
Received: 4 March 2021 - Revised: 15 June 2021 - Accepted: 22 June 2021DOI: 10.1002/osp4.543

S HOR T COMMUN I CA T I ON

Exploration of an alternative to body mass index to
characterize the relationship between height and weight for
prediction of metabolic phenotypes and cardiovascular
outcomes

Megan M. Shuey1 | Shi Huang2 | Rebecca T. Levinson1 | Eric Farber‐Eger1 |

Katherine N. Cahill1 | Joshua A. Beckman1 | John R. Koethe1 | Heidi J. Silver1,3 |

Kevin D. Niswender1,3 | Nancy J. Cox1 | Frank E. Harrell Jr.2 | Quinn S. Wells1,4,5

1Department of Medicine, Vanderbilt

University Medical Center, Nashville, TN, USA

2Department of Biostatistics, Vanderbilt

University School of Medicine, Nashville, TN,

USA

3Department of Veteran Affairs, Tennessee

Valley Healthcare System, Nashville, TN, USA

4Department of Pharmacology, Vanderbilt

University Medical Center, Nashville, TN, USA

5Department of Biomedical Informatics,

Vanderbilt University Medical Center,

Nashville, TN, USA

Correspondence

Quinn S. Wells, Departments of Medicine,

Pharmacology, and Biomedical Informatics

Vanderbilt University Medical Center, 2525

West End Avenue, Suite 300 Nashville, TN,

37203, USA.

Email: quinn.s.wells@vumc.org

Funding information

American Heart Association, Grant/Award

Number: 17SFRN33520017; National Center

for Advancing Translational Sciences, Grant/

Award Numbers: UL1TR000445,

UL1TR002243; Vanderbilt University Medical

Center, Grant/Award Number:

1S10RR025141‐01

Abstract

Objective: Body mass index (BMI) is the most commonly used predictor of weight‐
related comorbidities and outcomes. However, the presumed relationship between

height and weight intrinsic to BMI may introduce bias with respect to prediction of

clinical outcomes. A series of analyses comparing the performance of models rep-

resenting weight and height as separate interacting variables to models using BMI

were performed using Vanderbilt University Medical Center's deidentified elec-

tronic health records and landmark methodology.

Methods: Use of BMI or height‐weight interaction in prediction models for estab-
lished weight‐related cardiometabolic traits and metabolic syndrome was evaluated.
Specifically, prediction models for hypertension, diabetes mellitus, low high‐density
lipoprotein, and elevated triglycerides, atrial fibrillation, coronary artery disease,

heart failure, and peripheral artery disease were developed. Model performance

was evaluated using likelihood ratio, R2, and Somers' Dxy rank correlation. Differ-

ences in model predictions were visualized using heat maps.

Results: Compared to BMI, the maximally flexible height‐weight interaction model
demonstrated improved prediction, higher likelihood ratio, R2, and Somers' Dxy rank

correlation, for event‐free probability for all outcomes. The degree of improvement
to the prediction model differed based on the outcome and across the height and

weight range.

Conclusions: Because alternative measures of body composition such as waist‐to‐
hip ratio are not routinely collected in the clinic clinical risk models quantifying

risk based on height and weight measurements alone are essential to improve

practice. Compared to BMI, modeling height and weight as independent, interacting

variables results in less bias and improved predictive accuracy for all tested traits.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2021 The Authors. Obesity Science & Practice published by World Obesity and The Obesity Society and John Wiley & Sons Ltd.

124 - Obes Sci Pract. 2022;8:124–130. wileyonlinelibrary.com/journal/osp4

https://doi.org/10.1002/osp4.543
https://orcid.org/0000-0003-2866-3562
mailto:quinn.s.wells@vumc.org
https://orcid.org/0000-0003-2866-3562
http://wileyonlinelibrary.com/journal/osp4


Considering an individual's height and weight opposed to BMI is a better method for

quantifying individual disease risk.

K E YWORD S

body mass index, cardiovascular disease, metabolic syndrome, prediction modeling

1 | INTRODUCTION

The most common proxy‐measure of body fat in the clinical setting is
body mass index (BMI),1,2 a derived value where height and weight

are assumed to act according to the fixed relation of weight divided

by the square of height (kg/m2). While BMI has been consistently

associated with multiple weight‐related outcomes,3,4 the intrinsic
assumptions of BMI may result in limitations and biases as a pre-

dictive variable.5,6 For example, recent work has demonstrated that

BMI undervalues the predictive potential of height for blood pressure

variation and the addition of height to measures such as waist

circumference improves cardiometabolic risk prediction.7‐10

Although BMI has limitations as a clinical measure of adiposity,5

the routine collection of height and weight and the general familiarity

with BMI in clinical settings has perpetuated its use in clinical care, and

it is likely that height and weight will continue to be the primary

measures available to quantify adiposity. Therefore, understanding

the performance of BMI versus a more flexible modeling of height and

weight with respect to prediction of weight‐related outcomes is crit-
ical to both research‐based analyses and estimation of clinical risk.

