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Abstract

Histaminergic afferent system of the cerebellum, having been considered as an essential component of the direct
hypothalamocerebellar circuits, originates from the tuberomammillary nucleus in the hypothalamus. Unlike the
mossy fibers and climbing fibers, the histaminergic afferent fibers, a third type of cerebellar afferents, extend fine
varicose fibers throughout the cerebellar cortex and nuclei. Histamine receptors, belonging to the family of G
protein-coupled receptors, are widely present in the cerebellum. Through these histamine receptors, histamine
directly excites Purkinje cells and granule cells in the cerebellar cortex, as well as the cerebellar nuclear neurons.
Therefore, the histaminergic afferents parallelly modulate these dominant components in the cerebellar circuitry
and consequently influence the final output of the cerebellum. In this way, the histaminergic afferent system
actively participates in the cerebellum-mediated motor balance and coordination and nonsomatic functions.
Accordingly, histaminergic reagents may become potential drugs for clinical treatment of cerebellar ataxia and other
cerebellar disease. On the other hand, considering the hypothalamus is a high regulatory center for autonomic and
visceral activities, the hypothalamocerebellar histaminergic fibers/projections, bridging the nonsomatic center to
somatic structure, may play a critical role in the somatic-nonsomatic integration.
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Introduction
The cerebellum is a well-known important subcortical
motor structure, ensuring coordination, precision, and
accurate timing of movement, and learning motor skills
[1-4]. The cerebellar neuronal circuitry, organized elab-
orately and modularly, receives two major types of
afferent inputs, mossy fibers and climbing fibers [4,5].
The former originates from nuclei in the spinal cord and
brainstem and carries sensory information from the per-
iphery as well as information from the cerebral cortex,
while the latter originates from the inferior olivary nu-
cleus and sends error signals sensed from the motor per-
formance of periphery musculatures to the cerebellum.
In addition to obtaining specific and discrete informa-
tion from the mossy and climbing fiber afferent systems,
the cerebellum also receives nonspecific signals from the
so-called third type of afferents, typically beaded fibers [6],
which contain various amines or neuropeptides. Although

more than 20 different types of amines and neuropeptides,
such as serotonin [7], norepinephrine [8], histamine [9],
orexin [10], and CRF [11,12], have been found in the
cerebellum, their functional significance is largely un-
known. In general, beaded fibers form varicose contact
with Purkinje cells and interneurons in the cerebellar
cortex, as well as neurons in the cerebellar nuclei,
fastigial (FN), interpositus (IN) and dentate (DN) nuclei,
and exert a widespread modulatory role in the cerebellar
circuitry [2,6,13].
Monoamines are firstly identified neurotransmitters

used in the third type of afferents in the cerebellum.
Among them, histamine is a newly found one in the
cerebellar afferents. Although histamine was isolated
from peripheral tissues as a biologically active amine
more than a century ago, histamine acting as a neuro-
transmitter in the brain and the central histaminergic
system gained general acceptance only in recent 30 years
[14]. Peripheral histamine is well known to be stored
primarily in the tissue mast cells and enterochromaffin-
like cells, and holds a pivotal position in allergic reac-
tion, gastric acid secretion and contraction of smooth
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muscle tissues of the lungs, whereas central histamine
tends to be considered as a “modulator for whole brain
activity” [14-17]. In the cerebellum, different from sero-
toninergic and norepinephrinergic afferents arising from
the brainstem [6,13], histaminergic fibers originate from
the hypothalamus, a higher center for nonsomatic visceral
and autonomic regulation [15,16]. In 1984, the direct
hypothalamocerebellar projections were first definitively
presented by Dietrichs [18] in his pioneering study on
cats. A subsequent series of neuroanatomical inves-
tigations from Haines, Dietrichs, and other colleagues
[19,20] on various mammals and nonmammalian verte-
brates further substantiated the direct bidirectional con-
nections between the cerebellum and the hypothalamus,
the cerebellar-hypothalamic circuits. Since the cerebellar-
hypothalamic circuits extensively exist and appear to be
stronger in species ascending the phylogenetic scale, the
connections may be phylogenetically old pathways [19].
The neurotransmitters in the hypothalamocerebellar
projections have not been well known so far, however, a
growing body of data has provided strong evidence that
histamine is a potential candidate and plays an import-
ant functional role in modulating activity of the cerebel-
lar circuitry. In this review, the structure and function
of hypothalamic histaminergic projections in the cere-
bellum are summarized and discussed.

