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In Fourier-based medical imaging, sampling below the Nyquist rate results in an underdetermined system, in
which a linear reconstruction will exhibit artifacts. Another consequence is lower signalto-noise ratio (SNR)
because of fewer acquired measurements. Even if one could obtain information to perfectly disambiguate the
underdetermined system, the reconstructed image could still have lower image quality than a corresponding
fully sampled acquisition because of reduced measurement time. The coupled effects of low SNR and under-
determined system during reconstruction makes it difficult to isolate the impact of low SNR on image quality.
To this end, we present an image quality prediction process that reconstructs fully sampled, fully determined
data with noise added to simulate the SNR loss induced by a given undersampling pattern. The resulting pre-
diction image empirically shows the effects of noise in undersampled image reconstruction without any effect
from an underdetermined system. We discuss how our image quality prediction process simulates the distri-
bution of noise for a given undersampling pattern, including variable density sampling that produces colored
noise in the measurement data. An interesting consequence of our prediction model is that recovery from an
underdetermined nonuniform sampling is equivalent to a weighted least squares optimization that accounts
for heterogeneous noise levels across measurements. Through experiments with synthetic and in vivo datao-
sets, we demonstrate the efficacy of the image quality prediction process and show that it provides a better
estimation of reconstruction image quality than the corresponding fully sampled reference image.

INTRODUCTION

Undersampling in Fourier-based medical imaging provides a
variety of clinical benefits including shorter exam times, re-
duced motion artifacts, and the ability to capture fast-moving
dynamics, such as cardiac motion. Undersampling reduces ac-
quisition time by collecting fewer measurements in the fre-
quency domain than required by the Nyquist rate. However,
undersampling causes two specific challenges for the recon-
struction system, namely, an underdetermined system' of lin-
ear equations and lower SNR (signal-to-noise ratio) because of
reduced measurement time. When reconstruction algorithms are
able to overcome these challenges, undersampling can benefit a
variety of Fourier-based imaging modalities, including mag-
netic resonance imaging (MRI) with parallel imaging or com-
pressed sensing (1, 2), computed tomography (CT) with reduced

!n the context of this paper, we specify fully determined and underdeter-
mined as follows: for a fixed Cartesian k-space (frequency space) grid with
predefined field of view and spatial resolution parameters, fully determined
means having at least one measured sample for each k-space grid location, and
underdetermined means at least one k-space location has zero samples, in which
case we have more unknowns (image pixels) than equations (one per acquired
k-space location).

or gated acquisition views (3, 4), and positron emission tomog-
raphy (PET) with multiplexed or missing detectors (5, 6). Under-
sampling for acceleration is becoming the mainstream approach
for fast imaging. In fact, this year, two of the major MRI man-
ufacturers have announced products which leverage undersam-
pling and a compressed sensing reconstruction that have been
approved by the Food and Drug Administration (FDA). While the
tools and analysis discussed in this paper apply generally to
Fourier-based medical imaging with Gaussian noise, we will
direct our numerical modeling, examples, and experiments to
the application of compressed sensing MRI.

When designing an undersampled reconstruction system,
the primary concern is often focused on compensating for the
underdetermined system caused by sub-Nyquist sampling, for
example choosing a sparse representation for compressed sens-
ing. However, we should not overlook the fact that collecting
fewer measurements in practice leads to overall lower SNR in the
acquired data. If the measurements are too noisy, the low SNR
will lead to poor reconstructed image quality even if the recon-
struction system were fully determined. On the other hand, with
high SNR measurements, the resulting image quality will be
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Figure 1. Prediction of image
quality: The process to add the
proper amount of noise to fully sam-
pled reference kspace and recon-
struct an image affected by lower
SNR because of reduced acquisi-
tion time but not affected by an
underdetermined system. The ex-
pected measurement time at each
kspace location, 7, associated
with the given sampling pattern is
used to calculate the amount of
noise (zero mean, complex Gauss-
ian with variance 02, fo add fo
each position in the reference k-
space. This kspace with added
noise is then processed by the re-
construction algorithm fo produce
the prediction image.

Sampling Pattern

Sampling Density
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limited by how well the reconstruction can constrain the under-
determined system. The effects of the underdetermined system
and the lower SNR are coupled during the reconstruction pro-
cess, making it difficult to analyze one without the other. It is
important, however, to analyze how both issues impact the
reconstruction system to determine the empirical limits of un-
dersampling and gain insight on how to improve undersampled
acquisition and reconstruction when targeting specific applica-
tions.

Compressed sensing theory has provided us with exten-
sive analysis on the bounds for the successful signal recovery
from undersampled data. Candes (7) describes a bound on the
squared error of the recovered signal limited by the under-
sampling rate and the sparsity of the data. He also shows that
this bound scales linearly with the variance of the noise in the
measured data. Candés and Plan (8) provide a more general
compressed sensing theory that addresses a combination of
practical concerns. For instance, they derive the bounds on
squared error of the recovered signal for systems with Fourier
encoding matrices, noise measurements, and approximately
sparse signals. Unfortunately, while squared error is an impor-
tant tool in measuring similarity between signals, it often fails to
provide a good measure of perceptual image quality. Wain-
wright (9) improves upon the squared error definition of success
by studying the undersampling rates and sparsity levels for
which there is a high probability of successfully recovering the
support of the sparse signal.

