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Abstract 34 

The cerebral cortex comprises discrete cortical areas that form during 35 

development. Accurate area parcellation in neuroimaging studies enhances statistical 36 

power and comparability across studies. The formation of cortical areas is influenced 37 

by intrinsic embryonic patterning as well as extrinsic inputs, particularly through 38 

postnatal exposure. Given the substantial changes in brain volume, microstructure, 39 

and functional connectivity during the first years of life, we hypothesized that cortical 40 

areas in 1-to-3-year-olds would exhibit major differences from those in neonates and 41 

progressively resemble adults as development progresses. 42 

Here, we parcellated the cerebral cortex into putative areas using local 43 

functional connectivity gradients in 92 toddlers at 2 years old. We demonstrated high 44 

reproducibility of these cortical regions across 1-to-3-year-olds in two independent 45 

datasets. The area boundaries in 1-to-3-year-olds were more similar to adults than 46 

neonates. While the age-specific group parcellation fitted better to the underlying 47 

functional connectivity in individuals during the first 3 years, adult area parcellations 48 

might still have some utility in developmental studies, especially in children older than 49 

6 years. Additionally, we provided connectivity-based community assignments of the 50 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2024. ; https://doi.org/10.1101/2024.09.09.612056doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.09.612056
http://creativecommons.org/licenses/by-nc-nd/4.0/


parcels, showing fragmented anterior and posterior components based on the 51 

strongest connectivity, yet alignment with adult systems when weaker connectivity 52 

was included.  53 

 54 
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Introduction  58 

Understanding the intricate organization of the human brain is a fundamental 59 

pursuit in systems neuroscience. Previous research has supported the notion that the 60 

cerebral cortex is divided into spatially contiguous areas distinguishable by function, 61 

architecture, connectivity, and/or topographic organization (Felleman and Van Essen, 62 

1991; Glasser et al., 2016; Petersen et al., 2024). It has been hypothesized that the 63 

patterning of cortical areas starts during embryonic development to form a “protomap” 64 

organization (Fukuchi-Shimogori and Grove, 2001), while extrinsic factors refine this 65 

“protomap” into  discrete areas (O’Leary, Chou and Sahara, 2007; Cadwell et al., 66 

2019). One important extrinsic factor in this process is the input to the cortex from 67 

thalamocortical axon projections (O’Leary, Chou and Sahara, 2007), which undergo 68 

refinements driven by sensory inputs (Catalano and Shatz, 1998; Tau and Peterson, 69 

2010; Smyser, Snyder and Neil, 2011). The explosive increase in exposure to 70 

environmental stimuli following birth likely plays a significant role in the refinement of 71 

area boundaries shortly after birth. Moreover, synaptic addition and growth of 72 

dendrites and spines also enters a phase of logarithmic growth in the first few months 73 

after birth (Levitt, 2003), suggestive of an elevated period of cortical plasticity. 74 

Considering these factors, it is reasonable to expect that cortical areas in neonates 75 

would show low similarity to those in adults (Myers et al., 2024), with greater similarity 76 

between infant and adult brain areas as the brain develops. Furthermore, it has been 77 

postulated that developmental changes are not uniform across the brain. The 78 

sequence of development has previously been described to follow a sensorimotor-to-79 

association axis (Flechsig, 1901; Casey et al., 2005; Hill et al., 2010; Tau and Peterson, 80 

2010; Smyser and Neil, 2015; Smyser et al., 2016; Grayson and Fair, 2017; Sydnor et 81 

al., 2021), or a posterior-to-anterior axis (Larivière et al., 2020; Q. Li et al., 2024). Few 82 

studies have examined whether the maturation of cortical areas followed either of 83 

these patterns. 84 

Many neuroimaging analyses have been conducted at the scale of parcels 85 

(Zalesky et al., 2010; Arslan et al., 2018; Farahani, Karwowski and Lighthall, 2019; 86 

Bijsterbosch et al., 2020; Faskowitz, Betzel and Sporns, 2022, 2022; Helwegen, 87 

Libedinsky and Heuvel, 2023; Luppi et al., 2024). Inaccurate parcellation choice can 88 

lead to the mixing of signals (Smith et al., 2011), conceal known community structure 89 

(Power et al., 2011), and reduce the prediction accuracy of clinical phenotypes 90 

(Abraham et al., 2017). Therefore, choosing a parcellation scheme that closely reflects 91 

the actual area boundaries in the data is of great importance for functional connectivity 92 

(FC) analyses (Grayson and Fair, 2017).  93 

Neuroimaging analyses often adopt definitions of cortical areas in adult brains 94 

(Shen et al., 2013; Glasser et al., 2016; Gordon et al., 2016; Schaefer et al., 2018). 95 

However, the dynamic and rapid development of the brain during infancy (Bethlehem 96 

et al., 2022) triggers unique concerns about whether it is valid to apply existing adult 97 

area parcellations to infant brains (Cusack, McCuaig and Linke, 2018; Shi et al., 98 

2018; Oishi, Chang and Huang, 2019; Wang et al., 2023). In response, several 99 
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infant-specific area parcellations have been developed in recent years (Scheinost et 100 

al., 2016; Shi et al., 2018; Wang et al., 2023; Myers et al., 2024). Despite these 101 

advances, having different area parcellations for different age ranges poses a 102 

practical challenge for making coherent comparisons in brain organization across 103 

development. Thus, many researchers have continued to use adult parcellations in 104 

infant studies (Nielsen et al., 2022; Kim et al., 2023; Yates, Ellis and Turk-Browne, 105 

2023), as well as studies across the lifespan (Betzel et al., 2014; Cao et al., 2014; 106 

Zuo et al., 2017; Puxeddu et al., 2020).  107 

One crucial factor in determining which parcellation to employ in a given age 108 

range would be the degree to which an age-specific parcellation differs from an adult 109 

parcellation in pediatric samples. However, a systematic examination of parcellations 110 

across age groups is lacking. We aim to a) illustrate how well the area parcellations fit 111 

the functional connectivity data across individual infants/children at various 112 

developmental stages, b) quantify the improvement compared to adult parcellations, 113 

and c) evaluate the potential impact of of using an adult parcellation instead of the 114 

proper infant parcellation on downstream analyses. If adult parcellations separate the 115 

cortical areas with comparable success as infant parcellations, utilizing adult 116 

parcellation schemes for developmental cohorts would be justifiable. One prior study 117 

suggested that this was not the case for neonates (Myers et al., 2024). Here we query 118 

whether the adult parcellation would be a reasonable choice for older infants, toddlers 119 

and children. 120 

In the current study, we derived a surface-based area parcellation based on FC 121 

local gradient transitions (Cohen et al., 2008; Wig, Laumann and Petersen, 2014; 122 

Gordon et al., 2016) in 92 toddlers at age of 2 years. To test the reproducibility of our 123 

area parcels across groups of subjects and whether the reproducibility followed a 124 

uniform distribution across space, we derived parcellations using half the sample (n = 125 

46). To examine differences in patterns of FC local gradient transition across 126 

development, we quantified the similarity between the boundary maps at different 127 

developmental stages. Furthermore, we compared our area parcellation to alternative 128 

adult and infant parcellations and demonstrated the generalizability and limitations of 129 

our area parcellation for application to various developmental stages. Finally, we 130 

derived the community organization which described the relationship between the 131 

area parcels. 132 

 133 

Methods 134 

 135 

Neuroimaging Data of Infants/Toddlers for Deriving Area Parcellations 136 

One main goal of this paper is to examine the area parcellations at age 1-3. We 137 

used two infant/toddler datasets: eLABE (Y2) and BCP (Table 1). The infant/toddler 138 

datasets used in the current study were all collected with a Siemens Prisma 3T 139 

scanner using HCP-style acquisition parameters (Supplementary Table 1). The 140 

functional MRI acquisition lasts 420 frames per scan run with 2-4 runs in Baby 141 