Review
Origination of histaminergic afferents in the cerebellum
In the cerebellar-hypothalamic circuits, the direct hypotha-
lamocerebellar projections arise from widespread nuclei/
regions in the hypothalamus, including the lateral, pos-
terior, and dorsal hypothalamic areas, the dorsomedial
and ventromedial nuclei, the periventricular zone/nucleus,
the lateral mammillary and supramammillary nuclei, as well
as the tuberomammillary (TMN) nucleus [17,19]. Using an
immunofluorescence technique, Ericson et al. [21] demon-
strated Fast Blue-labeled L-histidine containing neurons in
the TMN after cerebellar injections. In fact, series of studies
have ascertained that the TMN is not only the origination
of hypothalamocerebellar histaminergic afferents (Figure 1),
but also the specific sole region of origin for the whole cen-
tral histaminergic system in the brain [14,16].
The TMN is a small nucleus located in the posterior

hypothalamus. The histaminergic neurons in the TMN
mostly have large somata (20–30 μm diameters) with
resting potential of about −50 mV. These neurons are
spontaneously active with slow regular firing rate at 1–
4 Hz and mean mid-amplitude duration of action poten-
tial at 1–3 ms [22]. Although hyperpolarization-activated
cyclic nucleotide-gated (HCN) channels are expressed in
histaminergic neurons, they are not responsible for
maintaining the neuronal spontaneous activity as a pace-
maker. A complex mechanism involving Na+, K+ and

Ca2+ conductances contributes to the pacemaker proper-
ties [14-16]. Importantly, the firing rate and pattern of
histaminergic neurons varies in different behavioral states,
with a ratio of 1.5 between firing rates of histaminergic
neurons in active and quiet waking in the cat [23,24], sug-
gesting the central histaminergic system is closely related
to not only wakefulness but also movement.

Innervation of histaminergic afferents in the cerebellum
By means of immunocytochemistry using anti-histidine
decarboxylase (HDC, the enzyme catalyzing the reaction
that produces histamine) antibody or antiserum against
histamine, the detailed distribution of histaminergic fi-
bers in the cerebellum has been successively examined
in the guinea pig, rat, tree shrew, and human [9,25-27].
In the rat cerebellum, HDC-immunoreactive fibers are
scattered in all three cerebellar cortical layers, the mo-
lecular, Purkinje, and granular layers, rather than con-
centrated in any specific region [25]. However, other
studies did not find any histaminergic afferents in rat cere-
bellum [28] or very low density in the cerebellar cortex
[29]. Similar to those in the rat, the histaminergic fibers
are sparsely distributed in all cortical layers in the guinea
pig cerebellum, with more denser fiber networks in the
vermis and flocculus and less fiber density in the cerebel-
lar nuclei [26]. However, more histamine-immunoreactive
fibers innervate cerebellar nuclei in the tree shrew [27]. In
human cerebellar samples, a moderate density of hista-
minergic afferents has also been observed in the molecular
layer, and more fibers have been seen in the granular
cell layer. Additionally, these fibers run parallelly to the
Purkinje cell layer after traversing it perpendicularly [9].
The histaminergic fibers share many morphological

similarities, including distribution, orientation, branch-
ing patterns, and ending sites, with the serotoninergic,
noradrenergic and neuropeptidergic axons in the cere-
bellar cortex (Figure 1). On the basis of these structural
properties, the histaminergic afferent fibers in the
cerebellar cortex are considered to be classified as
multilayered fibers. Furthermore, the most endings of
histaminergic fibers do not make typical synaptic
specializations but form varicosities. The varicose rather
than synaptic contact pattern, together with the disper-
sive innervation of hypothalamic histaminergic afferents
in the cerebellar cortex and nuclei, indicates an exten-
sively modulatory role of histamine in the cerebellar
circuitry.
In the TMN neurons, histamine is synthesized from

L-histidine through oxidative decarboxylation by HDC.
Then, histamine is stored in neuronal somata and espe-
cially in axon varicosities, where it is carried into vesicles
through the vesicular monoamine transporter VMAT-2
and released in a calcium-dependent manner upon ar-
rival of action potentials [14]. In the targets, histamine is
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inactivated through transfer of the methyl group from
S-adenosylmethionine by histamine N-methyltransferase
(HMT) or via oxidative deamination by diamine oxidase
(DAO). However, HMT rather than DAO terminates
histaminergic transmission in the cerebellum, since only
HMT is expressed in the cerebellum [30]. Inhibition of
histamine methyltransferase enhance phosphoinositide
turnover in the cerebellum [30], which is mediated by
histamine H1 receptors.

