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Advances in neuromodulation technologies hold the promise of treating a patient’s
unique brain network pathology using personalized stimulation patterns. In service of
these goals, neuromodulation clinical trials using sensing-enabled devices are routinely
generating large multi-modal datasets. However, with the expansion of data acquisition
also comes an increasing difficulty to store, manage, and analyze the associated
datasets, which integrate complex neural and wearable time-series data with dynamic
assessments of patients’ symptomatic state. Here, we discuss a scalable cloud-based
data platform that enables ingestion, aggregation, storage, query, and analysis of multi-
modal neurotechnology datasets. This large-scale data infrastructure will accelerate
translational neuromodulation research and enable the development and delivery of
next-generation deep brain stimulation therapies.
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INTRODUCTION

Precision medicine has changed the face of modern healthcare. Historically, treatments have
been developed assuming a one-size-fits-all approach. Now, thanks to advances in multi-modal
data collection and analysis, we understand that many diseases are heterogeneous and require
personalized treatment strategies. Precision oncology has been at the forefront of this revolution.
High-throughput technologies generating large, multi-omics datasets have spurred data-driven
approaches to inform risk prediction, disease detection, diagnosis, phenotyping, and identification
of new therapeutic targets. Data aggregation platforms emerged as critical tools for structuring and
sharing these complex data, driving data utility for both the researchers and clinicians who are
developing next-generation, precision therapies (de Anda-Jáuregui and Hernández-Lemus, 2020).

In neurological and psychiatric disorders such as Parkinson’s disease (PD), epilepsy, major
depressive disorder, and obsessive compulsive disorder, data-driven approaches for disease
classification and treatment have yet to gain widespread integration into clinical decision
making. Each diagnosis remains a heterogeneous mixture of phenotypes, with limited options for
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personalized therapies. However, several studies have
demonstrated the value of characterizing patient-specific disease
pathophysiology. For example, studies utilizing neuroimaging
and neurophysiology have identified putative subgroups of
depression, which may be valuable in predicting responsiveness
to therapy (Riva-Posse et al., 2014; Drysdale et al., 2017; Williams,
2017; Wu et al., 2020). These initial studies illustrated the utility
of a single cross-sectional snapshot of neural circuitry, but
acute assessments fail to capture the full complexity of these
time-varying disorders.

Transitioning research outside of the acute clinical setting
and into longitudinal real-world environments requires tools that
can track both neural activity and patient clinical state over the
span of years. Implantable neural devices have enabled chronic
field potential recordings in brain circuits, with the potential
to continuously stream data over the lifetime of the device
(Stanslaski et al., 2018; Gilron et al., 2021; Goyal et al., 2021).
However, data labeling and contextualization are important for
maximizing the utility of these electrophysiological recordings.
Thus, simultaneous monitoring of patient state is critical. Digital
technologies such as wearable sensors, as well as clinician
assessments and patient self-report, provide both objective and
subjective measures of patient state (Bot et al., 2016; Pathak et al.,
2021; Powers et al., 2021).

The resulting large-size, multi-modal datasets require
significant data infrastructure that supports scalable data
ingestion, time-syncing, storage, query, and analysis. These
systems are complex from a technical, reliability, and compliance
standpoint and are beyond the capacity of most individual
research groups. Rune Labs has developed a data platform
that is uniquely tailored to the needs of the neuromodulation
community. We present this as an example of the type of
infrastructure that can be used to develop and deliver data-
intensive neuromodulation therapies. We discuss advantages
of using a common infrastructure, which include ease of
data sharing and replication of results, both within and
across teams.

UNMET NEEDS IN PRECISION
NEUROMODULATION

Longitudinal neural physiology combined with objective
monitoring of clinical state is particularly important for
disorders that are time-varying. For example, in PD, patients
fluctuate between periods of adequate and inadequate symptom
control, as dopaminergic medications wear in-and-out (Kalia
and Lang, 2015). Conventional deep brain stimulation (DBS)
delivers continuous stimulation to the basal ganglia nuclei,
regardless of a patient’s clinical state. This can lead to both under-
stimulation, resulting in inadequately controlled symptoms,
or over-stimulation, resulting in unwanted side effects such as
dyskinesia (Beudel and Brown, 2016). Adaptive DBS (aDBS)
aims to address these shortcomings by using biomarkers to
track disease fluctuations and update therapy delivery in real-
time. Acute tests of aDBS have demonstrated the feasibility of
incorporating a feedback signal into stimulation titration, and

studies have matched the clinical efficacy of continuous DBS
(Little and Brown, 2020). However, these studies have been
limited to short clinical visits, and prolonged tests of aDBS have
not yet been shown to be more efficacious than standard DBS
(Gilron et al., 2021).