Electronic health records (EHRs) are increasingly being used as a

source of prospective clinical data for research. Importantly,

researcher conducted using EHRs are limited to data collected as

part of clinical care, and frequently will not have access to measures

assesses in prospective epidemiologic cohorts. Consequently, re-

searchers using EHRs may have to modify definitions of exposures

and outcomes of interest based on available data. One example is

metabolic syndrome. The criteria for clinical diagnosis is the presence

of three or more of the following components: waist circumfer-

ence >102 cm in males and 88 cm in females, blood pressure >130/
85, fasting glucose >100 mg/dL, triglycerides >150 mg/dL, or

reduced high density lipoprotein (HDL) <40 mg/dL in males and
<50 mg/dL in females.11 The definition has expanded to include
alternative criteria that are more commonly available to clinicians in

the clinic, including elevated fasting glucose being replaced with anti‐
diabetic treatment and similar adjustments for blood pressure and

lipid measurements being replaced with treatment. In this EHR‐based
study, as well as others, this surrogate diagnosis of metabolic syn-

drome is used in place of the classic definition due to data limitations

as well as to reflect diagnostic practices.

As mentioned above, typical clinical assessments of adiposity do

not routinely incorporate waist circumference or measures of central

adiposity such as waist‐to‐hip ratio despite these measures being
preferential predictors of disease risk. Because height and weight are

so readily available and collected clinically, BMI continues the most

frequently used surrogate measure of adiposity in both the clinic and

in clinical research. Recognizing the limitations of BMI, we sought to

investigate whether an alternative method to quantify the relation-

ship between height and weight could provide a better surrogate of

adiposity than BMI. This would provide an improved measurement to

researchers leveraging the decades of clinical research in EHRs for

which height and weight measurements are the primary data source.

Because excess weight is known to increase risk for the compo-

nents of metabolic syndrome as well as cardiovascular disease,12‐14

risk predictions models for these individual outcomes using BMI

were compared tomodels using amaximally flexible, interactingmodel

of the height/weight relationship. Specifically, model performance for

metabolic syndrome, metabolic syndrome components, and a range of

cardiovascular outcomes was evaluated.

2 | METHODS

2.1 | Study population

All data were extracted from a de‐identified copy of the Vanderbilt
University Medical Center EHR on 08/2019.15 Measures of height

and weight after 18 years of age were cleaned and units harmonized

to centimeters and kilograms, respectively, based on a previous

method.16 Briefly the cleaning protocol included, removing non-

physiologic heights and weights including heights, <90 cm or

>230 cm, removing heights that varied more than 3% from an in-

dividual's median value, and removing weights varying more than

33% of an individual's median value within 12 months.16 Individual

BMIs were calculated from the remaining measurements.

Subjects were included in landmark analyses based on a pre-

specified 3‐year qualification period that required four height and
weight measures separated by approximately one year

(1 year ± 4 months). For each outcome, subjects were excluded if the
first occurrence of the particular outcome was before or during the

qualification period. Validated data extraction methods were used to

define outcomes: low high‐density lipoprotein (HDL <40 mg/dL in
males and <50 mg/dL in females), elevated triglycerides (tri-

glycerides >150 mg/dL), hypertension, diabetes mellitus, atrial

fibrillation (AF), coronary artery disease (CAD), heart failure (HF),

and peripheral artery disease (PAD).17,18 Because waist circumfer-

ence and fasting glucose are infrequently ascertained in the clinical

setting, we used a modified definition of metabolic syndrome, defined

as two or more of the following events: diabetes mellitus, hyper-

tension, low HDL, or elevated triglycerides.
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2.2 | Statistical analyses

