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Following a cerebral ischemic event, substantial alterations in both cellular and molecular
activities occur due to ischemia-induced cerebral pathology. Mounting evidence indicates
that the robust recruitment of immune cells plays a central role in the acute stage of stroke.
Infiltrating peripheral immune cells and resident microglia mediate neuronal cell death and
blood-brain barrier disruption by releasing inflammation-associated molecules.
Nevertheless, profound immunological effects in the context of the subacute and
chronic recovery phase of stroke have received little attention. Early attempts to curtail
the infiltration of immune cells were effective in mitigating brain injury in experimental stroke
studies but failed to exert beneficial effects in clinical trials. Neural tissue damage repair
processes include angiogenesis, neurogenesis, and synaptic remodeling, etc. Post-
stroke inflammatory cells can adopt divergent phenotypes that influence the
aforementioned biological processes in both endothelial and neural stem cells by either
alleviating acute inflammatory responses or secreting a variety of growth factors, which
are substantially involved in the process of angiogenesis and neurogenesis. To better
understand the multiple roles of immune cells in neural tissue repair processes post
stroke, we review what is known and unknown regarding the role of immune cells in
angiogenesis, neurogenesis, and neuronal remodeling. A comprehensive understanding
of these inflammatory mechanisms may help identify potential targets for the development
of novel immunoregulatory therapeutic strategies that ameliorate complications and
improve functional rehabilitation after stroke.

Keywords: ischemic stroke, inflammation, immune cells, neurogenesis, angiogenesis
INTRODUCTION

Stroke is one of the leading causes of mortality, with many survivors suffering from long-term
disability (1). Results from the 2016 iteration of the Global Burden of Diseases, Injuries, and Risk
Factors Study, stroke remained to be the second cause of death globally after ischemic heart disease
(1). The financial burden of stroke treatment and prognosis care is heavy. According to the
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American Heart Association and The American Stroke
Association, the total direct medical cost for stroke will rise up
to $184.1 billion for the year of 2030 (2). Stroke occurs due to the
interruption of blood supply to the brain and may be classified as
ischemic or hemorrhagic. Acute ischemic stroke accounts for
approximately 87% of all cases of stroke (3). Reperfusion therapy
is the most effective treatment for patients with ischemic stroke
during the acute phase. However, more than 90% of ischemic
stroke patients are unable to receive reperfusion therapy owing to
the strict time window (3.5 to 4.5 hours for thrombolysis and
6 hours for thrombectomy). Even for patients receiving
reperfusion therapy, more than 40% still suffer from severe
complications and develop long-term disabilities, such as
language disorders, hemiparesis, cognitive deficits, and
dependence on daily activities (4). Unfortunately, due to
restricted access to medical resources, high cost and limited
regenerative capacity within central nervous system (CNS),
neurological rehabilitation, which is considered the main
therapy for stroke recovery, can only benefit a small
proportion of stroke patients (5). Therefore, understanding the
biological processes and pathogenesis of brain injury in the
subacute and chronic recovery phase of stroke (>2–3 days) is
of critical importance for developing new therapies to improve
clinical outcomes of persons with stroke.

Recruitment of leukocytes is an ongoing process that plays an
important role in the pathogenesis of ischemic stroke. In addition to
accelerating and expanding tissue damage, the inflammatory
cascade may also aggravate or alleviate the ischemic insult to the
brain (6). Unlike pathogen-associated molecular patterns (PAMPs)
which exist in exogenous microbes and drive inflammation in
response to infections, damage-associated molecular pattern
molecules (DAMPs) are endogenous cell-derived and initiate
immunity in response to trauma, ischemia, and tissue damage. In
the acute stage of an ischemic stroke, ischemic injury causes the
release of DAMPs, such as HMGB1, S100 proteins and heat shock
proteins, and subsequently initiates a rapid innate immune response
involving infiltrating leukocytes and resident glia cells through Toll-
like receptors (TLRs) (7). Initial ischemic injury causes the
upregulation of integrin in leukocytes and the associated adhesion
molecules on endothelia cells (ECs). Circulating leukocytes are
attracted and adhere to the endothelium before being activated by
chemokines. Neutrophils are the earliest infiltrating peripheral
immune cells, displaying a substantial increase within a few hours
after stroke and remaining for up to a week after the initial ischemic
insult. Successively, peripheral monocytes, dendritic cells, natural
killer (NK) cells, T lymphocytes, and B lymphocytes penetrate the
blood-brain barrier (BBB) and infiltrate into the ischemic
parenchyma, inducing microglia and astrocyte over-reactivity.
These events are part of the pro-inflammatory response and have
been excellently reviewed and recently reported in detail (6, 8, 9).

Due to the complex influence of the microenvironment and
persistent immune cell infiltration, inflammation may exert both
beneficial and harmful effects on the pathogenesis and prognosis
of ischemic brain injuries. Previous observations suggest that
targeting stroke-related neuroinflammation could become an
effective adjunct therapy, but this approach requires caution
regarding the timing and avoidance of adverse effects (10, 11).
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In the subacute and chronic phase of stroke, the transformation
of immune cells into alternative phenotypes may provide a
neuroprotective effect through the resolution of inflammation
and therefore partially re-establishing neurological functions.
More importantly, several types of immune cells such as
monocytes/macrophages, microglia, and T lymphocytes are
also involved in angiogenesis through divergent mechanisms
after a stroke occurs. Neurogenesis is traditionally considered the
primary target of regenerative strategies for stroke rehabilitation;
however, restoration of lost neurons and the entire neurovascular
unit is required to achieve a significant structural and functional
recovery after ischemic stroke. Therefore, the participation of
immune cells in post-stroke rehabilitation may also play an
indispensable role in stimulating angiogenesis and further
promoting the nerve tissue repair process.