Formulating aDBS paradigms that translate outside of the
clinic is first dependent on identifying biomarkers that track
clinical state. In PD, several biomarker candidates have emerged
that track the hypo- and hyperkinetic states, though they have
yet to be validated in chronic settings (Little and Brown,
2020). Similarly in depression, candidate neurophysiological
biomarkers have been identified solely in acute settings (Kirkby
et al., 2018; Sani et al., 2018; de Aguiar Neto and Rosa, 2019).
Accordingly, researchers are adapting their data collection and
analysis protocols for longitudinal, at-home recording. These
recordings capture the full spectrum of clinical variability
and naturalistic human behaviors that cannot be assessed in
clinic. Importantly, generating insights from these rich neural
time series requires precise integration with other at-home
monitoring data, including wearable sensor time series and single
time-point reports of patient state. Thus, drawing the links
between patient state and neural physiology is dependent on
being able to access precisely synchronized data from several
data streams.

Furthermore, testing aDBS over long time courses in patients’
homes requires efficient data transfer and availability. Both
researchers and clinicians need easy access to recorded data
such that they can assess algorithm performance and iterate
on tests. This involves transferring data from the patient’s
implanted device to external computers and/or cloud based
storage without requiring frequent clinic visits. This transfer must
be both efficient and secure. Data from raw device files must
then be parsed and represented in an accessible manner to both
researchers and clinicians, and these analysis pipelines must be
integrated into their normal workflows.

Finally, optimizing aDBS can benefit from data-driven
approaches to streamline the programming process. aDBS
optimization is currently constrained by a large parameter search
space, in part due to increasingly sophisticated electrode designs
and stimulating device capabilities. Furthermore, individual
variability in electrode locations and neuroanatomy is not
taken into account. Data-driven modeling frameworks can be
explored to narrow aDBS tuning parameters and guide clinical
programming. These modeling approaches are contingent on
the ability to query and aggregate large datasets and conduct
computationally intensive analyses.

Thus far, lags in technological development have delayed
large-scale testing of aDBS in chronic settings. Capabilities of
earlier generation implantable neural devices initially limited
the ability to do biomarker discovery. As new devices pushed
brain sensing into patients’ homes, there became an additional
need for tools that chronically evaluate patient state. Developing
patient- and researcher-facing applications, in addition to data
infrastructure that integrates these large data sets, requires
software engineering resources and time. Thus unlocking the
full utility of these rich datasets requires a scalable and
efficient data platform.
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A DATA INFRASTRUCTURE SOLUTION

Rune Labs has developed a scalable, HIPAA-compliant, cloud-
based data platform designed for (1) time-synchronization and
aggregation of multi-modal datasets (2) real-time data access,
and (3) data analysis at the scale of multiple terabytes, directly
in the cloud. The platform is optimized for datasets generated
in neuromodulation research, such as longitudinal time series
data from a variety of devices, including but not limited to
neural implants, wearable sensors, and patient-facing phone-
based applications.

System Architecture
The technology’s architecture is organized as a multi-step pipeline
(Figure 1A). First, patient data are uploaded—either in batches
or in real time—from all devices such as neural implants,
wearable monitors, and mobile applications. Data from internet-
connected devices such as wearable and mobile devices are
uploaded automatically. Data from neural implants can be
directly uploaded via HTTPS, or automatically synchronized via
third party cloud storage platforms, such as Box, reducing the
need for manual file transfer. With each upload, a permanent
copy of the original data is securely stored and versioned, and
a data catalog is updated to mark its location, ownership, and
details. New data are immediately processed upon arrival with
a high-availability upload application programming interface
(API) that maintains at least 99.9% service uptime. This is
achieved with (1) containerized deployment, whereby daily code
updates are rolled out with only 10% of containers taken offline
at a time, so that the cluster as a whole remains responsive,
and (2) service level agreements with Amazon Web Services
that guarantees service uptime (AWS Service Level Agreements,
2021).