Connectome Project (BCP) and 1-8 runs in the Early Life Adversity, Biological 142 

Embedding (eLABE) 2-year-old data (Y2). Anatomical scan processing and 143 

segmentation were conducted using age-specific pipelines (Kaplan et al., 2022). 144 

Functional data preprocessing largely followed established procedures (Power et al., 145 

2014). Toddler EPI BOLD preprocessing pipeline was used for eLABE (Y2) and 146 

DCAN-Infant v0.0.9 (Glasser et al., 2013; Donahue et al., 2016; Autio et al., 2020) 147 

were used for BCP. Motion correction was performed with rigid-body transforms. 148 

Additionally, the functional data were corrected for asynchronous slice time shifts and 149 
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systematic odd-even slice intensity differences attributable to interleaved acquisition 150 

(Power et al., 2012). The data were intensity normalized to achieve a consistent whole-151 

brain mode value, and subsequently resampled to atlas space before being projected 152 

onto the 32k_fs_LR standard surface (Van Essen et al., 2012). Denoising was 153 

accomplished by nuisance regression, with regressors consist of a 24-parameter 154 

Volterra expansion of motion time series, the mean signal over gray-ordinates, and 155 

the mean signals derived from white matter and cerebrospinal fluid (CSF) 156 

compartments. The data were bandpass filtered to retain BOLD-specific frequencies 157 

and geodesically smoothed with Connectome Workbench (Marcus et al., 2011; 158 

Glasser et al., 2013). Frame censoring was performed based on the frame 159 

displacement time series (FD > 0.2mm) following age-specific notch-filtering to 160 

exclude respiratory frequencies (Kaplan et al., 2022). Structural and functional scans 161 

were manually inspected and runs/sessions that failed quality controls were discarded. 162 

Additionally, participants who were born preterm (<37 weeks gestational age), had 163 

any neonatal ICU experience, or had signs of injury on MRI were also excluded from 164 

the analysis. Functional data with less than 600 low-motion frames were also excluded. 165 

For additional dataset-specific details, see Supplementary Table 1. 166 

A summary of the demographics and image quality of the developmental cohort 167 

discovery and validation datasets is provided in Table 1. The cross-sectional age 168 

distribution and the distribution of age in longitudinal sessions are displayed in 169 

Supplementary Figure 1. 170 

Neuroimaging Data for Comparing FC Boundaries Across the Lifespan 171 

To compare FC boundaries, we additionally included the FC boundaries from 172 

a young adult dataset (Washington University 120, WU120) used in a widely adopted 173 

adult parcellation (Gordon et al., 2016) and from the same neonate dataset (eLABE 174 

Table 1. Subject demographics for the two infant/toddler datasets. For continuous variables, 
the mean is provided along with standard deviations in brackets. The group identity was defined as 
the median age rounded to the nearest whole number. 

Group Age 
(months) 

Age 
Range 
(months) 

Number of 
participants 

Average 
retained 
FD 
(mm) 

Frame 
retention 
rate (%) 

Acquisition 
time 

% 
White 

% 
Male 

eLABE (Y2)  

25 mo 25.2 
(1.8) 

22-31 92 0.068 
(0.021) 

92 (9) 20.0 (4.6) 21 59 

BCP  

10 mo 9.70 
(0.71) 

8-10 30 0.080 
(0.014) 

80 (6) 16.4 (5.3) 70 50 

12 mo 12.32 
(0.80) 

11-13 37 0.076 
(0.017) 

83 (6) 13.3 (4.7) 78 57 

16 mo 15.47 
(0.88) 

14-16 39 0.079 
(0.015) 

80 (8) 17.6 (5.5) 79 38 

19 mo 19.14 
(1.52) 

17-22 37 0.078 
(0.017) 

82 (8) 16.4 (5.8) 81 57 

25 mo 25.38 
(1.60) 

23-28 34 0.078 
(0.016) 

83 (5) 16.7 (5.5) 74 53 
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(Birth)) used in a neonatal parcellation (Myers et al., 2024). Acquisition and processing 175 

of these datasets followed similar pipelines to the infant/toddler datasets above and 176 

as briefly described below. For dataset-specific details, please refer to Supplementary 177 

Table 2. 178 

 179 

WU120 180 

Data were collected from 120 healthy young adult participants recruited from 181 

the Washington University community during relaxed eyes-open fixation (50% male, 182 

ages 19–32). Scanning was conducted using a Siemens TRIO 3T scanner and 183 

included the collection of high-resolution T1-weighted and T2-weighted images, as 184 

well as an average of 14 min of resting-state fMRI. Detailed acquisition and processing 185 

have been reported previously (Power et al., 2014). 186 

 187 

eLABE (Birth) 188 

Inclusion criteria were the same as the eLABE (Y2) cohort. Neuroimaging data 189 

were collected in 261 full-term, healthy neonate offspring shortly after birth (average 190 

postmenstrual age of included participants 41.7 weeks, range 39–45 weeks, 54% 191 

male). A total of 131 participants with the most data following frame censoring were 192 

used to create the FC boundaries. Additional details are in Supplementary Table 2. 193 

 194 

Neuroimaging Data for Testing the Generalizability of Areas Across the Lifespan 195 

To test for the generalizability of area parcellations across the lifespan, we 196 

additionally include the year-3 timepoint from the eLABE dataset, Healthy Brain 197 

Network (HBN) children dataset, and HCP young adult (HCP-YA) dataset. 198 

 199 

eLABE (Birth) 200 

This is the same dataset as above. Because 131 of the participants were 201 

involved in the creation of the Myers-Labonte parcellation (Myers et al., 2024), the 202 

other 130 participants not used in the parcel generation were used to test the 203 

parcellation's cluster validity performance to prevent circularity. The acquisition 204 

protocol and processing pipeline were the same as described before (Supplementary 205 

Table 2). 206 

 207 

eLABE (Y3) 208 

The inclusion criteria were the same as the eLABE (Y2) cohort. Neuroimaging 209 

data were collected from 132 participants at the age of 3 years. Additional participants 210 

were excluded based on the quality of structural and functional data and having less 211 

than 8 min (600 frames) of low-motion (respiratory-filtered FD < 0.2) data retained, 212 

leaving 65 participants (range = 2.93-3.97 years, mean = 3.22 years, SD = 0.32 years, 213 

63% male). The acquisition protocol and processing pipeline were the same as the 214 

eLABE (Y2)  dataset at age two.  215 

 216 

HBN 217 

Resting-state fMRI data from 493 participants from the first nine releases of the 218 

Healthy Brain Network (HBN) were divided into 10 groups by year (6-15yr). The HBN 219 

study is a large, multi-site study of children and young adults ages 5–21 years all 220 

collected in the New York area. Recruitment, consent, and study procedures are 221 

described in the data publication (Alexander et al., 2017) as well as project website. 222 

We used the data from two sites (CitiGroup Cornell Brain Imaging Center (CBIC) and 223 