Due to its apparent inflammatory damage in the acute phase
and its possible beneficial effects on neural tissue repair processes,
the long-term effects of the immune response in stroke remain
controversial. In this review, we summarize the relationship
between angiogenesis and neuronal remodeling after stroke. We
focus on how immune cells participate in the subacute and chronic
phases of stroke. This review aims to clarify the roles of different
types of immune cells in stroke recovery and potentially enable
better stroke treatment through immune regulation.
NEURAL TISSUE REPAIR PROCESS
AFTER STROKE

Neural tissue repair after the acute phase of stroke involves two
main processes: angiogenesis and neuronal remodeling, which
further includes neurogenesis and synaptic remodeling (12). After
stroke, hypoxia activates ischemic penumbra tissue to release
angiogenic factors to increase vascular permeability and establish
collateral circulation, and finally connect newly formed blood
vessels to the preexisting vascular network. Meanwhile,
endogenous neural stem cells (NSCs) initiate proliferation,
migration, and differentiation to integrate into the damaged
neural circuits. Extensive studies in developmental biology have
shown the delicate wiring between newborn microvascular and
axonal outgrowths. In pathological states, angiogenesis has been
shown to promote neural tissue repair through facilitating
neurogenesis and synaptic initiation (12). On the one hand, the
factors released by endothelial cells (ECs) promote the
differentiation of NSCs and maturation of newborn neurons. In
contrast, the main migration process of the neuroblasts is closely
guided by blood vessels, which interact to provide direction for
neuronal differentiation for NSCs (13). Therefore, it is suggested
that the modulation of angiogenesis and neurogenesis affect one
another in the process of nerve repair.

Angiogenesis After Stroke
Ischemic stroke is mainly caused by cerebral vascular stenosis or
occlusion. The focal blood flow declines sharply, leading to a
shortage in the supply of oxygen and nutrients, eventually
causing cell death and tissue damage. The main way that
December 2021 | Volume 12 | Article 784098
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ischemic brain tissue compensates for insufficient oxygen supply
is by building new vessels. Angiogenesis in the infarcted area
determines the recovery of cerebral blood flow, neuronal
regeneration, and reconstruction of synaptic connections
between nerve cells, which all influence the degree of
functional recovery of the patient (14). The collateral
circulation in the acute and subacute phases of ischemia relies
on the opening of a pre-existing vascular network, while in the
chronic recovery stage, it mainly depends on the formation of
new blood vessels. New blood vessels have been shown to appear
on the third day and persist for at least 90 days after stroke onset
(15, 16). Angiogenesis is stimulated by massive production of
VEGF from hypoxic tissues after stroke (17, 18). Proteolytic
enzymes, angiogenic growth factors, and inhibitors collaborate to
maintain the migration and proliferation of ECs. Vascular
endothelial growth factor-A (VEGF-A) has been shown to be
significantly elevated, which causes ECs to proliferate and
protrude filopodia by coordinating with Notch family receptors
and their ligands. The migration and proliferation of ECs are
then enhanced and mediated by the interaction between VEGF-
A and VEGFR-2 (15, 19). The activation of VEGFR-2 also
induces the release of matrix metalloproteinases (MMPs) and
endothelial growth factors (EGFs), which may contribute to
endothelial progenitor cell migration and basement membrane
degradation (20). Previous studies have identified that various
immune cells and cytokines are directly or indirectly involved in
the regulation of angiogenesis. The cytokines associated with
angiogenic effects are listed in Table 1.

Neuronal Remodeling After Stroke
Post-stroke neuronal remodeling is mainly caused by residual
neurons that survive ischemia-reperfusion injury and newborn
neurons from neurogenesis. Axonal sprouting from residual
neurons does not normally appear until 14 days after ischemia,
even in the ischemic penumbra (36). The occurrence of newly
formed cortical circuits can be detected as early as 3 weeks after
ischemia, which is associated with functional recovery (36).
Factors released by newly formed blood vessels secrete signals,
such as VEGF, artemin, and neurotrophins, which are critical
components for axonal sprouting (17, 37). In addition, cytokines
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from the microglia and invading peripheral immune cells
activate astrocytes, which promote angiogenesis and
synchronize neuronal activity to induce axonal outgrowths and
establish new connections (10, 38, 39). These processes
constitute neural tissue repair.

The number of neurons that survive ischemia-reperfusion
injury is limited, and newly formed neural connections are
generated by neurogenesis. Neurogenesis is the process of
generating new functional neurons from endogenous NSCs,
including proliferation, migration, and differentiation into
mature neurons (40). Neurogenesis becomes highly active
following ischemia-reperfusion insults in mainly two distinct
regions: the subventricular zone (SVZ) of the lateral ventricles
and the subgranular zone (SGZ) of the dentate gyrus of the
hippocampus (41). In both areas, primitive pluripotent NSCs
express glial fibrillary acidic protein (GFAP). The transcription
factor, sex-determining region Y-box 2 (Sox2), and Nestin are
termed type B cells in the SVZ, or type I cells in the SGZ (42).
These cells are largely quiescent in the physiological state, but
they can be activated in response to various external stimuli, such
as exercise, hypoxia, and ischemia (43, 44). However, neural
regeneration is relatively inefficient, as only a limited number of
immature neurons integrate into the existing circuitry and
mature into functional neurons. Others undergo programmed
cell death and are cleared by microglia (45, 46) In addition,
overactivation of transit-amplifying cells by factors secreted by
immune cells, glial cells, and newborn ECs during pathological
states may lead to the exhaustion of the stem cell pool and early
termination of neurogenesis.

The Relationship Between Angiogenesis
and Neuronal Remodeling
The microvasculature brings oxygen, nutrients, and growth
factors to the area of ischemic injury, which creates an
appropriate microenvironment for cell migration. Neuroblasts
from the SVZ or SGZ expand and migrate to the peri-infarct
region, where post-ischemic angiogenesis occurs. Compelling
evidence suggests that several growth factors released from ECs
are also indispensable for NSC proliferation, such as basic
fibroblast growth factor, brain-derived neurotrophic factor,
TABLE 1 | The role of pro-inflammatory cytokines in angiogenesis after stroke.