Then, data pass through an ingestion layer, which parses
proprietary or open source data formats and outputs time
series signals together with device-related meta data, such as
recording configurations (electrode pairs, sampling rate, etc.)
and stimulation settings (frequency, amplitude, ramp rates, etc.)
(Sellers et al., 2021). Importantly, full integration into both
patient and researcher workflows ensures that users need not
be involved in the engineering processes that handles data
transfer, upload, and parsing (Figure 1B). Patients are primarily
tasked with managing devices that collect data, and researchers
have access to the resulting time-synchronized datasets, while
remaining removed from the engineering details in Figure 1A.

Ingested data are stored in a structured time series database.
A distributed Write-Ahead Log (WAL) is used to scale data-
write horizontally across compute clusters, acting as a surge-
protector so that the system is resilient to spikes of new incoming
patient data. The WAL data are dispatched into an indexed
time-series data store that aligns the multi-modal streams in the
time domain. This layer services real-time random access to any
segment of the data, across one or many patients and devices.
The same WAL data are concurrently double-dispatched to a
replicated data lake, where much larger cross-patient query and
analysis can be performed at petabyte scale.

Finally, all data are available through a Python-based API and
software development kit (SDK). Because complete datasets are
parsed for both time series and meta data components, data are
easily queried and accessed for either cloud or local compute
(Figure 1C). This reduces the need for research groups to
manually inventory and curate data, using variable organization
schemes that may hinder reproducibility across teams.

Figure 2A shows an illustrative example of a raw data
file from the Medtronic Summit RC + S system and its
parsed, human readable format. Given the size and scale of the
multimodal continuous time series collected in neuromodulation
research, data ingestion represents a large computational effort
(Figure 2B). Industry-scale databases offer an efficient, safe, and
standardized approach to handling these large datasets. Analysis-
ready data are accessible reliably through an API (Figure 2C). To
test API performance, we accessed data using 1,800 randomized
API requests with a 100% success rate. The mean data request
size was 290.3 ± 56.0 MB, with an execution time of 7.3 ± 1.2 s.
Combined across all queries, a total of 522.6 GB of data were
downloaded in 3.6 h. These performance tests capture a baseline
level representative of the platform at its current state. As the
platform is updated over time to leverage new designs and tools,
performance is expected to continually improve.

The entire system architecture—from ingestion to data
access through the API—facilitates data sharing and analysis
reproducibility within and between research teams. First,
all datasets are treated immutably and versioned, from the
raw file through parsing, pre-processing, and post-processing
steps. The origin of each initial and intermediate dataset is
recorded, including the algorithmic code applied between each
input/output layer. This ensures that all versions of accessed
data can be traced. Second, data access through an API
enables scientific collaborators to share analysis code that is
not dependent on local machine file/directory configurations or
individual data parsing algorithms.

Development Process
The Rune Labs platform is developed using industry-level data
pipeline tools with leading standards for code documentation,
maintenance, and security audits, including secure handling
of sensitive patient health information. Amazon Web Services’
set of HIPAA-eligible services guarantee both reliability and
compliance. Data at rest are encrypted universally, and all
connections inside and out of the network perimeter are
secured by Transport Layer Security. All personally identifiable
information is isolated to a single part of the platform topology
and secured, allowing the vast majority of the internal services to
act entirely on de-identified data.

All development is structured through a process of
collaborative design, architectural review, automatically enforced
code test coverage and quality standards, and explicit security
and risk assessment checkpoints. The Standard Development
Lifecycle is designed around the FDA-mandated format of
validation and verification. Risk matrices are created for all
new features, outlining possible failure modes and security
attacks, mapped to the corresponding standard FDA severity
and probability indices, implemented mitigations, and finally
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FIGURE 1 | Data infrastructure for neuromodulation research. (A) Rune system architecture. Patient data spanning neural physiology, wearable physiology, and
mobile applications step through several processing layers that parse, synchronize, and store the multi-modal data streams. (B) Data flow from patients to
researchers and clinicians. The data infrastructure pipeline is integrated into research workflows, such that researchers have easy access to patient data but are
removed from the process of managing the data transition and ingestion. (C) Comparison of local versus cloud-based data management.