Rutgers University Brain Imaging Center (RUBIC)).  224 
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Data were pre-processed using the Human Connectome Project minimal 225 

processing pipeline (Glasser et al., 2013). Additional processing steps (demeaning, 226 

detrending, nuisance regression (with regressors consist of a 24-parameter Volterra 227 

expansion of motion time series, the mean signal over gray-ordinates), bandpass 228 

filtering at 0.008-0.1 Hz to retain BOLD-relevant frequency and frame censoring at FD > 229 

0.2 mm threshold) were carried out using custom-written Python (v3.8) scripts using 230 

the numpy v1.24.4, scipy v1.10.1, nibabel v5.1.0, and pandas v2.0.3 libraries. Each 231 

scan session takes 10 min and all included sessions comprises at least 8 min (600 232 

frames) of low-motion (respiratory-filtered FD < 0.2) data retained. Data was 233 

geodesically smoothed to achieve an effective smoothing of 2.55 sigma gaussian 234 

kernel. 235 

 236 

HCP-YA 237 

 Resting-state fMRI data from a subset of randomly chosen 40 participants not 238 

used for the creation of the Glasser parcellation (Glasser et al., 2016) were selected 239 

from the HCP-YA dataset for external validation of the adult dataset to minimize 240 

circularity. Data was processed with the same standard preprocessing pipeline as WU 241 

120, except that a respiratory-filtered FD < 0.04 mm was used to remove high-motion 242 

frames. 243 

 244 

Creation of FC-transition Boundary Maps and Area Parcels 245 

We segmented the cortical surface into discrete parcels representing putative 246 

cortical areas based on the FC local gradient (Gordon et al., 2016). The FC from each 247 

vertex to every other vertex was calculated as Pearson’s correlation of the time series 248 

in individual sessions (Supplementary Figure 2A). The Fisher-Z-transformed FC from 249 

each vertex was correlated with a randomly subsampled set of 594 vertices (1% of the 250 

total vertices) to generate an “FC similarity” matrix, which indexed the similarity in FC 251 

patterns across vertices (Supplementary Figure 2B). We used 1% of the vertices for 252 

computational efficiency without compromising accuracy (Supplementary Materials). 253 

After that, the workbench command “cifti-gradient” was used to calculate the gradient 254 

of FC-transition in individual subjects’ surfaces in the standard 32k_fs_LR mesh. The 255 

gradient maps were then averaged across all subjects and smoothed with a Gaussian 256 

kernel of 2.55 sigma (Supplementary Figure 2C). A “watershed by flooding” algorithm 257 

(Beucher and Meyer, 1992) was used to create discrete areas separated by 258 

boundaries based on the gradient transitions (Supplementary Figure 2D). The 259 

gradient-based boundary map technique rests on the assumption that FC within a 260 

cortical area is relatively uniform and distinct from FC of an adjacent area (Wig, 261 

Laumann and Petersen, 2014), similar to how areas were distinct in connectivity in 262 

macaque monkeys (Felleman and Van Essen, 1991). Finally, the boundaries from 263 

different gradient maps were averaged to obtain a boundary map that indexed the 264 

probability of a vertex being an area boundary (value ranges between 0 and 1) 265 

(Supplementary Figure 2E). 266 

Discrete parcels (Supplementary Figure 2F) from a boundary map were created 267 

by locating the minima in the boundary map, growing parcels from minima using the 268 

watershed algorithm, and merging the watersheds if the median values of boundaries 269 

between them are below a threshold (merging threshold, defined as a percentile of the 270 

boundary map values). Neighboring parcels with sizes smaller than 15 vertices were 271 

merged. Parcels joined only by a single vertex were split. Isolated parcels smaller than 272 

10 vertices were removed. Vertices above 90% in the boundary map values (height 273 

threshold) were left as parcel borders. The resolution of the parcels depends on the 274 
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merging threshold, with higher merging thresholds leading to a small number of larger 275 

parcels and lower merging thresholds leading to a large number of smaller parcels. 276 

We varied the merging threshold from 20% to 90% (Supplementary Figure 3). 277 

 278 

Parcel Reproducibility 279 

To assess the reproducibility of our results, we generated the boundary map 280 

(Supplementary Figure 2E) and discrete parcels (Supplementary Figure 2F) from non-281 

overlapping split halves of participants 20 times. For each pair of parcellations at a 282 

merging threshold, we quantified the overlap in the parcels and in the boundaries (See 283 

Section: Parcel Similarity Measures). In addition, we divided the brain into 10 equal 284 

bins based on either the position along the sensorimotor-association axis (Sydnor et 285 

al., 2021) or the posterior-anterior axis and calculated the parcel reproducibility in each 286 

bin (Supplementary Figure 4). 287 

 288 

Parcel Similarity Measures 289 

Adjusted Rand Index (ARI) calculated on non-boundary vertices was used as 290 

the main measure of similarity across two parcellations. For completeness and 291 

comparability with prior literature, we also calculated the dice coefficient between 292 

parcellations, either as the average dice coefficient across matching pairs of parcels 293 

defined with the largest dice coefficient (Shen et al., 2013), or on binarized parcel 294 

identity maps (with boundaries as 0 and parcels as 1) (Myers et al., 2024). The dice 295 

coefficient between binarized parcel identity maps was biased by the percentage of 296 

the brain covered with parcels (e.g. when there are more/wider boundaries, the 297 

overlap will be higher). For example, in parcellations such as Glasser (Glasser et al., 298 

2013) and AAL (Tzourio-Mazoyer et al., 2002), the dice coefficient calculated this way 299 

would be 1 because those parcellations did not specify boundaries and allocate all 300 

cortical vertices into parcels.  301 

Additionally, we compared the binarized parcel boundaries (with boundaries as 302 

1 and parcels as 0). We quantified the differences between the parcel boundaries with 303 

dice coefficient and Hausdorff distance (Shen et al., 2013; Müller, Soto-Rey and 304 

Kramer, 2022), which measures the maximum distance one needs to travel between 305 

two contours. A lower Hausdorff distance indexed a high similarity between 306 

boundaries. We used a spatial distance measure for boundaries because it is less 307 

sensitive to small shifts in space and does not require perfect overlap. To mitigate 308 

sensitivity to, we used two variants of the Hausdorff distance measure: 95% Hausdorff 309 

distance (HD95) (Huttenlocher, Klanderman and Rucklidge, 1993) and average 310 

Hausdorff distance (AHD) (Müller, Soto-Rey and Kramer, 2022). HD95 was defined 311 

as the maximum of the 95th percentile of the distances between any point in contour 312 

X to the closest point in another contour Y and the 95th percentile of the distances 313 

between contour Y to the closest point in contour X. AHD was defined as the maximum 314 

of the mean distance between contour X and contour Y and the mean distance 315 

between contour Y and contour X. 316 

 317 

𝐻𝐷95 = max(𝑑95(𝑋, 𝑌), 𝑑95(𝑌, 𝑋)) [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1] 318 

𝐴𝐻𝐷 =  max (�̅�(𝑋, 𝑌), �̅�(𝑋, 𝑌)) [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2] 319 