Expression and distribution of histamine receptors in
the cerebellum
Up to date, four histamine receptors, H1-H4 receptors,
have been cloned and identified, in which H1, H2 and H3
receptors are richly expressed in the central nervous system
[14-16]. Although histamine H4 receptors are detected
predominantly in the periphery, recent studies have also
reported a functional expression of H4 receptors in human
and rodent brain [31-33]. All histamine receptors are
metabotropic and belong to the rhodopsin-like family of G
protein-coupled receptors [14-16]. Among them, histamine
H1, H2 and H4 receptors are postsynaptic and mediate
mostly excitatory responses, whereas H3 receptors mediate
presynaptic inhibitory actions as auto- or hetero-receptors
[14-16]. Owing to autoradiographic mapping, in situ
hybridization and immunohistochemistry techniques, ex-
pression and distribution of histamine receptors in the
cerebellum have been revealed. Accumulating evidence
demonstrates that all histamine H1, H2, H3 and H4 recep-
tors exist in the cerebellum with various species difference.

H1 receptor
In situ hybridization studies have revealed that histamine
H1 receptor mRNAs are expressed in granular layer and

Purkinje cells of the guinea pig cerebellum [34,35]. Using
[3H]mepyramine or [125I]iodobolpyramine as sensitive
probe, autoradiographic mapping results have showed a
high density of H1 receptors in the molecular layer of
the guinea pig cerebellum [36,37]. Substantial levels of
H1 receptors have also been observed in the cerebellum
of cats and mice [38,39]. However, compared with the
guinea pig, mouse and cat cerebellum, much lower level
of H1 receptors are expressed in rat cerebellum [40].

H2 receptor
Using [125I]iodoaminopotentidine for radioligand bind-
ing and a 33P-labelled complementary RNA probe for in
situ hybridization, an autoradiographic study have dem-
onstrated that histamine H2 receptor and its mRNAs
distribute in the guinea pig cerebellum, especially in Pur-
kinje cell and granular layers [41]. Nevertheless, in the
rat brain, only low level of H2 receptor mRNA expres-
sion has been detected in the cerebellum by northern
blot hybridization [42]. Interestingly, in the mouse cere-
bellum, from developmental point of view, H2 receptor
mRNA levels present an increased tendency with age
[43]. The expression and location of H2 receptors have
also been observed in the dentate nucleus of human and
monkey cerebellum [44].

H3 receptor
Histamine H3 receptor, located on the somata and axon
terminals of histaminergic neurons, was identified as a
presynaptic autoreceptor in the rat brain by Arrang et al.
in 1983 [45]. Besides acting as a presynaptic autorecep-
tor to modulate histamine synthesis and release, H3
receptor can also exert as a presynaptic heteroreceptor
to inhibit the release of various other neurotransmitters

Figure 1 Hypothalamic histaminergic afferents in the cerebellum. Cerebellar histaminergic afferent fibers originate from the
tuberomammillary nucleus in the hypothalamus and project to both of the cerebellar cortex and nuclei. They parallelly modulate the Purkinje
cells, granule cells and nuclear neurons via H2 and/or H1 receptors and sequentially influence the outputs of the cerebellum. CF, climbing fiber;
CN, cerebellar nuclei; GC, granule cell; H1, histamine H1 receptor; H2, histamine H2 receptor; MF, mossy fiber; PC, Purkinje cell; PF, parallel fiber;
TMN, tuberomammillary nucleus.
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[46], such as noradrenaline, acetylcholine, glutamate and
GABA. The expression and distribution of H3 receptors
in the cerebellum were observed in rodents, pigs and
humans [47-49]. In rats, using a 33P-labelled riboprobe
for in situ hybridization, a strong mRNA expression of
H3 receptor, probably the shorter isoform [50], was
found in most Purkinje cells as well as in the cerebellar
nuclei, including the FNs and INs [48]. But there was
scarce or very low detectable binding of H3 receptors in
the Purkinje cells indicated by R-[3H]α-methylhistamine
or [125I]iodoproxyfan for autoradiography [48,49], sug-
gesting H3 receptors are expressed on efferent projec-
tions rather than somata or dendrites of the Purkinje
cells in rats. Furthermore, immunohistochemical analysis
using affinity-enhanced anti-H3 (349–358) antibodies
demonstrated that high levels of H3 receptors were
detected in Purkinje cell layer but low levels in granule
layer of the mouse cerebellum [47], whereas high mRNA
expression of the receptors was observed in the guinea
pig [51]. By PET, low binding of H3 receptors with [11C]
GSK189254 radioligand was also detected in human and
pig cerebellum [52,53]. These observations indicate that
H3 receptor expression in the cerebellum varies among
species.