Descriptive statistics were presented as count and frequencies for

categorical variables and median and interquartile range for contin-

uous variables. Comparisons were made using Pearson's chi‐squared
or Wilcoxon signed‐rank, as appropriate. Cox regression analyses
were conducted to examine how weight and height at a single time

point, the end of the qualification period (i.e., t3), impact the hazard of

developing each outcome. Analyses utilized two models: a maximally

flexible model representing height and weight (each log transformed)

as separate, non‐linear (restricted cubic spline with three knots)
terms and allowing for interactions; and a log transformed BMI

model. All analyses were adjusted for sex, age (with restricted cubic

spline with three knots), and race. Model performances were evalu-

ated by likelihood ratio, R square, and Somers' Dxy rank correlation

(index of discrimination between predicted score and observed re-

sponses). To quantify whether any of our findings could just be the

result of overfitting a more complex model, we performed a boot-

strap validation of each model to estimate the optimism in the cali-

bration slope (slope of predicted vs. observed values).19

Event‐free probability at 5 years was estimated across a wide
range of height‐weight combinations (weight range: 50–200 kg by
5 kg; height 160–200 cm by 5 cm [total 270 predictions]). In predicting

event‐free probability at five years, patient demographic character-
istics were set to the population's median age of 51.2 years of age,

white race, and female sex. Heat maps were presented to visualize

predicted a 5‐year event‐free probability and the discrepancy be-
tween the two models across a full range of heights and weights. All

statistical analyses were performed with R (version 3.3.1).

3 | RESULTS

The demographics of included subjects are available in Tables S1 and

S2. Metabolic syndrome event frequency was 16.7% and the fre-

quencies for individual components were 5.5% for DM, 19.5%, for

hypertension, 6.3% for low HDL, and 4.9% for elevated triglycerides.

For cardiovascular outcomes, the event frequencies were 9.6% for

AF, 21.8% for CAD, 8.8% for HF, and 2.8% for PAD.

Performances of the two body composition models for each

outcome are summarized in Table 1. Briefly, the maximally flexible

height*weight model had a better log likelihood ratio, R2, and

discrimination ability (Somers' Dxy) than BMI with a maximum dif-

ference in model performance of 47.046, 0.0008, and 0.003,

respectively. The worst calibration slope over all models was 0.99

(perfect is 1.0 when there is no overfitting) (Table S3). Loosely

speaking, in the worst case 0.01 of what we learned is estimated to

be from noise instead of signal. Figure S1 illustrates the calibration

plot differences between the two models for metabolic dysregulation

and its components and Figure S2 illustrates these differences for the

cardiovascular outcomes.

Figures 1 and 2 (columns 1 and 2) present heat maps displaying

the pattern of predicted a 5‐year event‐free probability for each

outcome across the range of height and weight measures at t3.

Similarly, gray‐scaled heat maps were used to display the absolute
discrepancy between model predictions (|PredictedprobabilityBMI −
Predictedprobabilityheight∗weight|) (Figures 1 and 2, column 3). In

addition, for each outcome we present a histogram of prediction

differences (Figures 1 and 2, column 4). The distribution of a 5‐year
outcome risk prediction across the height‐weight spectrum is pre-

sented in Figure S3.

4 | DISCUSSION

Using EHR‐derived data to conduct a comparative analysis of pre-
diction models using either BMI or an unbiased height*weight

interaction model. Principal findings were that models with maximum

flexibility outperform those using BMI across a wide range of car-

diometabolic outcomes, and that discrepancies between models vary

by outcome and location within the height‐weight variable space.
Abnormal body composition is an important determinant of

clinical outcomes, and accurately modeling the effect of height and

weight on outcomes is critical for risk prediction. In this context, the

model findings have several important implications. First, although

BMI is the most commonly used measure of body composition, it

demonstrates inferior performance compared to a maximally flexible

model across all outcomes, suggesting the assumed fixed relationship

between weight and height (i.e., kg/m2) inadequately represents the

clinical impact of body composition. Second, BMI introduces complex

non‐uniform biases across outcome and height‐weight space. For
example, predicted risk for hypertension and diabetes mellitus is

similar between both approaches with the exception of high body

weight individuals with short stature where BMI significantly un-

derestimates risk. In contrast, BMI introduces considerable error into

prediction of the features of atherogenic dyslipidemia (low HDL and

high triglycerides), especially at higher weights, where the contribu-

tion of height is poorly modeled. Different patterns emerge for car-

diovascular outcomes. BMI systematically overestimates the

contribution of height for lower weight individuals and un-

derestimates height for heavy individuals with respect to CAD, HF,

and PAD risk. For instance, a decrease in the predicted CAD event

free risk is observed in tall slender individuals, height >180 cm and
weight <50 kgs, an observation that is missed by the BMI model. By
comparison, BMI consistently overestimates the contribution of

height for AF, though the bias is most pronounced for those at ex-

tremes of weight.