 320 

 Here “distance” was defined as the geodesic distance between vertices in the 321 

Conte69 surface atlas (Van Essen et al., 2012).  322 
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Additionally, we generated a null model by generating random rotations around 323 

the x,y, and z axes for a split-half of the total sample of data (Split-I) and calculated 324 

each of the metrics. In theory, this controls for the bias from different merging 325 

thresholds, but due to the presence of the medial wall, spatial permutations often 326 

induce missing data (Markello and Misic, 2021). 327 

 328 

Boundary Map Consistency Across Age 329 

To examine the difference in the area organization across different 330 

developmental stages, we applied the same method to generate boundary maps from 331 

neonates and adults. These were compared to the boundary maps derived from the 332 

eLABE (Y2) dataset. We computed the similarity between the boundary maps by 333 

taking the top percentiles of the boundary map values and calculating the Hausdorff 334 

distance measures.  335 

 336 

Evaluation of Cluster Validity of Area Parcellation  337 

To evaluate the cluster validity of the area parcellations (i.e. how well they fit 338 

the FC data, we used an unbiased metric for the comparison of parcellations across 339 

different spatial resolutions (Zhi et al., 2022). The distance-dependent boundary 340 

coefficient (DCBC) (Zhi et al., 2022) compares the average difference in similarity 341 

(Pearson’s r, with a value between -1 and 1) of FC profiles from vertices within a parcel 342 

and those from vertices between parcels across geodesic distance bins of 1 mm (e.g. 343 

between 10 mm to 11 mm). As demonstrated in a prior publication (Zhi et al., 2022), 344 

this metric accounts for the spatial smoothness of the data and is relatively unbiased 345 

when comparing parcellations across multiple spatial resolutions (a.k.a. number of 346 

parcels). The expected value of DCBC for a random parcellation was zero regardless 347 

of the resolution of the parcellation, and a positive DCBC would mean better than 348 

random. Thus, no simulation with random null parcellations is necessary to establish 349 

a baseline measurement, as opposed to measures like homogeneity Z-score 350 

compared to a spatially permuted null (Gordon et al., 2016). As a negative control, we 351 

also evaluated a parcellation that randomly partitioned the brain into 304 equally-sized 352 

fragments (Icosahedron) as a control. For implementation details and a comparison 353 

with alternative measures, please refer to the Supplementary Materials. 354 

 355 

Comparing Our Area Parcellation to Alternatives 356 

To further contextualize results, we compared our area parcellation to existing 357 

area parcellations created using adult or infant data. We transformed the area 358 

parcellations into the common 32k_fs_LR standard mesh where necessary. Details 359 

for the transformation are provided in the Supplementary Materials. 360 

Table 2 summarizes the parcellations tested including the number of parcels, 361 

sources, and original space. In addition, to establish a lower bound of DCBC for the 362 

dataset, we used an Icosahedron-162 parcellation which provided regular 363 

tessellations of the hemispheres in the form of a 3D regular polyhedron with equilateral 364 

triangles as faces (Zhi et al., 2022). 365 

 366 

Table 2. Adult and Infant Area Parcellations 367 

Name Number of 
parcels 

Citation Original Space 

Gordon 333 Gordon, Laumann et al. 
2016 

32k_fs_LR 
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Glasser 360 Glasser et al. 2016 32k_fs_LR 

Schaefer 400 Schaefer et al. 2018 32k_fs_LR 

AAL 82 Tzourio-Mazoyer et al. 
2002 

MNI152 

Desikan 70 Desikan et al. 20016 32k_fs_LR 

Shen 200 Shen et al., 2013 MNI152 

Myers-Labonte  283 Myers, Labonte et al., 
2024 

32k_fs_LR 

Tu 326 Current study 32k_fs_LR 

Wang 864 Wang et al. 2023 32k_fs_LR 

Scheinost 87 Scheinost et al., 2016 MNI152 

Shi 1 Yr 194 Shi et al., 2018 Age-specific T1 
(Shi et al., 2011) 

Shi 2 Yr 205 Shi et al., 2018 Age-specific T1 
(Shi et al., 2011) 

Icosahedron 
(control) 

304 Zhi et al. 2022 32k_fs_LR 

 368 

Comparing Our Area Parcellation to Age-specific Infant Area parcellations 369 

Using the boundary maps in Figure 2, we generated age-specific area 370 

parcellations with the BCP data divided into 5 groups and a merging threshold of 65%. 371 

To test whether finer age-specific parcellation improves cluster validity in 372 

infants/toddlers at a certain age, we calculated the DCBC for these five age-group 373 

parcellations on a secondary validation dataset containing an additional subset of BCP 374 

sessions in the same age range (N = 73 sessions from 51 participants, age range 8-375 

29 months). This validation datset included more recently released BCP data collected 376 

at the University of Minnesota and University of North Carolina Chapel Hill sites. 377 

Acquisition and processing details were largely the same as the main BCP dataset 378 

described before with an update to the DCAN-Infant pipeline v0.0.22 where zero-379 

padding has been implemented at the filtering step to minimize the distortions in the 380 

edges of the time series. 381 

 382 

Practical Implications of Using Infant and Adult Parcellations 383 

Previously, researchers have found that inaccurate parcellation may reduce the 384 

prediction accuracy of clinical phenotypes (Abraham et al., 2017; Dadi et al., 2019). 385 
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FC derived from an accurate parcellation should yield satisfactory prediction 386 

accuracies for behavioral phenotypes (Kong et al., 2023) and demonstrate decent 387 

test-retest reliability (Tozzi et al., 2020). We thus compare the prediction accuracy of 388 

age using FC from BCP dataset based on the present 2-year-old parcellation (Tu (326)) 389 

and the Gordon parcellation (Gordon et al., 2016), which were the best-performing 390 

infant and adult parcellations on cluster validity respectively. In addition, we assessed 391 

the test-retest reliability of individual edges in the parcellated FC. We constructed a 392 

functional connectome with the first 7.2 min (600 frames for TR = 0.8 and 540 frames 393 

for TR = 0.72) of low-motion (filtered FD<0.2) fMRI data in each subject in the BCP 394 

dataset using the parcellations and applied a linear support vector regression for the 395 

prediction of age (J. Li et al., 2024). The test-retest reliability was assessed with the 396 

first 5 min of two separate scan runs within the same session using an intraclass 397 

correlation coefficient (ICC (3,1))(Shrout and Fleiss, 1979; Tozzi et al., 2020). Details 398 

are provided in the Supplementary Materials. 399 

 400 

Identification of Community Structure in 2-year-olds 401 

To characterize the relationship between the area parcels, we identified the 402 

community structure with the Infomap algorithm on the area parcels as nodes and the 403 

FC between parcels as edges (Rosvall and Bergstrom, 2008; Gordon et al., 2016). 404 

For each participant in the eLABE (Y2) dataset (N = 92), we created a parcellated time 405 

series by calculating the mean within-parcel time series over each of the parcels from 406 

the dense grayordinate time series in 32k_fs_LR space with the workbench command 407 

“wb_command cifti-parcellate”. We then cross-correlated these parcellated time series 408 

to generate a parcel-wise correlation matrix. Parcel-wise correlation matrices were 409 

Fisher z-transformed and averaged across all participants to obtain a group-average 410 

correlation matrix. 411 

To reduce the impact of non-neuronal sources of inflation in short-distance 412 

correlation (e.g., data processing, subject motion), we applied an exclusion distance 413 

of 30 mm on the correlation matrix. A range of thresholds was then used to make the 414 

parcel-wise correlation matrix into a weighted sparse graph (edge density in steps of 415 

0.25% ranging from 0.25% to 20%), which were entered as inputs to the Infomap 416 

algorithm. A consensus across thresholds was found with a manual examination of 417 

the communities at different thresholds to identify reliable networks across thresholds 418 

which also matched the prior description of functional systems (Power et al., 2011; 419 