Although it is important to have a theory showing that
reconstruction techniques are mathematically founded, when
testing a reconstruction algorithm on a new undersampled clin-
ical dataset shows unacceptable image results, it is difficult to
leverage the theoretical bounds to understand the cause of the
failure. Conversely, when an undersampled reconstruction is
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successful at a certain undersampling rate, it is natural to then
ask, how much further can we push undersampling? In this case,
it is difficult to translate theoretic analyses, such as time con-
stants for polylogarithmic bounds (8), into practice. Our goal in
this paper is to provide the tools to empirically analyze the
effects of lower SNR from reduced measurement time using a
reconstruction system that is fully determined, rather than un-
derdetermined. To this end, we present the image quality pre-
diction process (Figure 1). The image quality prediction process
takes a Nyquist-sampled (fully determined) reference dataset
and adds the proper amount of noise to mimic the lower SNR
produced by a given undersampling pattern. By reconstructing
this noisy, but still Nyquist-sampled dataset, we have a predic-
tion image that has been affected by lower SNR from reduced
measurement time but not by artifacts from an underdetermined
reconstruction. The image quality prediction process give us the
following three benefits:

e Comparing the prediction image to the reference recon-
struction allows us to see the impact of lower SNR from
reduced measurement time on the reconstruction system.

e Comparing the prediction image to the underdetermined
reconstruction, we are able to assess the added effect of the
underdetermined system on the reconstructed image.

e The prediction image provides a better estimate of under-
sampled image quality than overoptimistically comparing
an underdetermined reconstruction to a fully sampled ref-
erence reconstruction.

As exemplified in Figure 2, for a given clinical application
and undersampling pattern, pulse sequence and reconstruction
developers can use the image quality prediction process to
determine if low SNR, rather than the underdetermined system,
is the limiting factor for a successful reconstruction. Specifi-
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cally, an unsatisfactory prediction image indicates that the
undersampled acquisition contains more noise than the recon-
struction can handle. On the other hand, a high quality predic-
tion image and poor results from the underdetermined recon-
struction indicate that the constraints on the underdetermined
system are not adequate for the limited number of samples
acquired. Once developers understand the limiting factor in a
given undersampling application, they can then recommend
changes to the acquisition protocol to adjust the measure-
ment SNR or the undersampling rate. Developers can also
appropriately focus their efforts on improving the recon-
struction algorithm to better account for the noise distribu-
tion or to improve the reconstruction constraints, such as the
sparsity model.

Before describing the details of the image quality prediction
process, we first specify how measurement time affects SNR,
specifically when undersampling. We complete this section by
introducing a weighted least squares optimization that general-
izes the reconstruction process for both undersampled data and
the fully determined prediction data.

Measurement Time and SNR
For MRI reconstruction, we can model the signal s as the discrete
Fourier transform of the unknown target image object m:

Sk: (Fm)k (1)

where F is the multidimensional discrete Fourier transform op-
erator and k is the k-th location in k-space. However, each
measurement s, comes with an associated noise. We can model
the noisy measurement Y as:

Y~ N(Re(sy), 02/ 7) + iNUm(sy), 02,/ 7) (2)

where Y} is a random variable drawn from a complex-valued
Gaussian distribution with mean s, and variance defined by the
system noise variance, oqu, scaled by one over the measurement
time, 7, as described in (10). With this definition, we assume
that the signal is deterministic based on our model, the signal is
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Figure 2. Using the image quality prediction
process to adjust scan parameters. This 2D fast
spin echo acquisition with 1 mm slice thickness
and 4% undersampling produces poor recon-
struction image quality (top right). The corre-
sponding prediction image (top left) also has
poor image quality, indicating that noise is the
limiting factor. Increasing to 2 mm slice thickness
(center row) reduces the noise and produces
higher image quality in both the prediction and
the underdetermined reconstruction. Further ac-
celerating the scan with 6x undersampling (bot-
tom row), the prediction image quality is signifi-
cantly higher than the reconstruction image qual-
ity, indicating that the underdetermined system is
the limiting factor for those scan parameters.

independent of the noise, and that the noise is independent and
identically distributed. In cases where these assumptions do not
hold, additional care may be taken to adjust the data to this
model, for example, prewhitening coil channels in parallel im-
aging or accounting for echo time variation in fast spin echo
acquisitions.

Again following (10), we define SNR as the signal intensity
divided by the standard deviation of the noise and note that
from equation (2) we see that the SNR for measured data at the
k-th location in k-space scales with 1/ is:

signal Sk

SNR = (3)

] 2
Vnoise var. \/Cfacq/Tk

As an example, if we double measurement time at each k-space
location (e.g., acquire two samples rather than one), the modeled
signal remains the same, the noise variance is reduced by a
factor of 2, and the SNR increases by a factor of V2.