H4 receptor
H4 receptor, the newly identified histamine receptor, is
expressed predominantly in peripheral tissues and cells,
such as blood, lung, gut and liver [14,54]. However, the
expression and localization of H4 receptor in the brain
remain controversial in different reports [32,55,56]. By
using RT-PCR technique, Nakamura et al. reported that
expression of H4 receptor mRNAs was not detected in
the brain [55]. While, RT-PCR results from other labora-
tories demonstrated an expression and distribution of
H4 receptor mRNAs in various brain regions, including
high level expression in rat cerebellum [32] and mouse
cerebellar granule layer [31], and low level in human
cerebellum [56]. The exact expression and distribution
of H4 receptors in the cerebellum still needs to be
further studied.

Histaminergic modulation on cerebellar neuronal activities
Innervation of hypothalamic histaminergic afferents on
cerebellar cortex and nuclei and expression of histamine
receptors in cerebellar neurons strongly suggest that his-
taminergic afferents may hold a key functional position
in the cerebellar neuronal circuitry. In fact, a growing
body of data has provided substantial evidence that hista-
mine excites cerebellar neurons [57-63]. Although the
distribution of histaminergic afferents in the rat cerebellar
cortex seem to be scattered or low, electrophysiological
studies show substantial evidence that histamine increases
neuronal activities in cerebellar cortical circuit in rats. In

1999, Li et al. first reported that histamine induced an ex-
citation on rat cerebellar granule cells [57], the interneu-
rons relaying mossy fiber inputs via parallel fibers to
Purkinje cells. In addition, histamine was found to excite
Purkinje cells [63], the principle neurons in cerebellar cor-
tical circuit, as well as neurons in the cerebellar nuclei, in-
cluding the FN [58,60], IN [59] and DN [62]. Interestingly,
the effects of histamine on these cerebellar neurons are
uniform postsynaptic excitation with various underlying
receptor mechanisms (Figure 1). H2 receptors mediate the
histamine-induced excitation on Purkinje cells and cere-
bellar nuclear neurons in rats [58-60,62,63], whereas H1
and H2 receptors co-mediate the excitatory effect of hista-
mine on granule cells with a predominant contribution of
H1 receptors [57]. Activation of H1 receptors in guinea
pig cerebellum was also found to increase intracellular
Ca2+ concentration in Purkinje cells [64]. Although H3
and H4 receptors are expressed in the cerebellum, role of
them in histaminergic modulation on cerebellar neurons
remains largely unclear up to date. It is only reported that
H3 receptors inhibit and H2 receptors facilitate noradren-
aline release in the cerebellum in guinea pigs [65].
It has been well known that histamine H1 receptor is

coupled to Gq/11 protein and phospholipase C (PLC),
whereas Gs and protein kinase A underlies H2 receptor
[14-16]. Following H1 receptor activation in neurons in
other brain areas, leak potassium channels are blocked,
or Ca2+-activated cation channels and/or Na+-Ca2+ ex-
changers are activated [14-16]. On the other hand, activa-
tion of H2 receptors in dorsal lateral geniculate relay
neurons and hippocampal pyramidal cells enhances the
hyperpolarization-activated cation current (Ih) and/or in-
hibits a calcium-activated potassium conductance [14-16].
The whole downstream signal transduction pathways of
histamine receptors in different cerebellar cortical and
nuclear neurons and the underlying ionic mechanisms
have not yet been revealed.
On the other hand, histamine may influence cerebellar