Yeo et al., 2011; Wig, 2017). In addition, we also examined whether the networks at 420 

lower edge density thresholds, keeping the naming convention and colors similar to 421 

what was described in an earlier publication (Myers et al., 2024).  422 

 423 

Results  424 

 425 

Area Parcellation in 2-year-olds is Reproducible across Participants 426 

The reproducibility of the area parcellations across participants was evaluated 427 

using split-half sampling 20 times (Figure 1A-B). We found that the reproducibility was 428 

highest around a merging threshold of 60-80%, significantly larger than the spatially 429 

permuted null model (Figure 1C-E). Based on manual inspection of the boundary map 430 

and the granularity of area parcels in popular adult area parcellations (Glasser et al., 431 

2016; Gordon et al., 2016), we settled on a merging threshold of 65% for our main 432 

parcellation, which produced 324-391 parcels across 20 split-haves (Supplementary 433 

Figure 5A). For the remaining sections, the main area parcellation using all data in 434 

eLABE (Y2) (N = 92) and merging threshold 65% were used for evaluation, hereafter 435 
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referred to as “Tu (326)”. At the merging threshold of 65%, ARI = 0.66  0.02, Z-score 436 

compared to the null model = 14.3, parcel averaged dice coefficient = 0.62  0.01, Z-437 

score compared to the null model = 15.2. The dice coefficient for the binarized parcel 438 

map is 0.87  0.002, Z-score compared to the null model = 8.46. Similar results were 439 

obtained with binarized boundary maps (see Supplementary Materials). 440 

Furthermore, we examined the parcel reproducibility across different positions 441 

in the brain by segmenting the brain into approximately 10 equal divisions along the 442 

sensorimotor-association axis (Supplementary Figure 4A) and the posterior-anterior 443 

axis (Supplementary Figure 4B). We found that the sensorimotor regions tend to have 444 

higher reproducibility than the association regions (Figure 1F-H) and that the posterior 445 

regions tend to have higher parcel reproducibility than the anterior regions (Figure 1I-446 

K).  447 
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448 

 

 

Figure 1. Parcel reproducibility between split halves. A) Parcellations from an example 
first split-half and and second split-half. B) The overlap between the parcels and 
boundaries in A and B. C) Adjusted Rand Index (ARI). D) parcel-average Dice coefficient. 
E) Dice coefficient on binarized parcels. The blue line and shaded area show the actual 
values and the standard deviation across 20 splits. The black line and shaded area 
illustrate the mean and 95% confidence interval of the spatially permuted null from one 
example split. The dashed line shows the merging threshold = 65%. F-H: the same 
metrics in C-E but separated into 10 bins along the Sensorimotor-Association axis at 
merging threshold = 65%. I-K: the same metrics in C-E but separated into 10 bins along 
the Posterior-Anterior axis at merging threshold =65%. The colors in the individual data 
point in F-K matches with the bin colors in Supplementary Figure 4. 
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Boundary Maps in 2-year-olds Resembled Adult Boundary Maps More than 449 

Neonate Boundary Maps 450 

We compared the boundary maps from the 2-year-olds (Figure 2A-B) to 451 

boundary maps generated from adults (Figure 2C) and neonates (<1 month from birth, 452 

Figure 2D) by comparing the similarity of the vertices with the top percentile of 453 

boundary probabilities (ranging from 15-55%) (Supplementary Figure 6).  454 

Boundaries in 2-year-olds were spatially closer to adult boundaries (HD95 = 455 

7.61  0.24 mm, AHD = 2.22  0.03 mm for the top 35% vertices) compared to neonate 456 

boundaries (HD95 = 8.68  0.01 mm, AHD = 2.63  0.01 mm for the top 35% vertices) 457 

(Figure 2E-F).  458 

The boundaries were considerably similar across the five infant/toddler age 459 

bins (median age 10, 12, 16, 19, 25 months, Table 1) in the BCP dataset (HD95 ≈ 5 460 

mm for the top 35% vertices, Supplementary Figure 7). However, area boundaries 461 

tended to be more similar between infant/toddler groups with a smaller age difference. 462 

 463 
Local Gradient-Based 2-year-old Area Parcellation Provides the Best Cluster 464 

Validity for infants and toddlers at 8-31 months 465 

Using FC profiles from the eLABE (Y2) individuals, we evaluated the cluster 466 

validity of the present 2-year-old parcellation versus several extant adult and infant 467 

 
Figure 2. Similarity of boundary maps across ages. A) The FC boundary map in an 
example first split half. B) The FC boundary map in an example second split half. C) The 
FC boundary map in an adult dataset (WU 120). D) The FC boundary map in a neonate 
dataset (eLABE (Birth)). (E) 95% Hausdorff distance (HD95) indexes the spatial similarity 
of the boundaries between eLABE (Y2) Split-I and those from eLABE (Y2) Split-II (black), 
adult (yellow), and neonate (blue). The shaded area indexes the 95% confidence interval 
for the HD95 between the FC boundary in eLABE (Y2) Split-I and 1000 spatially 
permuted null of eLABE (Y2) Split-II. F) Same as E but using average Hausdorff distance 
(AHD). Lower HD95 and AHD indicate more similar boundaries. 
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area parcellations (Figure 3A), as well as the Icosahedron parcellation with 304 468 

parcels (Supplementary Figure 8) using FC from eLABE (Y2) individuals. We 469 

observed a large variation in cluster validity within adult and infant parcellation groups, 470 

with the Gordon parcellation demonstrating the best performance among adult 471 

parcellations and the Tu (326) parcellation demonstrating the best performance 472 

among infant parcellations (Figure 3B). However, all adult and infant parcellations 473 

examined except for AAL (82) and Desikan (70) had DCBC > 0 (FDR-corrected p<.05). 474 

The DCBC for the control Icosahedron (304) parcellation was not significantly above 475 

0. A repeated measures ANOVA with the 13 parcellations as the within-subject factor 476 

was run on the 13x92 DCBC matrix and demonstrated a significant difference in DCBC 477 

across parcellations, F (12,1092) = 508.64, p<.001). Post-hoc paired t-test showed 478 

that Tu (326) had a better cluster validity (Cohen’s d > 2.0, Supplementary Figure 9A) 479 
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than alternative adult and infant parcellations in eLABE (Y2) individuals. 480 

 481 
One caveat to the observation above was that the evaluation was performed 482 

on the same dataset used to generate the parcels. As such, an independent validation 483 

dataset (BCP) was used to further evaluate the cluster validity of the area parcellations 484 

(Figure 3C). The Gordon (333) and Tu (326) parcellations still performed the best 485 

within their respective parcellation age brackets, confirming the robustness of our 486 

results. A significant difference in DCBC across parcellations was found by a repeated 487 

measures ANOVA with the 13 parcellations as the within-subject factor, F (12,396) = 488 

100.92, p<.001). Post-hoc paired t-test showed a better cluster validity of Tu (326) 489 

against other parcellations (Cohen’s d > 1.2, Supplementary Figure 9B) in the 490 

infant/toddlers at 8-30 months. 491 

Figure 3. Cluster validity for different area parcellations evaluated with a distance-
controlled boundary coefficient (DCBC) measure. (A) Adult area parcellations and infant 
area parcellations. (B) DCBC quantified in individuals in the same eLABE (Y2) dataset 
used to derive the Tu (326) parcels. (C) DCBC quantified in individuals in an independent 
dataset (BCP). * p<.05 after FDR correction for one-sample t-test against 0. As a 
convention, we noted the number of parcels of a particular parcellation scheme in 
parentheses, e.g., Gordon (333) means Gordon parcellation with 333 parcels 
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To further validate the cluster validity of the parcellations in younger infants, we 492 

calculated the DCBC on individuals from all five BCP groups (Supplementary Figure 493 