Cytokine Summary of effects Citation

MCP-1 Upregulates the expression of VEGF in ECs (21)
TNF-a Promotes angiogenesis through VEGF signaling in ECs (22, 23)

Promotes EC migration by interacting with TNFR2 and activating Bmx/Etk signaling
TGF-b Promotes the proliferation of fibroblasts and ECs (24, 25)
G-CSF Promotes the proliferation and migration of ECs (26, 27)

Increases the vasal branch points, vascular surface area, and length of blood vessels in the ischemic penumbra region (28)
FGF Promotes the proliferation and migration of ECs (29, 30)
IL-1b Promotes the migration and proliferation of ECs (31)

Inhibits proliferation through VCAM1 (32)
IL-4 Stimulates the phosphorylation of STAT3 and early (33)

transcriptional activation of angiogenesis relative genes
IL-6 Promotes the expression of VEGF (34, 35)
December 2021 | Volume 12 | Articl
MCP, monocyte chemoattractant protein; EC, endothelial cell; TNF, tumor necrosis factor; TGF, transforming growth factor; VEGF, Vascular endothelial growth factor; G-CSF, granulocyte
colony-stimulating factor; FGF, fibroblast growth factor; IL, interleukin; VCAM1, vascular cell adhesion molecule 1; STAT, signal transducer and activator of transcription.
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EGF, and VEGF (47). In addition, angiogenesis promotes
vascular-guided NSC migration. Recent studies suggest that
Laminin/b1 integrin signals support the synergistic migration
of newly formed microvessels and neuroblasts toward injury
sites. b1 integrin signals on the surface of microvasculature have
been shown to play a critical role in bridging neuroblasts to
laminin and promoting cell body movement during migration
(48, 49). The relief of hypoxia induced by angiogenesis in the
cortex triggers a switch from NSC expansion to neuronal
differentiation (50). Together, the factors released by ECs from
the nearby microvessels (choroid plexus) are essential for
neurogenesis and neuronal maturation during the nerve repair
process after stroke (Figure 1).

Considering that neurogenesis usually begins over 1 week
after stroke onset, infiltrated immune cells and cytokines have
been found to affect neurogenesis during this period. Cytokines
reported to have potential regulatory effects on NSCs are listed in
Table 2. Numerous studies have identified a variety of immune
cells, such as neutrophils, monocytes, macrophages, microglia, T
lymphocytes, and B lymphocytes, that play crucial roles in
inflammation-mediated angiogenesis and neurogenesis post-
stroke (64, 65). The molecular mechanisms of immune cell-
mediated nerve repair in stroke are discussed below.
REGULATION OF ANGIOGENESIS AND
NEURONAL REMODELING BY IMMUNE
CELLS AFTER STROKE

Neutrophils
Neutrophils are recognized as the first line of defense against
pathogens and antigens in the peripheral immune system. As
members of the innate immune system, the defense mechanisms of
neutrophils have minimal specificity and always cause tissue
damage after their activation. Similar to deployed soldiers,
neutrophils are fully armed when exiting the bone marrow and
require little transcriptional or translational modification to
function. Based on these characteristics, neutrophils are the first
group of immune cells to infiltrate the brain after ischemic stroke
(66). Using in vivo two-photon microscopy combined with
immunohistochemistry, researchers demonstrated that
neutrophils rapidly attach to inflammatory brain ECs within a
few minutes and peak at 1–3 days, as seen in permanent and
transient middle cerebral artery occlusion (tMCAO) models in
mice (67, 68). Neutrophils are characterized by three main
functions including phagocytosis, respiratory burst, and
formation of neutrophil extracellular traps (NETs). These
mechanisms coordinate with one another and cause neuronal
and BBB injuries (69). Stimulated by DAMPs, neutrophils
release nuclear and granular contents to form a wide network of
DNA complexes (NETs), which are used to capture, neutralize,
and kill pathogenic microorganisms and prevent their spread.
Verified by the expression of Ly6G and protein arginine deiminase
4 (PAD4), Kang et al. found that the formation of intravascular
and intraparenchymal NETs peaked at 3–5 days post-stroke in a
mice MCAO model (69). PAD4 has been shown to act as an
Frontiers in Immunology | www.frontiersin.org 4
enzyme essential for the NET formation, which contributes to
enlarged thrombosis, BBB injury, and reduced neovascularization
in the latter stage of stroke (70, 71). Overexpression of PAD4
induces an increase in NET formation, which is accompanied by
increased BBB damage and reduced angiogenesis (72). Disruption
FIGURE 1 | Angiogenesis and neuronal remodeling after stroke. After stroke
onset, the hypoxic and ischemic environment triggers vascular sprouting.
Vascular endothelial growth factor receptor 2 (VEGFR-2) is expressed on
endothelial cells (ECs; shown in gray), where it binds to VEGF-A, which
initiates proliferation and protrusion of filopodia. Concomitantly, ECs secrete
matrix metalloproteinases and endothelial growth factors to facilitate the migration
of endothelial progenitor cells and basement membrane degradation. Microvessels
are thought to support neural stem cell proliferation by supplying oxygen, nutrients,
and a series of growth factors, including basic fibroblast growth factor, epidermal
growth factor, and brain-derived neurotrophic factor. Newly formed blood vessels
provide guidance for migration and axonal outgrowth through Laminin/b1
integrin signals.
December 2021 | Volume 12 | Article 784098
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of NETs by DNase I, inhibition of NET formation by genetic
ablation, or pharmacological inhibition of PAD increases
revascularization and improves functional recovery. In summary,
the above findings suggest that stroke-induced activation of
neutrophils form excessive NETs around the BBB and cerebral
parenchyma post-stroke, which may affect vascular remodeling
during the recovery phase of stroke.