the respective validation and verification over those mitigations.
In order to maintain stability as the platform continuously
evolves to follow the research community, new functionality is

wrapped in conditional execution containers so it can be vetted
thoroughly against subsets of patient data before being enabled
universally. This latter pattern enables safe and rapid integration
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FIGURE 2 | Data access through Rune’s API. (A) Sample of raw data from the Summit RC + S system (top left), which gets parsed into a human-readable format
and indexed for storage (top right). Both the raw and parsed data formats are accessible for further analysis (bottom). (B) Data ingestion performance in sample
datasets. Total time for ingesting 10661 Apple Watch datasets, totalling 94.9 GB, and 1983 RC + S datasets, totalling 163.1 GB. Raw data formats are parsed into
separate fields, such as accelerometry time series, derived health metrics from the Apple Watch (heart rate, step count, etc.), neural time series, and device meta
data. (C) Data access through Rune’s API. Distribution of data download speed across 1,800 randomized API requests.

of new devices and data types. It therefore ensures a safe, scalable,
and efficient solution for data access, aggregation, and sharing.

SHARED DATA PLATFORMS AND
NEUROMODULATION THERAPY
DEVELOPMENT

Traditionally, neuromodulation researchers have created in-
house systems, applications, libraries, and toolkits to manage data

generated during clinical trials. However, effectively managing
the increasingly large and complex datasets requires a significant
investment in software engineering. Furthermore, individual
research laboratories may not be equipped for maintenance,
compliance, and lifecycle management of data software that has
been custom-developed for single trials or projects. Thus the end
of a project—or even the departure of a key researcher—can pose
a major hurdle for long-term utilization of valuable datasets.

An alternative is for researchers to leverage data platforms that
are shared in common with other research groups and clinical
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teams. These “out-of-the-box” systems have the advantage of
long-term stability, compliance, and scalability for patients,
clinicians, and researchers. Embracing collaborative data
platform ecosystems can save time and eliminate redundancy,
accelerating the translation of technologies from laboratory to
clinic (Borton et al., 2020). The use of common data platforms
may also facilitate open-sourcing de-identified datasets, enabling
researchers to combine data from different patients, projects, and
research centers.

Existing data sharing options, including both data archives
and databases, are not currently optimized for chronic
neuromodulation datasets. Data archives serve as a repository for
sharing data files, which can include both variable data formats
(DABI, 2021) or common data structures (Dandi Archive, 2021).
However, unlike databases, archives do not enable efficient data
query for the large-scale data that are produced with chronic
recordings. Similarly, existing databases in the neurology space
were developed to support data in acute or cross-sectional study
designs, and they primarily service different data modalities, such
as neuroimaging (D’Haese et al., 2015). Chronic multi-modal
time series data are not optimally served by existing data archive
and database options, though a specific data solution is necessary
for managing these growing datasets.

When deciding whether to use a shared data platform to
support a project or clinical trial, researchers will have to
weigh several factors. Custom, internally developed software may
be suitable for small feasibility studies. However, a common
data platform offers several advantages. First, a data platform
utilizes validated data pipelines for the neuromodulation device,
wearable device, or other data source. Multi-modal data sources
can be difficult to synchronize and ingest, and validated data
pipelines can reduce errors. Second, a common data platform
enables the synthesis of datasets across trials, centers, or patient

cohorts. Finally, a common data platform facilitates collaborative
analysis. Accessing data from the cloud with a documented
API/SDK facilitates easy code sharing and ensures that all
collaborators are working from the same datasets.

CONCLUSION

The future of DBS therapies is shifting toward personalizable,
precision medicine. Researchers and clinicians are generating
growing datasets that are increasingly difficult to manage and
analyze. Here, we described an example of a data infrastructure
platform that unblocks access and utilization of complex, multi-
modal datasets for researchers and clinicians to develop next-
generation neuromodulation therapies. As neuromodulation
researchers adopt these types of data platforms for supporting
development of new therapies, we can expect larger trials
across multiple centers, more reproducibility of key analytical
results and programming strategies, and faster discovery of new
biomarkers and therapeutic targets.
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