10). We ran a repeated measures ANOVA with the 12 parcellations as the within-494 

subject factor and the 5 age bins as the between-subject factor on the 13x177 DCBC 495 

matrix. There was a significant difference in DCBC across parcellations, F (12,2064) 496 

= 551.31, p<.001), and no interaction between the five age bins and parcellations, F 497 

(48,2064) = 0.76, p = 0.88). Post-hoc paired t-test also showed a better cluster validity 498 

(Cohen’s d > 1.2) of Tu (326) against other parcellations for younger infant groups.  499 

Similar results were observed when calculating a homogeneity Z-score at the 500 

group-average level (Supplementary Figure 11-12). Details are provided in 501 

Supplementary Materials. 502 

 503 

Age-specific Infant Parcellations Have Comparable Cluster Validity to the 2-504 

year-old Parcellation 505 

We generated parcellations using the BCP dataset for five smaller age bins with 506 

a 65% merging threshold (Figure 4A). Age-specific infant parcellations were similar to 507 

one another (ranging from 352 to 380 parcels, ARI = 0.5-0.6). We calculated DCBC of 508 

the age-specific parcellations, the Tu (326) and the Gordon (333) on additional 509 

sessions of BCP data from a different set of subjects. A significant difference across 510 

parcellations was found with the repeated measures ANOVA with the 3 parcellations 511 

as the within-subject factor for 10 months (F(2,18) = 15.86, p<.001), 12 months (F(2,20) 512 

= 21.52, p<.001), 16 months (F(2,24) = 21.74, p<.001), 19 months (F(2,36) = 49.01, 513 

p<.001), and 25 months (F(2,38) = 48.61, p<.001). Using a post-hoc two-tailed paired 514 

t-test, we found that the age-specific parcellation outperformed Tu (326) parcellation 515 

only at 10 months (FDR-corrected p = 0.038) (Figure 4B), and was significantly worse 516 

than the Tu (326) parcellation at 19 months (FDR-corrected p = 0.0065). Given that 517 

the Tu (326) parcellation was derived from a separate dataset from the age-specific 518 

parcellations, the current results supported the generalizability and the utility of our Tu 519 

(326) parcellation to the age range of 1-2 years. 520 

Since the Wang infant/toddler parcellation (Wang et al., 2023) also had age-521 

specific versions with parcellations from 3,6,9,12,18, and 24 months, we tested 522 

whether the age-specific parcellations would best fit the individual FC in a similar age 523 

bracket. We found no clear evidence that data from a similar age range was best fit 524 

by the age-specific parcellation and that all age-specific Wang parcellations had low 525 

DCBC (<0.02) (Supplementary Figure 13).  526 
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 527 
Adult Parcellations Based on Functional Connectivity Have a Higher Cluster 528 

Validity at Age 6 and Beyond 529 

We determined the fit of area parcellations across the lifespan by testing our 530 

set of parcellations across FC in individual neonates (eLABE (Birth)), 3-year-olds 531 

(eLABE (Y3)), children (HBN), and young adults (HCP-YA). Neonate FC data were 532 

best fit by Myers-Labonte (283) parcellation (Figure 5A), 3-year-old FC data were best 533 

fit by the Tu (326) parcellation (Figure 5B). Children (Figure 5C-E, Supplementary 534 

Figure 14) and young adult (Figure 5F) FC data were best fit by the Gordon (333) 535 

parcellation. Adult and infant parcellations derived from FC rather than anatomy alone 536 

have a positive DCBC across all datasets at age 6 and beyond, with the difference in 537 

cluster validity across pairs of parcellations demonstrated in Supplementary Figure 15.   538 

The Myers-Labonte parcellation (Myers et al., 2024) included an alternative 539 

version that covered most of the brain (height threshold  = 90%).  Both versions of the 540 

 

Figure 4. Age-specific infant area parcellations. DCBC on a secondary validation dataset 
of held-out BCP participants using i) the age-specific parcellations, ii) Tu (326), and iii) 
Gordon (333). ** p<.01, *** p<.001. FDR-corrected for 3 paired t-tests.  
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Myers-Labonte parcellation significantly better fit the eLABE data at the birth time point. 541 

They were both worse than the Tu (326) parcels at the Y2/Y3 time points, and they 542 

had comparable (Myers-Labonte (283), FDR-corrected p≥.05) or worse (Myers-543 

Labonte (370), FDR-corrected p<.05) fit than the Gordon (333) parcels at the Y2/Y3 544 

time points (Supplementary Figure 16).   545 

 546 

Practical Implications of Using Infant versus Adult Parcellations 547 

 To capture the practical implications of using infant versus adult parcellations, 548 

we tested the prediction of chronological age from the parcellated connectome and 549 

the test-retest reliability of the connectome using the validation dataset (BCP). We 550 

observed that the prediction accuracy increased with the number of parcels but 551 

Figure 5. Cluster validity for different adult and infant parcellations across other 
developmental stages. A) a neonate dataset eLABE (Birth), B) an older toddler 
dataset eLABE (Y3), C-E) a children dataset HBN, and D) a young adult dataset 
HCP. * p<.05 after FDR-correction 
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plateaued at around 300 parcels (Supplementary Figure 17A) regardless of adult or 552 

infant parcellations.  553 

The spatial distribution of the top 5% of edges with positive and negative 554 

correlations was similar across the best-performing infant (Tu (326)) and adult 555 

(Gordon (333)) parcellations (Supplementary Figure 17B-C). Medial-visual, motor, and 556 

medial parietal areas had the highest number of edges significantly correlated with 557 

age while the lateral frontal areas had the lowest number of edges significantly 558 

correlated with age (Supplementary 17D-E).  559 

In addition, we computed the test-retest reliability of FC using the Tu (326) and 560 

Gordon (333) parcellations on the BCP dataset. We found lower test-retest reliability 561 

(as indexed by ICC) in the motor areas and the lateral-medial prefrontal cortex using 562 

both parcellations (Supplementary Figure 18).  563 

 564 

Community Assignment of Parcels in to Networks 565 

The interactions between the cortical areas form large-scale functional 566 

networks or communities (Power et al., 2011; Yeo et al., 2011). We obtained data-567 

driven community assignments using the Tu (326) parcels as the nodes in a graph 568 

and optimized for reliable networks that were present across densities (Supplementary 569 

Video). Contrary to the fragmented anterior and posterior parts of the default network 570 

and fronto-parietal network observed in neonates in the same dataset (Sylvester et al., 571 

2022; Myers et al., 2024), at the age of two the anterior and posterior parts of those 572 

networks joined together at higher edge densities (Figure 6A), suggestive of increased 573 

long-range FC within the network from 0 to 2 years. We found that at lower edge 574 

densities, the default network divides into four local components (posterior default, 575 

inferior fronto-parietal, dorsomedial prefrontal cortex (PFC), and ventromedial PFC) 576 

instead of distributed components (Andrews-Hanna et al., 2010; Yeo et al., 2011; 577 

Gordon et al., 2020), suggestive of more localized FC distribution in 2-year-olds 578 

compared to adults. Similarly, the fronto-parietal network can also separated into 579 

posterior fronto-parietal, lateral PFC, and anterior PFC at lower edge densities (Figure 580 