Phagocytosis triggers degranulation, including the release of
antimicrobial peptides, proteases, and superoxide anions (O−2),
which act as the “blasting fuse” of reactive oxygen species (ROS).
Although ROS plays an important role against pathogens, excess
ROS can damage surrounding tissues, such as the BBB, which
promotes blood leakage into the brain parenchyma and causes a
more severe inflammatory response. Moreover, ROS was shown to
mediate the expression of MMP-9 via the phosphatidylinositol-3
kinase-mediated signaling pathway, which further impaired BBB
integrity (73). Moreover, ROS promotes NET formation by
activating PAD4, which induces the unwinding of DNA strands
(70). A recent study found that neutrophils mediated the recovery
of the endothelium by secretion of Cathepsin, which deposit along
the injured arterial lumen induces the recruitment of circulating
endothelial progenitor cells in an N-formyl peptide receptor 2-
dependent manner in ischemic limb (74, 75). However, only a very
small number of neutrophils are present in the brain parenchyma
beyond 7 days after stroke onset, which suggests that their
function in the latter phase of stroke is mainly secondary to
their function in the acute stage (76). In a recent study, skewing
neutrophils towards N2 phenotype (CD206+) before experimental
stroke facilitated the clearance of neutrophils by macrophage,
which relief further inflammatory damage and therefore
improved long-term recovery (77). The interaction between
neutrophils and endothelium are depicted in Figure 2.

Monocytes/Macrophages
The Origin and Spatiotemporal Recruitment
of Monocytes
The origin of macrophages is complex. Under physiological
conditions, monocytes reside in the bone marrow, blood, and
spleen in a quiescent state. In response to chemotaxis, circulating
monocytes accumulate and infiltrate the injured cerebral
parenchyma via ECs and differentiate into macrophages during
the acute stage of cerebral ischemia. The origin of the monocytes
that infiltrate the brain is disputed. The prevailing view is that these
monocytes are derived from bone marrow, while a recent study
demonstrated that the monocytes that reach ischemic brain tissue
Frontiers in Immunology | www.frontiersin.org 5
originate from the spleen (78). In an observation on the size of the
spleen following experimental stroke in rat, it was found that the
spleen was significantly decrease from 24 to 48 h and restore at 96 h
post stroke. A significant increase of labeled splenocyte (mainly
monocytes, T cells and natural killer cells) were found to accumulate
around the vasculature in ischemic area in brain at 48 to 96 h post-
MCAO (79). The above study provided strong evidence on the
origin and spatiotemporal of monocytes following ischemic stroke.

In a retrospective analysis of a single-center database of
consecutive thrombolysis cases in acute ischemic stroke, the
number of circulating monocytes were substantially increased at 16
days after stroke onset (80). In preclinical evidence of MCAO mice,
flow cytometry and immunocytochemistry demonstrated that
monocytes are attracted by chemotaxis to the stroke-injured
hemisphere and that infiltration appeared within hours and peaked
3 days after stroke. At day 7, half of the infiltrated monocytes/
macrophages exhibited a skewed orientation toward the
proinflammatory phenotype and the other half toward the anti-
inflammatory phenotype. However, during the following 2 weeks,
most macrophages exhibited the anti-inflammatory phenotype (81).

Monocyte recruitment is greatly dependent on CCR2, which is
expressed in classical monocytes and react with CCL2. Wattananit
et al. found that inhibiting monocyte recruitment by an anti-CCR2
antibody in the first week post ischemic stroke prevented long-term
behavioral recovery and substantially decreased the expression of
anti-inflammatory related genes (81). Using pharmacological
inhibition of CCR2 at 1 h before MCAO, and at 2 h and 6 h
after MCAO, Chu et al. observed a significant reduction in the
number of Ly6Chi monocytes recruited to the brain. At 24 h after
MCAO, worse behavioral outcomes and extensive lesions were
observed (82). Mice with selective CCR2 deletion in monocytes
exhibited an abnormal inflammatory rebound at 15 days post
stroke. Moreover, obviously impaired angiogenesis and worse
behavioral outcomes were observed, compared with relative wild-
type control mice (83). These results suggest that the recruitment of
pro-inflammatory monocytes may have both damaging effects in
the acute stage of stroke, and protective effects in the chronic
recovery stage of stroke. Therefore, it is necessary to carefully
consider which anti-inflammatory interventions may adversely
affect functional recovery after stroke.

The Description of Macrophages Based on Cellular
Markers and Morphology
In humans, there are three macrophage subsets: classical CD14++

CD16−, intermediate CD14+CD16+, and alternative/non-classical
TABLE 2 | The effects of pro-inflammatory cytokines on neurogenesis after stroke.

Cytokine Summary of effects Citation

IL-1a Induces the expression of tyrosine hydroxylase of NSCs (51)
IL-1b Promotes astrogliogenesis and reduces the proliferation of NSCs (52–55)
IL-6 Shifts neurogenesis toward astrogliogenesis (56, 57)
IL-4 Induces NSCs to differentiate into oligodendrocytes (58)
IL-10 Maintains NSCs in an undifferentiated state and reduces neuronal differentiation (59)
IL-17 Promotes the survival and neuronal differentiation of neuroblasts (60)
IFN-g Induces MHC-I expression and upregulates bIII-tubulin (61, 62)
TNF-a Promotes astrogliogenesis and inhibits neurogenesis (52, 56, 61, 63)
December 2021 | Volume 12
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CD14+CD16++. However, there are two main macrophage subsets
in mouse blood: classical Ly6C+CCR2hiCX3CR1lo “inflammatory,
classic or M1” macrophages involved in acute inflammation,
which are a subset of monocytes first attracted to the ischemic
brain tissue, and Ly6C−CCR2loCX3CR1hi “alternative, non-classic
or M2”macrophages, which may play a role in the repair process.
Phenotype by lineage tracing and flow cytometry analysis
revealed that the CX3CR1+Ly6Clo “repair” macrophages are
transdifferentiated from the CCR2+Ly6Chi inflammatory
macrophages that infiltrate brain tissue in the early phase after
ischemia, rather than being independently recruited from the
blood (84). However, the regulatory mechanisms underlying the
transdifferentiation process remain unclear.