While the absolute magnitudes of discrepancies between flex-

ible and BMI‐based models were frequently modest, they are not
clinically insignificant, as they are frequently not small compared to

the absolute risk of the outcome in question. For example, for

abnormal HDL, the BMI model overestimates the event free

probability of individuals in tall patients with extreme obesity pa-

tients from 0.02 to 0.06 (2.0% to 6.0%). Considering the frequency

of abnormal HDL in the total population is 6.3% this overestimate

may be as frequent as the outcome alone. For abnormal HDL, a
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similar concern of underestimation arises in extremely heavy short

patients.

The current analysis adds to the literature by systemically

examining the limitations and biases of BMI across the height‐weight
space and a diverse set of cardiometabolic outcomes. Because BMI is

calculated from height and weight, the use of BMI is a choice rather

than an issue of data availability. The rationale for using BMI has

often focused on the ease of calculation and interpretation, famil-

iarity with its use among clinicians and scientists, and its established

value as a predictor. Allowing height and weight to “speak for

themselves”, rather than be forced to exert effects through the BMI

relationship, results in more accurate risk prediction across a range of

conditions and outcomes. Thus, to the extent that more accurate risk

prediction translates to improved patient care, future efforts should

consider more flexible approaches to modeling height and weight.

There are limitations to this study. For example, known clinical

predictors for the various outcomes were not included in models.

However, this choice was made to allow characterization of how

choice of body weight (i.e., BMI vs. height*weight) impacts model

performance across outcomes. As is common with use of EHR data

there are always concerns related to data sparsity. While the study

design did its best to minimize sparsity issues, it remains possible that

there is potential for confounding due to this, for example, it is

possible that a patient may have a particular outcome, however, it

was missed either due to misclassification or its development outside

of the follow‐up period due to various reasons. Finally, we did not
compare this model's predictive performance with models including

waist‐circumference, waist‐to‐height ratio, other measures of

adiposity because these measures are less frequently collected in

large EHRs.

TAB L E 1 Performance statistics for
event free prediction using the
maximally flexible log height‐adjusted
weight interaction or log body mass
index models

Prediction model LR DF R2 DI

Metabolic syndrome

log Height‐adjusted weight interaction 3074.44 15 0.0424 0.3060

log BMI 3053.02 10 0.0418 0.3050

Diabetes mellitus

log Height‐adjusted weight interaction 2735.044 15 0.0431 0.4319

log BMI 2687.998 10 0.0423 0.4289

High density lipoprotein

log Height‐adjusted weight interaction 1102.552 15 0.0161 0.2645

log BMI 1084.594 10 0.0159 0.2636

Hypertension

log Height‐adjusted weight interaction 2900.190 15 0.0538 0.3221

log BMI 2877.066 10 0.0534 0.3214

Triglycerides

log Height‐adjusted weight interaction 1134.645 15 0.0184 0.2981

log BMI 1112.862 10 0.0181 0.2959

Atrial fibrillation

log Height‐adjusted weight interaction 5024.154 15 0.0591 0.4244

log BMI 4983.270 10 0.0586 0.4237

Coronary artery disease

log Height‐adjusted weight interaction 3375.364 15 0.0481 0.2752

log BMI 3347.507 10 0.0477 0.2743

Heart failure

log Height‐adjusted weight interaction 5486.422 15 0.0665 0.4390

Log BMI 5470.308 10 0.0664 0.4380

Peripheral artery disease

log Height‐adjusted weight interaction 2486.560 15 0.0503 0.5049

log BMI 2468.629 10 0.0500 0.5030

Abbreviations: BMI, body mass index; DF, degrees of freedom; DI, discrimination index (Somers’

Dxy); LR, likelihood ratio.
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F I GUR E 1 Comparison of predictive models for metabolic dysregulation and its components. (A) Metabolic dysregulation; (B) diabetes

mellitus; (C) high density lipoprotein; (D) hypertension; (E) triglycerides. Graphics from left to right for each panel are height‐adjusted weight
model prediction of a 5‐year free event probability across heights and weights, body mass index (BMI) model prediction of a 5‐year free event
probability across heights and weights, difference in model prediction (PredictedprobabilityBMI − Predictedprobabilityheight∗weight), and
distribution of the difference in the prediction difference

128 - SHUEY ET AL.



5 | CONCLUSION

A data‐driven, maximally flexible, log height‐adjusted weight inter-
action model has better log likelihood for the prediction of weight‐
related outcomes than BMI. The prediction performance of these

two models varies across the full spectrum of heights‐weights and
the absolute difference in model prediction may exceed the fre-

quency of a given outcome. The scientific community should consider

avoiding BMI when studying weight‐related outcomes in favor of

more flexible modeling strategies. Similarly, a more flexible modeling

strategy could refine estimation of risk for weight‐related outcomes
in the clinical setting and improve identification of high‐risk in-
dividuals for targeted interventions.
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