We model the measurement time at the k-th location in
k-space, T, as the acquisition time per sample times the number
of samples:

Tp = Ta(‘an (4)

Without loss of generality, we assume a fixed acquisition time
for every sample, 7,4, defined by the acquisition parameters and
the number of samples, n,, that may vary across k-space loca-
tions.

The measurement time 7, is not necessarily equal for all
k-space locations. Variable density sampling across k-space can
be a natural effect of certain acquisition techniques, such as
radial sampling. Variable density sampling may also be used to
take advantage of the higher energy in the low frequency re-
gions to improve SNR (similar to Weiner filtering) or to account
for asymptotic incoherence (11). A variable density distribution
of measurement time generates a corresponding distribution of
expected noise variance across k-space. Lower sampling density
at the high frequency k-space locations results in higher vari-
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Figure 3. With limited measurement time, the sampling density distribution 7 (dashed green line) may fall below one
unit of measurement time. For systems with a minimum measurement time, fractional samples (second column) are not
possible/do not contribute fo reduction in scan time, and we are forced to sample below the Nyquist rate (third column)
to meet the required measurement time limit. To simulate the infeasible Nyquistsampled, fully determined acquisition

(second column), the image quality prediction process adds noise fo a fully determined reference acquisition (fourth col-
umn). Note that all three of these datasets have the same distribution of expected noise variance across kspace (bottom
row).

ance at these locations, generating a colored (blue) noise distri-
bution, rather than the white noise associated with a uniform
acquisition time distribution. It is this colored noise that is
coupled with the underdetermined system’s effects during image
reconstruction.

Note that in this paper, we are not attempting to determine
the optimal sampling density, but rather providing a tool to help
analyze the effects of the chosen sampling density as well as
other acquisition and reconstruction parameters.

Undersampling and Expected Measurement Time

Fast and/or short acquisitions require a limit on the total mea-
surement time. Unfortunately, some systems and applications
have constraints on the minimum measurement time at a single
k-space location. In this case, it is not feasible to sample k-space
such that the reconstruction system is fully determined (Figure
3, second column). Undersampling is required to meet the mea-
surement time constraints without sacrificing other scan re-
quirements, such as spatial resolution, that are defined by the
desired measurement time distribution (Figure 3, dashed green
curve). Without loss of generality, we will define the system’s
minimum measurement time to be one sample of duration 7,¢4
and any shorter acquisition times, 7, < 7,,, are infeasible.

Undersampling (Figure 3, third column) avoids acquiring
fractional samples by measuring either one or zero samples at
each k-space location. A binary undersampling pattern can be
constructed to fit the desired sampling density, whether it be
uniform or variable density. This technique of constructing a
continuous output with discrete inputs is analogous to pulse-
width modulation in digital signal generation and to digital
halftoning in computer graphics.

At first, it may appear that the SNR using these binary
undersampling patterns is the same as a fully sampled acquisi-
tion because at the k-space locations where we collect a mea-
surement, it has the same variance, oﬁcq, as any fully sampled
measurement. Also, at locations where we don’t measure any
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signal, we also don’t collect any noise. However, the Fourier
transform effectively averages the measured k-space locations
with the zeros from the missing measurements, scaling the SNR
by the square root of the sampling density equation (3). To
model this averaging effect based on the density of binary
sampling patterns, we consider the expected measurement time
at each k-space location, 7.

We model the expected measurement time for random un-
dersampling patterns by considering the generation of a random
sampling pattern. The binary value for each location in the
pattern may be determined by drawing a random sample from a
Bernoulli distribution. To generate a pattern with a particular
sampling density, the mean parameter of each Bernoulli distri-
bution is set to the desired fractional measurement time, pg, for
that location. Specifically, let us model T} as a Bernoulli random
variable representing the measurement time at a single location
in k-space. The expected value of Ty is Tprea,r:

(5)
T, = TocqueSampley, (6)

7-pred,k = [E[Tk] = 7-acanpk (7)

Tpred,k gives us the expected measurement time per k-space

location, which in turn leads us to the expected noise variance
per k-space location, 02,cax = Oacg Tyred

Sample, ~ Bern(py)

Image Quality Prediction

Using the expected measurement time described in the previous
section, the image quality prediction process generates an image
that shows the empirical effects of reduced measurement time
without any effects of an underdetermined system caused by
undersampling. This process, as depicted in Figure 1, creates the
prediction image by adding noise (based on the expected mea-
surement time of a specific undersampling pattern) to a fully
sampled reference k-space dataset and then passing that ad-
justed k-space through the regularized weighted least squares
reconstruction algorithm described in the following section.
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Highly Over-sampled Dataset Setup

Gold Image Noisy Images k-space Stack
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Number of Samples
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Figure 4. Experimental setup allowing us to choose the number of acquisition samples (from O to 144) at each kspace
location. Noise is added to 144 copies of the input gold image. These noisy images are then Fourier transformed to

create a stack of kspace images with 144 samples available at each k-space location. Note that for the tomato dataset,
there is no gold image and the k-space stack comes directly from the 144 scanner acquisitions of the tomato.