The microenvironment has a significant impact on the
morphology of microglia/macrophages. CX3CR1+ macrophages
exhibited three distinct phenotypes at 14 days and 28 days after
MCAO (1): cells with an amoeboid morphology and no
plasmalemmal processes, termed amoeboid cells; (2) cells with
arborized processes, termed ramified cells; and (3) cells with
elongated shapes located along the vessels, termed perivascular
cells (85). While the morphology of ramified cells is almost
identical to that of microglia, there is a lack of evidence for
their functional differences. Amoeboid cells have an extremely
fast shape-shifting ability. It is still not clear whether this non-
destructive strategy of locomotion is navigated by chemotactic
gradients for immune surveillance, whereas these properties are
also present in dendritic cells (DCs), despite both being derived
from macrophage-DC precursors (86). The perivascular cells
Frontiers in Immunology | www.frontiersin.org 6
exhibited elongated forms along the major axis of the vessel or
encircled the entire vessel in the infarcted core and peri-infarcted
regions in the MCAO mouse model. Interestingly, through
the use of a multi-photon laser to generate a lesion in two
endothelial ends in zebrafish, macrophages were shown to
adhere to ECs, pull the ruptured ends directly, and narrow
the lesion by polymerization of microfilaments through
phosphatidylinositol 3- kinase (PI3K)- or Rac1-mediated
signaling activation (87).

The description of macrophage activation is currently
contentious and confusing, especially for macrophages with an
“anti-inflammatory” phenotype in the recovery phase of stroke.
Based on the derived source, activators, and a consensus
collection of markers, M2 macrophages can be further
subdivided into four subtypes: M2a, M2b, M2c, and M2d
(88–90). M2a macrophages can be induced by interleukin
(IL)-4 and IL-13, while M2b macrophages are induced by the
immunoglobulin Fc receptor, lipopolysaccharides, and IL-1b.
M2c macrophages are induced by the anti-inflammatory
cytokine IL-10 and corticoids, while M2d macrophages are
induced by the stimulation of IL-6 and adenosine.

The Function of Macrophages After the Acute Phase
of Stroke
All four M2 macrophage subtypes express IL-10 and transforming
growth factor (TGF)-b with enhanced phagocytosis, which gives
them more anti-inflammatory properties (91). In addition,
macrophages contribute to nerve repair through efferocytosis
FIGURE 2 | Potential interaction between neutrophil and endothelium after stroke. Neutrophil may exhibit either detrimental (marked in red box) and beneficial (blue
box) effects towards the endothelium after stroke. Triggered by phagocytosis, neutrophils release granular contents and formed NETs mediated by the expression of
Ly6G and PAD4. In addition, the release of ROS would damage surrounding endothelium and promote the formation of NETs as well. On the contrary, the secretion
of Cathepsin would induce the recruitment of circulating endothelial progenitor cell (EPC) in an N-formyl peptide receptor 2 (FPR2)-dependent manner, which
promote the angiogenesis in the latter stage of stroke.
December 2021 | Volume 12 | Article 784098
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and angiogenesis. RNA sequencing analysis of the transcriptome
of brain macrophages revealed high activity of biological processes
linked to neurovascular remodeling, such as angiogenesis and
NSC proliferation (e.g., GDF15, VEGF, and FGF1), as early as 5
days after stroke and lasting for at least 21 days, and peptidases
capable of modulating ECM components (e.g., MMP-14 and
ELANE) were also upregulated (84). In addition, a large number
of efferocytosis-related genes, such as those involved in
chemotaxis, recognition of dead cells, engulfment, and
processing of phagosomes, were upregulated in brain
macrophages at 3–7 days after brain ischemia (92). However,
further studies are needed to determine the correlation between
the four M2 subtypes with the three different morphologies of
CX3CR1+ macrophages (Figure 3).

Microglia
There are also a large number of CNS-resident macrophage-like
cells, namely microglia, which have phagocytic abilities during
tissue damage. Similar to peripheral macrophages which come in
with dozens of varieties, microglia also exhibit tremendous
heterogeneity, as evidence by advanced transcriptomic and
proteomic profiles. Therefore, it is reluctance to paraphrase the
microglia with M1/M2 paradigm since the definition are derived
from exposing isolated cells to certain stimuli in vitro, which
were drastic differences from the microenvironment in
pathological state in vivo, such as tumor, infection, aging,
physical trauma and stroke.

Microglia have been previously observed to engulf
neutrophils in an ischemic tissue model in vitro (93, 94).
Subsequently, microglia were also found to activate ECs and
capture invasive neutrophils in a cooperative manner (67, 95).
Similar to infiltrated macrophages, activated microglia release
Frontiers in Immunology | www.frontiersin.org 7
various pro-inflammatory cytokines, including IL-1b, TNF-a,
IL-18, IL-23, and iNOS (96). About 30% of brain resident
microglia observed in adult mice are capillary-associated
microglia which constantly survey the influx of blood-borne
components into the CNS (97). Microglia have been shown to
have extensive interaction with ECs and pericytes, which may
regulate capillary diameter and cerebral blood flow by altering
pericyte or astrocyte coverage (98). In the acute stage of stroke,
microglia were attracted to blood vessels with BBB leakage and
contributed to the disintegration of blood vessels by phagocytosis
of endothelial cells (99). In addition, pericytes were shown to
detach from capillary and participate in inflammatory-
immunological response mediated by the interaction between
DAMPs and TLR4 expressed on the surface of pericytes (100,
101). Interestingly, activated pericytes were found to express
microglial markers in both experimental stroke brain and human
stroke brain tissue, which may be involved in BBB damage and
brain edema (102, 103).