neuronal activity through its actions on the cerebellar
glial cells. It is reported that H1, H2 and H3 receptors
are all expressed in the cerebellar astrocytes [66,67], in-
cluding Bergmann glial cells [68]. And histamine ele-
vates several biochemical properties of astrocytes in the
cerebellum, such as the activities of ornithine decarb-
oxylase and glutamine synthetase, and incorporation of
[3H]thymidine into DNA, and thus regulates growth and
development of astrocytes [69]. Moreover, by using fura-
2-based Ca2+ imaging, histamine was found to induce
calcium entry in rat cerebellar astrocytes [70].
Intriguingly, besides cerebellar neurons, histamine also

excites cerebellar target structures, in which vestibular
nuclear complex in the brainstem plays a critical role in
control of muscle tone and posture [71,72]. The vestibular
nuclear complex comprises four main nuclei, lateral
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(LVN), medial (MVN), inferior (IVN), and superior (SVN)
vestibular nucleus. All of these four nuclei receive direct
hypothalamic histaminergic innervations [73-75] and ex-
press histamine receptors [41,48,76,77]. In consistent with
the effect of histamine on cerebellar neurons, histamine
induces an excitatory response of the neurons in vestibular
nuclei. Extracellular recordings and whole-cell patch-clamp
recordings in vitro showed that histamine directly excited
MVN, SVN, and IVN neurons via postsynaptic H1 and H2
receptors [78-80] and depolarized LVN neurons through H2
receptors [81]. Na+-Ca2+ exchangers coupled to H1 recep-
tors and HCN channels linked to H2 receptors contribute
to the histamine-induced depolarization on MVN neurons
[81,82]. Presynaptic H3 receptor also holds a key position in
vestibular nuclear circuit [83,84] and even in vestibular
compensation [83-85], however, its role in modulation of
vestibular nuclear neuronal activity has not been reported.
It is noteworthy that the actions of histamine on cere-

bellar cortical and nuclear neurons as well as vestibular
nuclear neurons are homogeneous excitation. Thus, the
hypothalamic histaminergic afferent system acts to uni-
formly and parallelly excite components in the cerebellar
circuitry as well as the cerebellar target structure, vestibular
nuclear complex. Due to histaminergic varicose endings
and histamine metabotropic receptors, the hypothalamic
histaminergic afferent system may not transmit fast signals,
but act as a biasing force to influence electrophysiological
properties of cerebellar and vestibular neurons and hold
their excitability and sensitivity at an appropriate level for
responding to inputs coding changes in internal and
external environments. In this way, the histaminergic af-
ferent inputs may extensively modulate the sensorimotor
integration in the cerebellar and vestibular circuits and
sequentially influence cerebellar-related motor behaviors.

Physiological function of histaminergic afferents in the
cerebellar-related behaviors
The central histaminergic nervous system has been impli-
cated in many nonsomatic basic physiological functions,
such as sleep-waking cycle, energy and endocrine homeo-
stasis, synaptic plasticity, and learning [14-16]. Recently,
role of histamine and histaminergic system in somatic
motor control receives increasing attention. Intraventricu-
lar administration of histamine produced a biphasic effect
in spontaneous locomotor activity with an initial transient
hypoactivity followed by hyperactivity [86,87]. Depletion
of brain histamine or knockout of histamine receptors in-
fluenced motor behaviors [88-90]. The activity levels, such
as wheel-running and spontaneous locomotion, in the
HDC knock-out mice were lower than those in the wild
types [91]. Knockout of H1 receptors in mice altered am-
bulatory activity and reduced exploratory behavior [89].
The H3 receptor-deficient mice showed a decrease in
overall locomotion, wheel-running behavior, and stereotypic

responses [90]. Interestingly, bilateral microinjection of his-
tamine into the cerebellar FNs or INs, two final output nu-
clei of the spinocerebellum, does not influence overground
locomotion in rats in an open field [58,61]. However, micro-
injection of histamine into the FNs and INs significantly
lengthens the endurance time of rats on an accelerating
rota-rod (Figure 2) and shortens the time that rats spend
traversing a balance beam, which is mediated by H2
receptors [58,61], indicating a promotion of histamine on
cerebellum-mediated motor balance and motor coordi-
nation. Furthermore, microinjection of histamine into
bilateral FNs narrowed stride width of footprint but did not
influence wire suspension, whereas microinjection of his-
tamine into bilateral INs increased stride length and pro-
moted suspension [58] (Figure 3), suggesting that cerebellar
histaminergic afferent system may precisely modulate trunk,
proximal and distal muscles via biasing the FN and IN.
Besides somatic motor control, cerebellum also actively