The first step in the prediction process is to determine the
expected measurement time at each k-space location, Tpreqr, for
the given undersampling pattern. For random sampling pat-
terns, this sampling density distribution is readily available, as it
is the same distribution that generated the sampling pattern.
When the sampling density is not explicitly or analytically
available, the measurement time distribution may be approxi-
mated from the sampling pattern with local averaging, Voronoi
diagrams, or other techniques used in sampling density com-
pensation.

From the measurement time distribution, we calculated how
much noise needs to be added to the fully sampled (fully deter-
mined) reference k-space dataset to match the equivalent statis-
tical noise produced by the given undersampling pattern. To
simulate an undersampled acquisition with Gaussian noise vari-
ance Opreqp = oﬁcq/ Tpredy W€ simply added complex-valued
Gaussian noise to the reference k-space based on the expected
measurement time distribution, 7,eqr from equation (7), (Figure
3, right). Given that 0% = 07%,/T,ris the Gaussian noise variance
measured from the reference data, we can calculate the variance
of the complex Gaussian noise, oﬁdd,k, to add to location k in the
reference k-space:

2 — 2 2
Upred,k - 0-ref—’— Oudd, k (8)

2 2
Opred,k — Oref (9)

T
f

( f 1>(Tfef

Tpred,k

where T,.p = Tyeyer in equation (4) and nyr is the number of
samples acquired in the reference data. The detailed derivation
between equations (9) and (10) may be found in the online
supplementary Appendix. Often n,., = 1; however, the reference
data may be acquired using many samples, for example the
number of averages might equal two or, in the case of our first
two experiments, n,.r = 144 (Figure 4).

Note that with variable density sampling patterns, Treqr, is
not constant across k-space, and thus, the variance of the added
noise, oﬁdd’k, will also vary across k-space.

The noise to add at each point in k-space is drawn from a
complex-valued, zero-mean Gaussian distribution with vari-

2 —
Oadd,k =

(10)
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ance equal to of,ddyk for that k-space location. This noise is simply
added to the reference k-space to produce fully determined
k-space with the noise distribution matching that of the under-
sampled data (Figure 3, right).

The final step in the image quality prediction process is to
pass the reference k-space with added noise through the
regularized weighted least squares reconstruction algorithm
described in the following section, producing a prediction
image that gives an estimate of the reconstruction image
quality assuming no effect from an underdetermined recon-
struction system.

Weighted Least Squares Reconstruction

We require a consistent reconstruction formulation that sup-
ports standard fully sampled and undersampled data as well as
the prediction data. To this end, we use a maximum a posteriori
(MAP) formulation of MRI reconstruction that leads, in general,
to a regularized weighted least squares optimization. Equations
(1) and (2) combine to give us a Gaussian likelihood probability
of measuring a signal y, given an image object m:

_ —(F 2
|y, — (Fm)y| ) (an

20’2“1/ Th

1
P(y,lm) = exp(
\/27raﬁcq/7k

With this Gaussian likelihood and assuming a general prior
probability on our image data P(m), the resulting MAP formu-
lation leads to a weighted-least squares optimization:

m = argmax P(mly) (12)
=argmax P(ylm)P(m) (13)
Np
1
= argmin _ >, 7y, ~ (Fm)y|* ~ log Plm) (14
m k=1
1
=argmin 5 Wy — WFm||3 — log P(m) (15)

where m is the vectorized image with Np number of pixels; y is
the vectorized acquired k-space locations with Np number of
elements; F is the NpxNp multidimensional discrete Fourier
transform operator; and W is an NpxNp diagonal matrix with
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Wi = 7, values along the diagonal. The detailed derivation
between equations (13) and (14) may be found in the online
supplementary Appendix.

In this paper, we will use a Laplacian-based prior to promote
sparsity, (— log P(m) = A[W(m)||,), where W is a sparsity trans-
form function and A is the Laplace prior parameter. This €,
regularized weighted least squares (WLS) optimization does not
have an analytic solution, and finding the solution requires a
nonlinear reconstruction algorithm. In general, we can solve
this optimization using an iterative algorithm, such as fast
iterative shrinkage-thresholding algorithm (FISTA) (12) or alter-
nating direction method of multipliers (ADMM) (13).

This optimization framework, given the proper weight val-
ues described below, generalizes the reconstruction of a) fully
sampled, b) undersampled, and c) image quality prediction da-
tasets.

a) Fully sampled weights: The least squares weights for a fully
sampled dataset (both uniform and variable density sampling)
are simply equal to the square root of the measurement time,

Wik = N = \Tueqttp for the k-th sample. Assuming, again, that

C
the acquisition tir?le per sample is constant across k-space, Tucq
may be pulled out of the €, norm term, simplifying the weights
to be equal to the square root of the number of samples,
Wik = Vg

Note that with n; constant across k-space and a uniform prior
P(m), the MAP optimization becomes the standard least squares
optimization:

m = argmin é ly — Fmlf3 (16)

b) Undersampled weights: When undersampling, the weights,
Wik, are simply set to one or zero depending on whether or not
that k-space location has been sampled (assuming the same
measurement time at each sampled location). With these binary
weights, the operator W in equation (15) becomes the under-
sampling operator defined by the binary sampling pattern. With
a Laplacian-based prior, the MAP reconstruction becomes the
standard Lasso optimization (14) commonly used in compressed
sensing. In addition to strictly binary undersampling patterns,
the WLS optimization also allows for undersampling patterns
that have zero measurement time at certain locations and a
range of measurement times across the remaining locations, for
example, an acquisition with undersampled high frequencies
and oversampled low frequencies.