In the chronic recovery stage of stroke, microglia contribute
to debris clearance and tissue repair as they engulf newborn
neurons that fail to integrate into the neural circuit. Using Rag-/-

gc-/- mice with ischemic stroke, microglial depletion was shown
to exacerbate stroke severity and impair long-term outcomes
(104). In contrast, microglial depletion by a CSF1R inhibitor
(PLX3397) was also shown to contribute to endogenous
neurogenesis and improve functional recovery in a traumatic
spinal cord injury model (105). Considered together, both
peripheral macrophages and microglia represent a biphasic
regulatory mechanism in the context of stroke. Therefore, to
achieve therapeutic goals, future studies should focus on
elucidating the mechanism of subtype-transdifferentiation
rather than simple activation or depletion.
0.00.20.40.60.81.0

A B

FIGURE 3 | Subtype conversion and function of M2 macrophages. (A) Majority of the macrophages exhibit the “alternative/non-classic” subtype (Ly6C−CCR2loCX3CR1hi)
and are characterized as anti-inflammatory at several weeks after ischemic stroke. M2 macrophages exhibit three distinct phenotypes based on their morphology. However,
based on the inducers and a consensus collection of markers, M2 macrophages can be divided into four subtypes. The identification of macrophages by morphological or
cellular markers remains contentious and confusing. (B) Despite the confusion of macrophage identification, overall M2 macrophages have been shown to contribute to the
resolution of inflammation, efferocytosis, and angiogenesis.
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T Lymphocytes
Subpopulations of T Lymphocytes and Their
Infiltration
In contrast to myeloid cells (CD18+), such as neutrophils and
monocytes, T lymphocytes (CD3+) are a group of cells with
heterogenous subtypes. Both pre-clinical and clinical
investigations have revealed that T lymphocyte differentiation is
more inclined to pro-inflammatory subtypes in the acute stage of
stroke. In patients, circulating T cells were noted from day 1 to at
least 124 days after stroke onset, with an expedited increase between
days 8 and 20 (106). Preclinically, the earliest time point of T cell
infiltration (mostly CD4+/GITR+) has been reported at 6 h after
permanent focal cerebral ischemia (107). However, another study
suggested that T-cell infiltration peaks around day 3 in tMCAO and
days 5–7 following permanent MCAO (pMCAO) (108).

T cells preferentially accumulate in the peri-infarct area in the
acute stage of stroke, and approximately 40% are CD4+ helper T
cells and approximately 30% are CD8+ cytotoxic T cells (109).
Depletion of CD4+ or CD8+T cell subsets by neutralizing
antibodies reduced cerebral infarction and relative neurological
disorder (110). CD8+ cytotoxic T cells are the first T cell subtype to
infiltrate ischemic brain tissue and can be observed several hours
after stroke onset (109). As lymphocytes that are part of the
adaptive immune response, CD8+ cytotoxic T cells can cause
inflammatory injury to neuronal cells by direct cell contact and
secretion of perforin/granzyme after antigen-dependent activation.

In the acute phase of stroke, a multifaceted T cell subtype
mediates the release of inflammatory factors. Compared
with CD8+ cytotoxic T cells, CD4+ T cells exhibit more
complex phenotypic transformations. Depending on the
microenvironment, CD4+ T cells may transform into Th1 or Th2
cells, which can acquire both anti-inflammatory and pro-
inflammatory effects by secreting various cytokines, including IL-
2, IL-12, IFN-g, IL-4, IL-5, IL-10, and IL-13 (111). Studies on both
experimental stroke and human patients with acute ischemic stroke
have shown that the cell number of exfoliated ECs, Th17, and
circulating gdT cells in patients with acute ischemic stroke were
consistent with elevated levels of pro-inflammatory factors,
including IL-17A, IL-23, IL-6, and IL-1b (112, 113). Several
studies have revealed that IL-17A compromises BBB integrity by
reducing the expression of tight junction proteins (TJs), including
occludin and ZO-1, in ECs by inducing a robust elevation level of
ROS in an NADPH oxidase- or xanthine oxidase-dependent
manner (114, 115). In addition, IL-17 has also been shown to
facilitate the recruitment of monocytes and neutrophils mediated
by CCL2 and CXCL1 expression in ECs (116). Interestingly, IL-17A
has also been associated with pro-neurogenesis effects. Determined
by qPCR and Western-blot, the expression of IL-17A showed two
distinct peaks of expression in the ischemic hemisphere in a tMCAO
mousemodel: thefirst occurringwithin3days and the secondonday
28 after stroke. IL-17A secreted from reactive astrocytes may
augment the survival and neuronal differentiation of neuroblasts
from SGZ and SVZ through the activation of p38MAPK/calpain 1,
thereby facilitating synaptogenesis (60).

In the acute stage of stroke, regulatory T cells (Tregs) were
found to aggravate the ischemic injury, such as compromising
Frontiers in Immunology | www.frontiersin.org 8
BBB integrity and inducing microvascular dysfunction.
However, depletion of Tregs results in alleviation of cerebral
tissue damage characterized by increased focal cerebral blood
flow and reduced aggregate fibrin (117). The conflicting early
effects mediated by Tregs may result from the differences in
stroke severity and the immune microenvironment. Although T
cells exhibit both detrimental and beneficial immune responses,
they account for only a small proportion of the total infiltrating
immune cells in the acute phase of stroke.

