the Defense Advanced Research Proj-
ects Agency (DARPA) to fund the development 
of technologies to read the cancer biology liter-
ature, extract fragments of causal mechanisms 
from publications, assemble these mechanisms 
into executable models, and use these models to 
explain and predict new findings, and even test 
these predictions (Cohen, 2015).

Lines of research have also emerged using 
creative assembly of experts (e.g., prediction 
markets; Dreber et  al., 2015; Camerer et  al., 
2016; Camerer et  al., 2018; Gordon et  al., 
2020 and AI- driven approaches Altmejd et al., 
2019; Pawel and Held, 2020; Yang et  al., 
2020) to estimate confidence in specific research 
hypotheses and findings. These too have been 
facilitated by advances in information extraction, 
natural language processing, machine learning, 
and larger training datasets. The DARPA- funded 
Systematizing Confidence in Open Research 
and Evidence (SCORE) program, for example, is 
nearing the end of coordinated three- year long 
effort to develop technologies to predict and 
explain replicability, generalizability and robust-
ness of published claims in the social and behav-
ioral sciences literatures (Alipourfard et  al., 
2012). As it continues to advance, the meta-
science community may serve to revolutionize 

https://doi.org/10.7554/eLife.78830
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the research process resulting in a literature that 
is readily interrogated and upon which strong 
hypotheses can be built.

Falsification for scaffolding convergence 
research
Advances in computing hold the promise of richer 
datasets, AI- driven meta- analyses, and even 
automated hypothesis generation. However, thus 
far, efforts to harness big data and emerging 
technologies for falsification and replication have 
been relatively uncoordinated, with the afore-
mentioned Big Mechanism and SCORE programs 
amongst a few notable exceptions.

The need to refine theories becomes increas-
ingly apparent when confronted with resource, 
ethical, and practical constraints that limit what can 
be further pursued empirically. At the same time, 
addressing pressing societal needs requires inno-
vation and convergence research. An example are 
calls for “grand challenges”, a family of initiatives 
focused on tackling daunting unsolved problems 
with large investments intended to make an applied 
impact. These targeted investments tend to lead to 
a proliferation of science; however, these mech-
anisms could also incorporate processes to refine 
and interrogate theories as they progress towards 
addressing a specific and compelling issue. A benefit 
of incorporating falsification into this pipeline is that 
it encourages differing points of view, a desired 
feature of grand challenges (Helbing, 2012) and 
other translational research programs. For example, 
including clinical researchers in the design of exper-
iments being conducted at the preclinical stage 
can strengthen the quality of hypotheses before 
testing them to potentially increase the utility of the 
result, regardless of the outcome (Seyhan, 2019). 
To realize the full potential, investment in devel-
oping and maturing computational models is also 
needed to leverage the sea of scientific data to 
help identify the level of confidence in the fitness 
and replicability of each theory, and where best to 
deploy resources. This could lead to more rapid 
theory refinements and greater feedback for what 
new data to collect than would be possible using 
hypothesis- driven or data- intensive approaches in 
isolation (Peters et al., 2014).

Practical challenges to falsification
We have proposed that falsification of strong 
hypothesis provides a mechanism to increase study 
reliability. High volume science should ideally func-
tion to eliminate possible explanations, otherwise 
productivity obfuscates progress. But can falsifica-
tion ultimately achieve this goal? A strict Popperian 

approach, that every observation represents either 
a confirmation or refutation of a hypothesis, is chal-
lenging to implement in day- to- day scientific prac-
tice (Lakatos, 1970; Kuhn, 1970). What’s more, 
one cannot, with complete certainty, disprove a 
hypothesis any more than one can hope to prove a 
hypothesis (see Lakatos, 1970). It was Popper who 
emphasized that truth is ephemeral and even when 
it can be accessed, it remains provisional (Popper, 
1959).

The philosophical dilemma in establishing the 
“true” nature of a scientific finding is reflected 
in the pragmatic challenges facing replication 
science. Even after an effort to replicate a finding, 
when investigators are presented with the results 
and asked if the replication was a success, the 
outcome is often disagreement resulting in 
“intellectual gridlock” (Nosek and Errington, 
2020b). So, if the goal to falsify a hypothesis is 
both practically and philosophically flawed, why 
the emphasis? The answer is that, while falsifica-
tion cannot remove the foibles of human nature, 
systematic methodological error, and noise 
from the scientific process, by setting our sights 
on testing and refuting strong a priori hypoth-
eses we may uncover the shortcomings to our 
explanations. Attempts to falsify through refu-
tation cannot be definitive but the outcome of 
multiple efforts can critically inform the direction 
of a science (Earp and Trafimow, 2015) when 
formally integrated into the scientific process (as 
depicted in Figure 2).

Finally, falsification alone serves as an incom-
plete response to problems of scientific reliability 
but becomes a powerful tool when combined with 
efforts that maximize transparency in method, make 
null results available, facilitate data/code sharing, 
and increase the incentive structures for investiga-
tors to refocus on open and transparent science.

Conclusion
Due to several factors including a high- volume 
science culture and previously unavailable 
computational resources, the empirical sciences 
have never been more productive. This unpar-
alleled productivity invites questions about the 
rigor and direction of science and, ultimately, how 
these efforts translate to scientific advancement. 
We have proposed that it should be a primary 
goal to identify the “ground truths” that can 
serve as a foundation for more deliberate study 
and, to do so, there must be greater emphasis 
on testing and refuting strong hypotheses. The 
falsification of strong hypotheses enhances the 
power of replication first by pruning options 

https://doi.org/10.7554/eLife.78830
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and identifying the most promising hypotheses 
including possible mechanisms. When conducted 
through a team science framework, the endeavor 
leverages shared datasets that allow us to address 
heterogeneity that makes so many findings tenta-
tive. We must take steps toward more trans-
parent and open science including – and most 
importantly – study pre- registration of strong 
hypotheses. The ultimate goal is to harness the 
rapid advancements in big data, computational 
power, and strong, well- defined theory with the 
goal to accelerate science.
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