¢) Prediction weights: The prediction data are designed to
simulate the noise variance from the expected measurement
time for a given sampling density py, leading us to WLS weights
Wik = \Tpredk = \TacqlrefkPl Which may be simplified to
Wy, = \pr assuming constant sampling time and constant
number of samples per location in the fully sampled reference
data.

METHODOLOGY
In this institutional review board-approved study, we acquired
MRI data by scanning two healthy, adult volunteers.

Effect of Measurement Time Distribution

To better understand effects of reduced measurement time and
undersampling and to test our image quality prediction process,
we created an experiment that enables us to compare the recon-
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structions of 1) a fully determined dataset, 2) an underdeter-
mined dataset, and 3) the corresponding prediction data, all
using the same total measurement time and sampling density
distribution.

The foundation of this experiment is a “stack” of 144 fully
sampled k-space images (Figure 4). Each entry in the k-space
stack is a different noisy acquisition of the same object slice.
With 144 samples available at each of the N k-space locations,
we are able to select a subset of these samples to simulate
acquiring a specific number of samples at each k-space location
based on a desired measurement time distribution.

We used two different datasets for this experiment. The first
dataset was the classic Shepp-Logan digital phantom (15) with a
slight modification to add a set of parallel dark bars that will
help analyze spatial resolution. This phantom was chosen be-
cause it has an explicitly sparse representation (many true zero
values) in the finite differences domain (often seen in total
variation reconstructions), implying that we can use compressed
sensing to find a proper solution to the underdetermined system
of equations caused by undersampling. As seen in Candes,
Romberg, and Tao (16), the Shepp-Logan phantom, without
noise, may be perfectly recovered after severe undersampling.
To analyze how noise propagates through the reconstruction
system, we generated a different instance of complex-valued,
zero-mean, Gaussian noise to add to 144 copies of the k-space
for the Shepp-Logan phantom. The second dataset is 144 actual
MRI acquisitions of a tomato at a single slice location. These
data were acquired on a 3T scanner (Siemens Healthineers, Erlan-
gen, Germany) using a T1-weighted gradient echo sequence with
10 ms echo time (TE), 35 ms repetition time (TR), 12° flip angle
(FA), 90 mm field of view (FOV), 2 mm slice thickness, and 192
X 192 acquisition matrix. Only the body coil was used during
acquisition to both simplify the reconstruction model and en-
sure that each of the 144 acquisitions had relatively low SNR.

For both datasets, we selected a subset of the full stack of
k-space samples based on three different sampling distributions,
as depicted in the top row of Figure 5: reference, using all 144N
samples (where N is the number of k-space locations); fully
determined, selecting only 18N samples according to either a
uniform or variable density sampling distribution across k-
space locations; and underdetermined, selecting 18N samples
and following the same density distribution but collecting all
144 samples at N/8 randomly chosen k-space locations and
collecting zero samples for the remaining locations. We also
reconstructed both datasets using the image quality prediction
process to add noise to the 144N reference dataset to simulate
the noise level from the 18N fully determined dataset.

For all reconstructions, the selected k-space samples were
averaged at each k-space location to create a single k-space
image to be reconstructed (y, from equations (12) and (15)).

We reconstructed all data using our implementation of
ADMMV, formulated for the regularized weighted least squares
optimization, with the weights equal to the number of measure-
ments acquired at each k-space location, as specified in the
weighted least squares reconstruction section of the introduc-
tion. For the digital phantom dataset, we used isotropic total
variation as the sparsity model. For the single-channel MRI
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Results: Effect of Measurement Time Distribution — Variable Density Sampling

144

Sampling
Pattern

Reference

Fully Determined

Shepp-Logan
Regularized WLS Recon.

Tomato
Regularized WLS Recon.

Reference Fully Determined

144 144 144

Prediction Underdetermined

Prediction Underdetermined

Figure 5. Results from the effect of the measurement time distribution experiment using variable density sampling. Each
column uses a different set of kspace samples; from left to right: oversampled reference, using all 144 samples af
each kspace location; variable density, fully determined, using 1/8 of the total samples following a variable
density distribution; prediction data, using fully sampled k-space with noise added to simulate the variable density,
fully determined dataset; variable density (randomly sampled), underdetermined, using 1/8 of the total sam-

ples and following the same variable density distribution, but only using either 144 or zero samples at each location.
Row 1: lllustration of how measurement time is distributed across k-space. Row 2: WLS reconstruction of the Shepp-

Logan data, regularized with total variation. Row 3: WLS reconstruction of the tomato k-space data, regularized with
wavelets.

acquired data, we used Daubechies-4 wavelets with translation
invariant cycle spinning (17) as the sparsity model.