participates in many basic nonsomatic regulations and even
high cognitive functions [17,92]. Interestingly, recently, his-
tamine has been found to be involved in the cerebellar-
mediated emotional memory consolidation. Microinjection
of histamine into the cerebellar vermis impairs emotional
memory consolidation in mice in the elevated plus-maze
[93]. The impairment is mediated by H1 rather than H2 re-
ceptors [94]. However, via H2 receptors in the cerebellum,
histamine enhances memory consolidation of inhibitory
avoidance learning in mice [95]. These results indicate that
cerebellar histaminergic afferent system may be extensively
involved in cerebellar physiological functions.

Histamine and cerebellar ataxia
Cerebellar ataxia, a form of ataxia associated with lesions
to the cerebellum, is a complex motor disturbance that
involves the planning and execution of movements and
reduces movement accuracy and coordination [96]. Cere-
bellar ataxia presents with symptoms of an inability to co-
ordinate balance, gait, extremity, and eye movements [97].
Since histaminergic afferent system plays an important
role in cerebellar functions, histaminergic reagents may
become potential drugs for treatment of cerebellar ataxia.
Betacerc (betahistidine, an antagonist for H3 receptor and
a weak agonist for H1 receptor) ameliorates symptoms of
static ataxy in patients with cerebellar ataxia [98]. Ciproxi-
fan, a potent H3 receptor antagonist, enhances MK-801
(dizocilpine, a non-competitive antagonist for NMDA
receptor) produced ataxia and motor impairment [99].
Cetirizine, selective H1 receptor antagonist, decreases the
falling off latency from the rota-rod and potentiates the
effects of ethanol-induced ataxia [100]. The reasons why
betacerc and ciproxifan exert opposite effects on ataxias
still needs further investigation, Betacerc is also a weak
agonist for H1 receptors and different causes of ataxias
may be account for it. Although these clinical and
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experimental results are very preliminary, they provide a
new insight and indicate a possibility of using histaminer-
gic reagents to ameliorate symptoms of cerebellar ataxia.

Conclusion
Histaminergic afferent system in the cerebellum, despite
being a third type of cerebellar afferents, plays an important
modulatory role in the cerebellar circuitry and actively par-
ticipates in the cerebellar somatic motor and nonsomatic
functions. Different from the serotoninergic and noradren-
ergic fibers originating from lower brainstem, histaminergic
afferents in the cerebellum arise from the hypothalamus, a
higher center for visceral and autonomic regulation. Thus,
the hypothalamocerebellar histaminergic projections bridge

nonsomatic center, the hypothalamus, to somatic structure,
the cerebellum. These connections and especially the his-
taminergic modulations may not only endow the cerebel-
lar circuitry with an appropriate functional state, but also
form a vital part of the somatic-nonsomatic integration,
which is critical for generating an integrated and coordi-
nated behavioral response to changes in internal and
external environment.
Although clinical use of histaminergic reagents in the

therapy for cerebellar ataxia is still in exploration, inten-
sive studies on function and receptor and ionic mecha-
nisms of the histaminergic modulation on cerebellar
circuitry may provide a new target for clinical treatment
of cerebellar ataxia.

Figure 2 Histamine promotes motor balance and motor coordination in accelerating rota-rod via H2 receptors in the cerebellar
interpositus nuclei. (A) Motor performances of rats microinjected with normal saline, GABA, histamine, ranitidine (antagonist for H2 receptor)
and triprolidine (antagonist for H1 receptor) in accelerating rota-rod. (B) Reversal effect of histamine on ranitidine-injected rats. *P < 0.05;
**P < 0.01. Modified from Song et al., Neuroscience, 140:33–43, 2006.

Figure 3 Histamine precisely modulates trunk, proximal and distal muscles through the cerebellar fastigial and interpositus nuclei,
respectively. (A) Walking track of hindfeet of a normal rat. (B) Microinjection of histamine into the fastigial rather than interpositus nuclei
induced a narrower stride width. (C) Microinjection of histamine into the interpositus but not fastigial nuclei induced a longer stride length.
(D) Microinjection of histamine into the interpositus but not fastigial nuclei increased the endurance time of suspension. **P < 0.01. SL, stride
length; SW, stride width. Modified from He et al., Behav Brain Res., 228:44–52, 2012.
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