6B). The visual network can be separated into primary visual and visual association, 581 

similar to adults. The visual association network here has sometimes been described 582 

as a component of the dorsal attention network (Yeo et al., 2011; Du et al., 2024). To 583 

illustrate the change in long-range FC strengths across neonates, 2-year-olds, and 584 
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adults, we visualized the raw connectivity seed maps from different components of the 585 

canonical default network (Supplementary Figure 19). 586 

Discussion 587 

 588 

Boundary Consistency in 2-year-olds is stronger on the Sensorimotor end than 589 

on the Association end 590 

 We observed that area boundaries on the sensorimotor end of the 591 

sensorimotor-association hierarchy tend to be more consistent across subject 592 

samples. This observation could be attributed to two factors: 1) interindividual 593 

variability was lower in sensorimotor systems (Mueller et al., 2013; Gratton et al., 2018; 594 

Kong et al., 2019; Li et al., 2019; Sydnor et al., 2021), or 2) some borders in the 595 

sensorimotor systems were sharper, as seen in macaque monkeys (Lewis and Van 596 

Essen, 2000).  597 

 598 

Area Boundary Maps in 2-year-olds Resembled Adult Area Boundary Maps More 599 

than Neonate Area Boundary Maps 600 

 

Figure 6. Assigned community identities for each parcel. A) Consensus community 
assignment for 12 networks. B) Finer division of 19 networks. Acronyms: PFC = 
Prefrontal Cortex, SM = Somatomotor. 
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Prior literature has described the mechanism of cortical arealization across 601 

development as a process that involved the formation of morphogen gradients driven 602 

by genetic factors, as well as the activity-dependent refinement of sharp boundaries 603 

(Cadwell et al., 2019) influenced by thalamocortical inputs (O’Leary, Chou and Sahara, 604 

2007). Consistent with this view, our current study showed that the putative cortical 605 

areas as defined by FC in 2-year-olds were more similar to those in adults than those 606 

in neonates. These results suggested that there has been substantial development of 607 

area boundaries in early infancy, after which the rate of change slowed down. Another 608 

group has found relatively low across-age variability in the boundary maps across 3 609 

months to 24 months, with a multipeak fluctuation in across-age variability (Wang et 610 

al., 2023). It might be possible that the most substantial refinement of area boundaries 611 

in neonates took place in the first 3 months. Coincidentally, surface area continues to 612 

expand dramatically from 29 post-menstrual weeks but decreased in the 613 

developmental pace after 3 months (Bethlehem et al., 2022; Huang et al., 2022), 614 

further supporting this idea. 615 

Of note, area boundaries from the 2-year-olds did exhibit a higher similarity to 616 

those  from the neonates than a rotated null model. This observation suggested that 617 

there exists some established organization of area boundaries from birth, consistent 618 

with the proposed intrinsic proto-mapping of cortical area organizations driven by 619 

morphogens in embryonic development (O’Leary, Chou and Sahara, 2007; Tau and 620 

Peterson, 2010; Smyser, Snyder and Neil, 2011; Cadwell et al., 2019).  621 

 622 

A Coarse-grained Area Parcellation was Optimized for Biological Validity and 623 

Utility 624 

Our level of resolution at 326 parcels is comparable to most other adult and 625 

infant parcellations. In addition, it is close to the prior estimation of 300-400 cortical 626 

areas in humans  (Van Essen et al., 2012). Since the resolution has non-negligible 627 

effect on measurements such as global graph metrics (Zalesky et al., 2010; Arslan et 628 

al., 2018), we believe that keeping the number of parcels similar with popular adult 629 

parcellations makes comparison across infants and adults more fair. While another 630 

fine-grained infant parcellation exists (Wang et al., 2023), our results suggested that 631 

its generalizability to alternative processing or datasets is low as demonstrated by our 632 

results. Furthermore, multiple lines of evidence including our analyses suggested that 633 

the prediction of demographic and behavioral variables in adults and infants plateau 634 

with ~300 parcels (Arslan et al., 2018; Kong et al., 2023) and that a clear 635 

correspondence between the FC gradients and the Mesulam hierarchy can be seen 636 

regardless of parcellation scheme with more than 300 nodes (Vos de Wael et al., 637 

2020). Therefore, having a fine-grained area parcellation may not necessarily provide 638 

a practical advantage in analyses such as examining graph properties of the brain 639 

network or multivariate age prediction.  640 

On the other hand, we recognize that different levels of resolution may be useful 641 

in different applications (Zalesky et al., 2010; Schaefer et al., 2018). Therefore, we 642 

also released the parcellation at multiple resolutions with the caveat that our estimates 643 

of the higher-resolution area parcellations might not be as generalizable across 644 

individuals and datasets and should be used with caution. 645 

 646 

Cluster Validity of Adult Area Parcellations in Developmental Cohorts 647 

 We found that while the best-performing adult area parcellation (Gordon (333)) 648 

had a worse fit to the functional connectivity data in 0-3 year-olds than the best-649 

performing infant area parcellations, they still beat the random chance and suggested 650 
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some resemblance to adult area parcellation in neonates to 3-year-olds. For additional 651 

discussion regarding results in prior literature see Supplementary Materials. 652 

 653 

Using Adult instead of Infant Area Parcellations Lead to Qualitatively Similar 654 

Conclusions for Age Prediction and Test-retest Reliability 655 

We found that prediction accuracy of age increased with parcel number and 656 

plateaued around 300 parcels with no clear advantage of the shape and distribution 657 

of parcels, consistent with prior literature (Arslan et al., 2018; Kong et al., 2021). 658 

Another study found a marginal effect of atlas choice on the prediction of individual 659 

psychological and clinical traits and supported the use of data-driven than pre-defined 660 

parcellations (Dadi et al. 2019). However, this observation could potentially be 661 

attributed to the difference in the number of areas between the data-driven and pre-662 

defined parcellations.  663 

The spatial distribution of test-retest reliability of FC in the infant data was 664 

similar to that in adults (Tozzi et al., 2020), albeit numerically lower. This lower 665 

reliability could potentially be explained by a combination of the low amount of data (5 666 

min) used for test and retest, the difference in phase-encoding direction in the test and 667 

retest scans, and/or transitions between different stages of the sleep cycle in the infant 668 

data compared to awake adult scans (Mitra et al., 2017).  669 

While our limited explorations here added credence to conclusions from 670 

previous studies using adult parcellations (Kardan et al., 2022; Nielsen et al., 2022), 671 

this did not support the notion that the adult parcels were valid representations of the 672 

infant areas. 673 

 674 

Network Assignments in 2-year-olds Resembled Networks in Adults 675 

We were able to identify fragmented components of canonical adult functional 676 

systems consistent with the prior literature using similar techniques on participants in 677 

this age range (Eggebrecht et al., 2017; Kardan et al., 2022; Wang et al., 2023). 678 

Nevertheless, when weaker connectivity was included, network assignments in 2-679 

year-olds had similar topography to previously reported adult networks (Power et al., 680 

2011; Yeo et al., 2011; Gordon et al., 2016; Ji et al., 2019). This observation was 681 

consistent with prior studies suggested that long-range FC tended to develop later 682 

than short-range FC with age (Smyser et al., 2010; Smyser, Snyder and Neil, 2011; 683 

Spisák et al., 2014; Smyser and Neil, 2015; Thomason et al., 2015; Sylvester et al., 684 