Effects of Measurement Noise and Undersampling Rate
Given enough acquisition time, we can satisfy a given sampling
density distribution by either Nyquist sampling k-space or by
undersampling. Both of these sampling patterns produce similar
distributions of expected noise variance in our data, but under-
sampling incurs an additional cost from having an underdeter-
mined system of equations. In this experiment, we will extend
the oversampled stack experiment above to take a closer look at
the effect of measurement noise and undersampling rate on
reconstruction image quality. We accomplish this by varying
both the measurement noise level and the undersampling rate
and then comparing the mean squared error (MSE) images re-
constructed from variable density fully determined data and
from variable density underdetermined data.

As in the measurement time experiment above, we have a
stack of k-space data, and we generate an output image by
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reconstructing a subset of k-space samples, selected according
to a either a fully determined variable density sampling pattern
or an underdetermined pattern following the same measurement
time distribution.

In this experiment, the k-space stack is generated from
copies of a single relatively high SNR (31.3 dB) in vivo head
acquisition. Similar to the Shepp-Logan k-space stack, we added
to k-space a sample of complex-valued, Gaussian noise with
zero mean and a given standard deviation. We executed the
experiment using three different values for the added noise
standard deviation (1, 5, 8) and four undersampling rates (2%,
4%, 8X, and 12X undersampled).

The head dataset for this experiment is an axial slice of a
three-dimensional (3D) fully sampled, spoiled gradient echo
dataset acquired on a 1.5T scanner (GE Healthcare, Waukesha,
WI) with 8 receive channels, 5 ms TE, 12 ms TR, 20° FA, 184 X
230 mm FOV, 1 mm slice thickness, and 256 X 256 acquisition
matrix. This multichannel dataset was preprocessed, using ES-
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Figure 6. Results of our experiment to compare
fully determined and underdetermined reconstruc-
tions with the same total measurement time across
four different undersampling rates (2, 4, 8X,
12X) for three different noise levels (added noise
standard deviations 1.0, 5.0, 8.0). Mean squared
error (MSE) values are plotted for each of the 100
repetitions of the same experiment. Note that for the
2% undersampling rate, the fully determined and
underdetermined reconstructions have essentially
the same MSE. As the undersampling rate in-
creases, the underdetermined system produces an
increasingly worse MSE than the fully determined
system. Note that one of the 100 underdeter-
mined reconstructions at ¢ = 5 and R = 12x
failed to converge. This outlier is consistent with
compressed sensing theory and practice where
the reconstruction may fail to converge at higher
undersampling rates.

PIRIT coil sensitivity maps (18), to combine the data into a single
channel, allowing us to use a simpler reconstruction model for
this experiment. This head dataset has relatively high SNR, so we
were able to experiment with very low noise and subsequently
experiment with higher noise levels by adding Gaussian noise to
the k-space stack for this dataset. This head dataset also provides
a real example of an image that is only approximately sparse in
the wavelet transform domain.

We repeated these 12 experiments (three noise levels by four
undersampling rates) 100 times, each time reconstructing the
fully determined data and the underdetermined data, as well as
the corresponding prediction data. We then plotted the resulting
MSE values (relative to the original head image) (Figure 6).

Image Quality Prediction

We demonstrate the image quality prediction process by com-
paring the output of the actual undersampled reconstruction to
both the generated prediction image and the fully determined
reference image. We executed this experiment for two in vivo
fully sampled MRI datasets using increasingly aggressive retro-
spective undersampling rates.
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In vivo Knee

The in vivo knee dataset is an axial slice of a 3D fully-sampled,
fast spin echo dataset acquired on a 3T scanner (GE Healthcare,
Waukesha, WI) with 8 receive channels, 25 ms TE, 1550 ms TR,
echo train length of 40, 160 mm FOV, 0.6 mm slice thickness,
and 320 X 320 acquisition matrix. This dataset was collected by
Epperson et al. (19) and is available at (20).

The two retrospective undersampling patterns used were 4 X
and 12X undersampled, variable density Poisson disc. Both
patterns fully sampled the center of k-space to allow for ESPIRIT
auto-calibration (18). Neither the reference data nor the under-
sampling patterns included the corners of k-space, a common
acquisition acceleration.

The optimization equation for this parallel imaging, com-
pressed sensing reconstruction is an extension of equation (15),
modified to include parallel imaging and a Laplacian prior:

min% | Wy — WESm|5 + || ¥ml|, (17)
where m is the vectorized image with Np number of pixels; y is
the vectorized acquired multichannel k-space data with NcNp
number of elements (Np is the number of pixels, Nc is the
number of coils); F is the NeNpxNcNp two-dimensional (2D)
Fourier transform operator for each coil independently; S is
the NcNpxNp block diagonal sensitivity maps generated with
ESPIRIT calibration; W is the sparsity transform; A is the regu-
larization parameter; and W is the NcNpxNcNp diagonal weight
matrix.