The Central Role of Regulatory T Cells in the
Process of Neural Tissue Repair
As an essential subpopulation of immunosuppressive T cells,
Treg cells exhibit delayed kinetics of cerebral infiltration, which
is associated with multiple protective effects in the chronic
recovery stage (more than 1 week) of stroke (Figure 4). As a
minor subpopulation of CD4+ T cells, Tregs were identified by a
series of markers, including CD25, forkhead box p3 (Foxp3), and
Helios (118). Treg cells are best known for their role in sustaining
immune homeostasis and restrained inflammatory responses.
Moreover, the beneficial roles of Treg cells include pro-
remyelination and restraining of astrocytic overreactivity in the
late stage of stroke. Previous studies have shown that the levels of
circulating Treg cells significantly declined at 2 days post-stroke,
which was associated with poor prognosis in human patients
(119). Depletion of Treg cells with a CD25-specific antibody
causes extensive cerebral tissue injury and elevated expression of
inflammatory cytokines, such as TNF-a, IL-1b, and IFN-g.

IL-10 is a key cytokine involved in the beneficial effects of
Tregs, which can downregulate more than 300 genes associated
with inflammatory pathways (64). Intraventricular injection
of an IL-10 surrogate abolished excessive expression of
proinflammatory cytokines after Treg depletion, and prevented
secondary infarct growth, whereas the transfer of IL-10-deficient
Tregs in an adoptive transfer model was ineffective (120). In
addition to anti-inflammatory effects, intraventricular injection
of Tregs (1 × 105 cells) was also shown to enhance NSC
proliferation in the SVZ of normal and ischemic mice. The
number of mammalian achaete-scute homolog 1 (MASH1)-
expressing type C cells was decreased by the anti-IL-10
antibody, while GFAP+/Nestin+ cells were increased at 4 days
after stroke, suggesting that an IL-10-mediated neuroprotective
effect may facilitate the proliferation of NSCs in the SVZ.
However, the underlying mechanism remains elusive (121).

Solid evidence has shown that Foxp3+ Tregs have a protective
effect on the neuroinflammatory response after stroke (47).
Interestingly, Foxp3+ Treg cells were also shown to inhibit the
activation of astrocytes following cerebral injury. Using a
tMCAO model in mice, Ito et al. discovered that at 14 days
after stroke, astrocytes and oligodendrocytes attracted the
infiltration of blood Tregs into the brain through the signaling
of chemokines, CCL1-CCR8 and CCL20-CCR6. Tregs played a
critical role in suppressing the over-activation of astrocytes
through the expression of amphiregulin, which were bound to
epidermal growth factor receptors (EGFR) on astrocytes. In
addition, astrocytes facilitate the proliferation of Tregs by
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releasing IL-33, which in turn downregulates astrocyte activity
(117, 122). In a rodent model with amphiregulin -deficient Tregs,
astrocytes exhibited excessive activity with significant increases
in the expression of IL-6. This exaggerated astrocytic reaction
can be mitigated by the replenishment of wild-type Tregs or
intraventricular amphiregulin treatment. In another study,
depletion of Treg cells by diphtheria toxin increased the
number of invading pro-inflammatory T cells (CD3+ and
CD8+), cytokine production, and astrocytosis in response to
traumatic brain damage (123).

Besides the direct interactions with astrocytes or NSCs
mentioned above, Hu et al. identified a prominent Treg cell
cluster (CD4+CD25+Foxp3+) through single-cell RNA
sequencing. Tregs showed robust accumulation in the injured
brain at days 7–35 after ischemic stroke. Interestingly, adoptive
cell transfer of WT Tregs increased the number of newborn
APC+BrdU+ oligodendrocytes in Rag1-/- lymphopenic mice, but
this effect was abolished when microglia were depleted. Further
analyses revealed that osteopontin released from Treg cells
strengthens the phagocytosis of microglia through activation of
integrin receptors, which facilitates oligodendrogenesis and
white matter regeneration (124).