2022).  685 

Despite the similarities to adult networks, we also found important differences 686 

in the network assignments in 2-year-olds. First, the temporal lobe remained largely 687 

segregated from the canonical default network unlike in adults. Additionally, the motor 688 

hand/foot system incorporated part of the inferior parietal lobule and posterior insula, 689 

which might suggest some extra plasticity that contributes to multisensory integration 690 

during development. This might be driven by the connectivity between inter-effector 691 

regions and control network (Gordon et al., 2023). Furthermore, the salience and 692 

cingulo-opercular networks were less differentiated from each other, and the cingulo-693 

opercular network was missing the component commonly observed at the cingulate 694 

cortex. 695 

It is important to note that the infomap community detection algorithm tends to 696 

find more localized clusters when only examining the strongest FC due to the stronger 697 

FC at short-distance, especially in developmental cohorts. We suspect that alternative 698 

methods which de-emphasizes the distance dependence of FC (Zamani Esfahlani et 699 

al., 2020; Sylvester et al., 2022) may retrieve communities more similar to the large-700 
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scale functional systems identified in adults (Petersen and Sporns, 2015). Instead of 701 

making a binary decision about whether the networks “connect” or “separate”, we 702 

believe that it is more important to note the performance of the algorithm across 703 

different edge densities and compare it to the adult network topography. Thus, we 704 

provide a 12-network model which largely resembles the definition of functional 705 

networks observed in adults, and also a 19-network model with a similar granularity to 706 

the functional networks defined in neonates with the same eLABE dataset (Myers et 707 

al., 2024) targeted at different uses. 708 

It is worth emphasizing that whether the network clusters we identified with 709 

functional connectivity corresponds to “functional systems” with specialized functional 710 

roles (Power et al., 2011; Yeo et al., 2011; Wig, 2017) remains an outstanding question. 711 

They are likely premature forms of the adult systems (Gao, Alcauter, Elton, et al., 2015; 712 

Gao, Alcauter, Smith, et al., 2015).The biological validity of the fragmented 713 

components we found will need to be validated with task neuroimaging data in 714 

infant/toddlers (Yates, Ellis and Turk-Browne, 2021; Yates et al., 2022) in future 715 

research. Researchers who use our network model should be fully aware of this 716 

limitation. 717 

 718 

Practical Recommendations on Using the Tu (326) and Alternative Parcellations 719 

While theoretically, the development of cortical areas may raise a challenge in 720 

finding a consistent parcellation that fits all ages, our results here suggested that our 721 

2-year-old parcellation Tu (326) generalized well to fit the FC patterns in 1-to-3-year-722 

olds. We also recognize that two alternative approaches would also be reasonable 723 

depending on the goal and motivation of the studies. 724 

1. Use a canonical adult parcellation map. Using the same parcellation map can 725 

ensure correspondence across age groups (Oishi, Chang and Huang, 2019). 726 

However, this method risks not having the best parcellation for each group and 727 

introducing noise in the data. Based on our current results, the use of an adult 728 

parcellation might be a reasonable choice with limited practical impact on 729 

analyses such as age prediction from parcellated connectome. 730 

2. Using individualized parcellations or functional embedding to find matching 731 

relationships. Several techniques exist to create individual parcellations based 732 

on a group-average parcellation prior (Chong et al., 2017; Li et al., 2017, 2019, 733 

2022; Zhao, Tang and Nie, 2020; Kong et al., 2021; Qiu et al., 2022), or to 734 

embed connectivity in a latent space to find correspondence across participants 735 

(Haxby et al., 2020; Nenning et al., 2020). Additionally, individualized 736 

parcellations can be created with highly-sampled individuals using precision 737 

functional imaging methods (Laumann et al., 2015; Gordon et al., 2017). 738 

 739 

Limitations and future directions 740 

The datasets used for area boundaries had minor differences in acquisition and 741 

processing (Supplementary Table 1), which could potentially impact the appearance 742 

of area boundaries. In addition, future studies should also investigate how much of the 743 

differences between neonate and their older-age counterparts could be attributed to 744 

the challenges in the registration of the neonate's brains due to their tissue properties 745 

and anatomical differences from the adult brain. Additionally, when testing the 746 

generalizability of parcellations to neonates, 2-year-olds and 3-year-olds, we used 747 

data from overlapping subjects from the eLABE longitudinal dataset, which might have 748 

provided a slight advantage to the Myers-Labonte (283) and Tu (326) parcellations. 749 
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In addition, while our parcellations described cortical area organization in 1-to-750 

3-year-olds, future parcellation atlases would benefit from the additional inclusion of 751 

subcortical and cerebellar structures. Moreover, the group atlas can be affected by 752 

multiple factors including acquisition, resolution, consistency across participants of 753 

functional organization within areas, the consistency of system organization between 754 

areas, and the consistency of anatomic organization (Shen et al., 2013). Future 755 

research with smaller voxels or a better T2* protocol to include signal to noise ratio 756 

may further improve the quality of the group parcellation. 757 

One additional confound is that the infant/toddler data were acquired during 758 

natural sleep, which has been shown to weaken long-range connectivity within 759 

canonical functional systems (Mitra et al., 2017). It is also known that the sleep 760 

architecture changes across developmental stages (Kahn et al., 1996), which may 761 

contribute to the reduced consistency of infant FC within and across individuals. 762 

Lastly, some of the area parcellations tested were originally generated in 763 

volumetric space. However, all datasets used in testing the cluster validity were in the 764 

surface space. For convenience, we transformed the area parcellations in the 765 

volumetric space to a standard MNI space when necessary and then to the 32k_fs_LR 766 

surface mesh using previously described procedures (Arslan et al., 2018). This 767 

transformation was imperfect and could have unintentionally favored surface 768 

parcellations over volumetric parcellations.  769 

 770 

Conclusion 771 

We developed FC gradient-based area parcellations of the neocortical surface 772 

for 2-year-olds to be used in future studies of FC in this age range. We found that area 773 

boundaries in 2-year-olds were more similar to those in adults than those in neonates. 774 

Despite multiple similar efforts in infant-specific area parcellation, our area 775 

parcellations achieved the best cluster validity among all parcellations tested on the 776 

1-to-3-year-olds across two independent datasets. We also found that the best 777 

performing adult area parcellations provided a better than chance fit to the FC in 1-3-778 

year-olds infant parcellations. Our results lent credence to conclusions from prior work 779 

using an adult parcellation for 1-to-3-year-olds, and supported the hypothesis that the 780 

most substantial refinement of cortical areas occured in the first few months of life. 781 

Our work not only shed new insights into the neurobiology of cortical arealization in 782 

humans but also offered practical guidelines for using cortical parcellation for 783 

neuroimaging studies in developmental cohorts.  784 

 785 

Data and Code Availability 786 

 Baby Connectome Project data are available for download at the NIH Data 787 

Repository website: https://nda.nih.gov/edit_collection.html?id=2848. Early Life 788 

Adversity, Biological Embedding (eLABE) data are available through request at 789 

https://eedp.wustl.edu/research/elabe-study/. 790 

All analyses, unless otherwise stated, were implemented with custom MATLAB 791 

scripts in the R2020b release. All visualizations were created with custom MATLAB 792 

scripts or Connectome Workbench Version 1.5.0.  793 

The code for the generation and evaluation of parcellations are adapted from 794 

the MSCcodebase. All parcellations used in CIFTI format are also available to 795 

download here. 796 

 797 
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