Note that the reconstruction process now includes the par-
allel imaging coil combination operator S¥. With the addition of
parallel imaging, the undersampled reconstruction system is
now both ill-conditioned and underdetermined. Previous works
have provided tools to empirically analyze the noise propaga-
tion through the ill-conditioned parallel imaging system, for
example by computing the geometry-factor (21) or with Monte
Carlo simulations with added noise (22). The image quality
prediction process will empirically show the effect of lower SNR
because of reduced measurement time on the compressed sens-
ing and parallel imaging reconstruction without any effect from
an underdetermined or ill-conditioned system. The actual un-
derdetermined reconstruction will then produce an image af-
fected by similar lower SNR as well as the effects from the
ill-conditioned and underdetermined parallel imaging and com-
pressed sensing system.

The sparsity filter (associated with W) used within the re-
construction was wavelet soft-thresholding using Daubechies-4
with translation invariant cycle spinning (17).

The regularized weighted least squares optimization for
both prediction and underdetermined reconstruction used our
implementation of the ADMM algorithm. The only difference
between the two reconstructions was the appropriate change to
the weights as specified in the weighted least squares section of
the introduction. Specifically, the weights for the prediction
reconstruction were the square root of the sampling density, pg,
at each k-space location, and the actual underdetermined recon-
struction weights were binary with ones for acquired locations
and zeros elsewhere.
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Reference

Figure 7. Results from in vivo image quality pre-
diction experiment. Fully determined reference
axial knee (top) followed by prediction (left col-
umn) and actual underdetermined reconstruction

(right column) for two different undersampling
rates: 4% and 12X. Images are zoomed and
cropped fo show image quality defail.

The image quality prediction process requires an under-
standing of the existing noise level in the fully sampled refer-
ence data (ofcull]. Ideally, this noise level could be obtained from
an explicit measurement of the received signal using the coils on
the same scanner, prior to the actual exam. In our experiments,
we measured the noise level from the reference data directly by
Fourier transforming the (multichannel) k-space data and mea-
suring the variance of the values from a 11 X 11 background
patch in each coil image. The noise level was measured and
applied independently for each coil channel.

A direct inverse 2D Fourier transform followed by coil
combination (m, = SHF_ly,Cﬁ was used on the reference k-
space to generate the fully sampled reference image for com-
parison (Figure 7, top).

In vivo Head
The in vivo head dataset is an axial 2D fast spin echo dataset
acquired on a 3T scanner (Siemens Healthineers, Erlangen, Ger-
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many) with 12 receive channels, 91 ms TE, 6000 ms TR, echo
train length of 11, 195 X 220 mm FOV, and 286 X 320 acqui-
sition matrix. The 12 coil channels were reduced to 4 channels
with Siemens coil compression. Multiple slices were acquired at
slice thicknesses of 1 mm and 2 mm. The phase encode lines
were retrospectively undersampled at 4X and 6X acceleration
using a one-dimensional (1D) variable density Poisson disc
sampling with the central 24 lines fully sampled. This dataset
was processed in the same manner as the in vivo knee dataset
above.

RESULTS
The following three results are shared across all of our experi-
ments:

1. the prediction image has equivalent or worse image qual-
ity than the reference image,

2. the undersampled reconstruction image has equivalent or
worse image quality than the prediction image,

3. the prediction image for a given sampling density has
equivalent image quality to the fully determined image
with the same sampling density.

Effect of Measurement Time Distribution

Figure 5 shows the results of our experiment to test the effect of
various measurement time distributions on reconstruction im-
age quality. For both the Shepp-Logan digital phantom and the
MRI acquisition of the tomato, the fully determined images with
reduced measurement time show lower image quality than the
images reconstructed from the reference acquisition data. As
seen specifically in the blurred spatial vertical bars, the fully
determined images did not fully recover from the limited acqui-
sition time despite not having any corruption from an underde-
termined systems of equations.

The variable density underdetermined Shepp-Logan recon-
struction (Figure 5, third row, right) was successful and has
nearly identically image quality to the fully determined recon-
struction but still lower image quality than the reference recon-
struction. This indicates that the underdetermined reconstruc-
tion recovered well from the underdetermined system, but still
could not completely recover from the lower SNR because of
reduced measurement time. For the acquired tomato dataset,
however, the underdetermined image quality (Figure 5, bottom,
right) is lower than the prediction and fully determined image
quality, indicating that the reconstruction could not completely
recover from the underdetermined system. This is not a surpris-
ing result because the tomato image is not sufficiently sparse in
the wavelet transform domain, especially when compared to the
explicit sparsity of the Shepp-Logan phantom in the finite dif-
ferences domain.

Figure 5 also shows the results of the image quality predic-
tion process for the same two datasets and sampling distribu-
tions. The second and third columns in this figure show that the
fully determined reconstructions have essentially identical im-
age quality to their corresponding prediction images. This ver-
ifies that the image quality prediction process closely simulates
the noise level and reconstructed image quality of the associated
fully determined acquisitions.
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Similar results from the same experiment with uniform
density sampling have been included in the online supplemen-
tary Appendix.

Effects of Measurement Noise and Undersampling Rate
By varying the input noise level and the undersampling rate, we
see the differences in the resulting MSE for the reconstructions
of the fully determined data and underdetermined data, both
with the same measurement time distribution. Figure 6 shows
that for a fixed noise level and increasing undersampling rate,
the MSE of the fully determined images increases, showing that
the reduced measurement time affects image quality despite no
undersampling. Also, as we increase the undersampling rate, the
MSE of the underdetermined images increases significantly
faster than the fully determined images. This gap in image
quality shows the degrading effect of the underdetermined re-
construction increasing as the undersampling rate increases and
the sparsity transform can no longer adequately model the
image in a sufficiently sparse representation.