B Lymphocytes
While immediate and early proinflammatory responses to stroke
are mainly mediated by innate immune cells, B cell-mediated
adaptive immune responses exhibit delayed pro-injury functions
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in the latter stages. The initiation of an adaptive immune
response specific for CNS antigens can be observed at around
week 4, when primed antigen-presenting cells present cell
fragments as antigens to T cells and B cells (125). B cells
mainly function in three ways: antigen presentation, antibody
production, and cytokine secretion. Naïve B cells express the
primary effector antibodies, IgM and IgD. After receiving
antigens, B cells initiate isotype transformation, express plasma
cell markers, and produce antigen-specific IgG or IgA antibodies,
which may be indirectly associated with some stroke-related risk
factors, including hypertension, diabetes, and atherosclerosis
(126). Stroke may lead to subsequent vascular dementia. In a
distal pMCAO model, mice developed short-term memory
deficits between weeks 1 and 7 following cerebral infarction. B
cells were found to accumulate in the infarct region and secreted
IgA and IgG at 4–7 weeks after stroke (127). Genetic deficiency
and pharmacologic ablation of B-lymphocytes using an anti-
CD20 antibody prevented delayed-onset cognitive deficits,
suggesting that immunoglobulin synthesis by B-lymphocytes
may be involved in long-term injury to neuronal cells after
stroke. In a retrospective cohort study, immunoglobulin
synthesis (IgG, IgM, and IgA) in the cerebrospinal fluid of
stroke patients was found several months after stroke onset
(128). The antibodies may activate the complement pathway
and cause further damage to neuronal cells, which is a main
cause of neuronal death in multiple sclerosis (129). Concrete
evidences have proved that massive memory B cells and
FIGURE 4 | Tregs play a central role in the immune cell-mediated nerve repair process. In addition to the resolution of inflammation, Tregs express interleukin (IL)-10
that contributes to the proliferation of neural stem cells (NSCs). Tregs also produce amphiregulin (AREG), which are bound to epidermal growth factor receptors on
astrocytes and inhibit deleterious astrocytic reaction. Osteopontin (OPN) is also secreted by Tregs and induces the reparative phenotype of microglia, promoting
oligodendrogenesis. Some cytokines have been reported to have effects on NSCs, and these factors have also been expressed in other types of T cells, suggesting
that these T cells may also have potential effects on NSCs.
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antibody-producing plasma blasts were exist in the CSF of
patients with multiple sclerosis (130, 131). In addition to the
production of IgG, B cell and its subtypes were also found to be
involved in the pathogenesis of MS by secretion of
proinflammatory cytokines, such as lymphotoxin-alpha,
CXCL12, and CXCL13 (132). Therefore, it is reasonable to
speculate that B cells may also play a key role in the chronic
stage of stroke. Up to date, there is no explicit evidence of the
beneficial role of B cells in the chronic stages of stroke. In gene
ablation mice models, mice deficient in lymphocytes (Rag−/−), or
specific depletion of CD4+ T cells, CD8+ T cells, B cells, or IFN-g,
was used to determine the contribution of different lymphocyte
subgroups to ischemia reperfusion injury and recovery. Smaller
infarction volumes and amelioration of neurological disorders
were found in mice lacking lymphocytes (Rag−/−), but no
improvements were observed in mice lacking B cells.
Furthermore, B cell transfer in Rag−/− mice did not shown any
significant improvement, indicating that B cells may not be play
a protective role in the chronic stage of stroke (133). On the
contrary, B cells may have negative effects on post-stroke
neuroprotection. In an MCAO model in mMT–/– mice (B cell
depletion), enlarged areas of infarction, neurological disorders,
and higher mortality were observed (134, 135). A higher number
of invading circulating immune cells, including activated T cells,
macrophages, microglial cells, and neutrophils were found in the
ischemic hemispheres of mMT−/− mice. It is worth noting that
beneficial effects were observed after adoptive transfer of B cells
from WT mice into mMT−/− mice prior to MCAO modeling.
Interestingly, it is reasonable to speculate that these protective
effects were mediated by IL-10 since no obvious change was
observed when B cells were transferred into IL-10-deficient mice.

Other Types of Immune Cells
In addition to the above immune cells, DC and NK cells have also
been reported to be involved in the pathological process of
stroke. However, their main role is to coordinate with other
types of cells to facilitate an immune response. DCs are the most
efficient antigen-presenting cells. Under physiological
conditions, DCs mainly patrol near the cerebrospinal fluid,
such as the meninges and choroid plexus, and are barely
present in cerebral parenchyma (136). In a pMCAO model,
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DCs (OX6+) were found to invade the ischemic core within the
first few hours and gradually increased until 6 days after ischemia
(137). However, in addition to acting as antigen-presenting cells,
their functions remain unclear. NK cells are innate lymphocytes
that can be swiftly mobilized during the earliest phases of
immune responses. Recruited by CXCL8, NK cells have been
shown to accumulate in the ischemic hemisphere and aggregate
in the peri-infarction area through the release of IFN-g and ROS
in the acute stage of stroke (138, 139). However, the
spatiotemporal and phenotypic profiles of NK cells after stroke
are yet to be elucidated. In addition to peripheral immune cells,
the meningeal immune cells have recently been recognized as a
potential immune repertoire which may have an impact on the
neuro-immune crosstalk during stroke (140). Study have shown
that the meningeal mast cells, including granulocytes and
activated macrophages, may contribute to stroke-related
pathology in MCAO mice (141). Although the properties of
meningeal immunity have yet to be fully elucidated, its potential
threat or benefit to the CNS are worth being addressed. The roles
of immune cells in angiogenesis, neuronal remodeling, and
neurogenesis are summarized in Table 3.
DISCUSSION

Currently, intravenous thrombolysis with recombinant tissue
plasminogen activator and mechanical thrombectomy has
achieved exhilarating effects in the treatment of acute ischemic
stroke. However, these treatments are still limited by their strict
time windows. Neuroprotective therapies targeting neuronal
cells for the treatment of acute ischemic stroke are still being
developed, and anti-inflammatory treatment remains the
conventional method of stroke treatment.

Immune cells have long been considered as acute or chronic
sources of inflammation. More recently, the protective roles of
various types of immune cells have been discovered, which
provides a new prospect for stroke treatment. However, it is
difficult to determine when to promote or terminate immune
interventions in ischemic stroke owing to the extremely complex
spatiotemporal phenotype of immune cells. With the
development of single-cell sequencing and space transcriptome
TABLE 3 | The role of various immune cells on angiogenesis, axonal outgrowth and neurogenesis after stroke.

Immune
cells

Angiogenesis Axonal outgrowth Neurogenesis

Neutrophils Reduces the survival of ECs (72) Promotes axon regeneration (142) No reports
Promotes the recruitment of endothelial progenitor cells
(143)

Macrophages Protects the endothelium (87) Promotes axonal sprouting by release of GDNF
(144)

Promotes migration and proliferation (145)

Microglia No reports Promotes axonal sprouting (144) Reduces the survival of NSCs (146)
Promotes the proliferation of NSCs (147)
Promotes the survival of newborn neurons
(148)

Treg cells No reports Promotes oligodendrogenesis (124) Promotes the proliferation of NSCs (121)
De
NSCs, neural stem cells; EC, endothelial cells, GDNF, glial cell-derived neurotrophic factor, Treg, regulatory T cells.
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technology, we are rediscovering the role of the immune
response in stroke with unprecedented depth. Based on current
knowledge, multiple types of immune cells are involved in the
process of neural tissue repair in the late stage of stroke by means
of factor secretion. Therefore, to understand the “Janus Face” of
the immune system in the different pathological processes of
stroke, detailed studies based on the latest technologies are
needed to inform new perspectives on stroke treatment.
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