As seen in Figure 6, the MSE of the prediction images
matches the MSE of the fully determined reconstructions for all
noise levels and undersampling rates, indicating that the image
quality prediction process is consistently simulating the ex-
pected noise level for the given sampling density.

The results from this experiment help us to see that when
the image quality of the prediction image is unacceptable, the
actual undersampled reconstruction will also be unaccept-
able (i.e., higher MSE). In this situation, the low SNR of the
acquisition is the limiting factor in the reconstruction, not the
artifacts because of the underdetermined system. To improve
the reconstruction in this case, steps should be taken to adjust
the acquisition parameters to increase the SNR or better
handle the expected noise levels (e.g., reducing spatial reso-
lution, decreasing undersampling rate, or improving the im-
age prior P(m)).

Image Quality Prediction

Figure 2 shows the prediction and underdetermined reconstruc-
tion images for the in vivo head experiment. This figure illus-
trates how the prediction image may be used to gain insight into
the causes of poor undersampled image quality and adjust scan
parameters, such as slice thickness, as needed.

Figure 7 shows the reference, prediction, and underdeter-
mined reconstruction images for the in vivo experiment using
the knee dataset and various undersampling rates. Figure 7
shows the following three qualitative results: 1) the reference
image has better image quality than the prediction images;
2) the prediction images have better image quality than the
corresponding underdetermined images; and 3) the underdeter-
mined images are more similar in image quality to the prediction
images than the reference image. That the reference images look
better than the prediction images is expected because the pre-
diction process adds more noise to the fully sampled reference
data. That the prediction images look better than the underde-
termined image is expected because the underdetermined recon-
struction had to find a proper solution to an underdetermined
system of equations in addition to recovering from the lower
SNR from reduced measurement time. Finally, the prediction
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image provides a better estimate of reconstruction image quality
than the reference image.

With a reasonable amount of undersampling, the 4X un-
derdetermined images only have slightly lower image quality
than the prediction images. As undersampling increases to 12X,
the image quality gap between the underdetermined and predic-
tion images increases. These results are consistent with our
effect of measurement noise and undersampling rate experiment
when increasing sampling rate.

DISCUSSION

The presented image quality prediction process provides an
empirical upper bound on undersampled image quality, which
serves as a better metric for evaluating the effectiveness of a
reconstruction algorithm than direct comparison to a fully sam-
pled reference reconstruction. The prediction process enables an
analysis of a reconstruction algorithm'’s ability to handle lower
SNR because of reduced measurement time without any effect
from an underdetermined system. By simulating the effect of
lower SNR without any underdetermined effects, the prediction
process allows us to determine whether a reconstruction is actually
limited by our sparse recovery or simply limited by low acqui-
sition SNR. Comparison of the prediction image to the reference
reconstruction provides a means to assess the effects of lower
SNR on reconstruction image quality. Comparison of the pre-
diction image to the underdetermined reconstruction enables us
to analyze what artifacts are introduced when undersampling is
used rather than fully determined following the same measure-
ment time distribution. The image quality prediction results and
analysis are consistent with our experiments using our highly
oversampled datasets to explicitly compare reconstruction re-
sults from variable density fully determined and underdeter-
mined data.

An additional benefit of the prediction process is that it
may be used to compare and tune different reconstruction
algorithms or parameters, assessing how different recon-
struction systems handle the lower SNR because of reduced
measurement time in addition to comparing the actual un-
dersampled reconstructions.

A limitation of the image quality prediction process is that
it requires a fully sampled reference dataset. Access to a fully
sampled acquisition is not always possible, especially in cases
with 3D or four-dimensional (4D) dynamic imaging, where long,
fully sampled acquisition times are not practical. Also, the image
quality prediction process can isolate the effects of low SNR
from the effects from an underdetermined system, but it cannot
do the contrary, that is, it cannot isolate the effects from an
underdetermined system from the effects of low SNR. Future
work could investigate the effects of underdetermined systems
using in vivo data by reconstructing fully sampled reference
datasets that are highly oversampled to have minimal input
noise, o, Of course, the effects of the underdetermined system
would still be dependent on the image content, which varies
significantly across clinical applications.

While developing the image quality prediction process, we
use a maximum a posteriori formulation to derive a general
weighted least squares optimization framework that accounts
for both uniform and variable density sampling patterns, with

VOLUME 3 NUMBER 4 | DECEMBER 2017



Empirical Effect of Noise in Undersampled MRI -I C..)I\"k(.)

undersampling as a special case using binary weights. This WLS
formulation adjusts the standard least squares term to account
for the colored noise arising from the distribution of expected
measurement time across k-space locations. Future work could
develop methods to similarly incorporate the effects of measure-
ment time distribution into the sparsity regularization term,
allowing the sparsity filters to better recover from colored noise
in addition to incoherent aliasing.
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