
METHODS ARTICLE
published: 10 July 2014

doi: 10.3389/fninf.2014.00063

A flexible, interactive software tool for fitting the
parameters of neuronal models
Péter Friedrich1,2, Michael Vella3, Attila I. Gulyás1, Tamás F. Freund1,2 and Szabolcs Káli 1,2*

1 Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
2 Faculty of Information Technology, Péter Pázmány Catholic University, Budapest, Hungary
3 Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

Edited by:

Eilif Benjamin Muller, Blue Brain
Project, EPFL, Switzerland

Reviewed by:

Moritz Helias, Jülich Research
Centre and JARA, Germany
Werner Van Geit, EPFL, Switzerland

*Correspondence:

Szabolcs Káli, Laboratory of Cerebral
Cortex Research, Institute of
Experimental Medicine, Hungarian
Academy of Sciences, Szigony u.
43., Budapest H-1083, Hungary
e-mail: kali@koki.hu

The construction of biologically relevant neuronal models as well as model-based analysis
of experimental data often requires the simultaneous fitting of multiple model parameters,
so that the behavior of the model in a certain paradigm matches (as closely as possible) the
corresponding output of a real neuron according to some predefined criterion. Although
the task of model optimization is often computationally hard, and the quality of the results
depends heavily on technical issues such as the appropriate choice (and implementation)
of cost functions and optimization algorithms, no existing program provides access to
the best available methods while also guiding the user through the process effectively.
Our software, called Optimizer, implements a modular and extensible framework for
the optimization of neuronal models, and also features a graphical interface which
makes it easy for even non-expert users to handle many commonly occurring scenarios.
Meanwhile, educated users can extend the capabilities of the program and customize
it according to their needs with relatively little effort. Optimizer has been developed in
Python, takes advantage of open-source Python modules for nonlinear optimization, and
interfaces directly with the NEURON simulator to run the models. Other simulators are
supported through an external interface. We have tested the program on several different
types of problems of varying complexity, using different model classes. As targets,
we used simulated traces from the same or a more complex model class, as well as
experimental data. We successfully used Optimizer to determine passive parameters and
conductance densities in compartmental models, and to fit simple (adaptive exponential
integrate-and-fire) neuronal models to complex biological data. Our detailed comparisons
show that Optimizer can handle a wider range of problems, and delivers equally good or
better performance than any other existing neuronal model fitting tool.

Keywords: neuronal modeling, python, software, simulation, model fitting, parameter optimization, graphical user

interface

INTRODUCTION
Currently available experimental data make it possible to create
increasingly complex multi-compartmental conductance-based
neuron models, which have the potential to imitate the behav-
ior of real neurons with great accuracy (De Schutter and Bower,
1994a,b; Poirazi et al., 2003; Hay et al., 2011). However, these
models have many parameters, which are often poorly (or, at
best, indirectly) constrained by the available data. One alterna-
tive to using detailed biophysical models, which is often used
in network simulations, is to utilize much simpler (e.g., reduced
compartmental or integrate-and-fire type) model neurons. These
have fewer parameters; however, the remaining parameters are
often not directly related to the underlying biophysics, and need
to be set such that the behavior of the model cell best approx-
imates that of the real neuron (Naud et al., 2008; Gerstner and
Naud, 2009; Rossant et al., 2011). In most cases, the relation-
ship between the values of the parameters and the output of the
model is nonlinear (for an interesting exception, see Huys et al.,

2006) and often rather complex. Accordingly, the task of find-
ing the optimal parameter values is highly non-trivial, and has
been the subject of extensive research (Vanier and Bower, 1999;
Keren et al., 2005; Huys et al., 2006; Druckmann et al., 2007, 2008;
Gurkiewicz and Korngreen, 2007; Van Geit et al., 2007, 2008;
Huys and Paninski, 2009; Rossant et al., 2010, 2011; Eichner and
Borst, 2011; Hendrickson et al., 2011; Bahl et al., 2012; Svensson
et al., 2012; Vavoulis et al., 2012).

These studies have proposed a variety of methods to find
the best-fitting model; the main differences concern the way in
which the output of the model is compared to the target data
(the cost function), and the procedure used to come up with
new candidate solutions (the optimization algorithm). There are
also several existing software solutions to this problem; notably,
the general-purpose neural simulators NEURON (Carnevale and
Hines, 2006) and GENESIS (Bower and Beeman, 1998) both
offer some built-in tools for parameter search (Vanier and Bower,
1999), and some programs [such as Neurofitter (Van Geit et al.,

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00063/abstract
http://community.frontiersin.org/people/u/126841
http://community.frontiersin.org/people/u/26800
http://community.frontiersin.org/people/u/1961
http://community.frontiersin.org/people/u/3305
http://community.frontiersin.org/people/u/49599
mailto:kali@koki.hu
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

2007) and Neurotune1] have been specifically developed for this
purpose. However, most of these tools offer a very limited choice
of cost functions and/or optimization algorithms (and adding
new ones is typically not straightforward), and thus it becomes
difficult to apply them to new scenarios and to take advantage of
new developments. In addition, few of these existing tools offer an
intuitive user interface which would guide the casual user through
the steps of model optimization, although an increasing num-
ber of laboratories now use computer simulations to complement
experimental approaches, and employ model-based techniques to
extract relevant variables from their data, which typically require
the fitting of multiple model parameters.

In this article, we describe a new software tool called
Optimizer2, which attempts to address all of these issues. It offers
an intuitive graphical user interface (GUI), which handles all of
the main tasks involved in model optimization, and gives the user
access to a variety of commonly used cost functions and optimiza-
tion algorithms. At the same time, it is straightforward to extend
the capabilities of the program in many different ways due to its
modular design, which allows more advanced users to adapt the
software to their particular needs.

DESIGN GOALS AND PRINCIPLES
The full specification of a model optimization problem requires
one to provide the following pieces of information: (1) the form
of the model, both at an abstract level (e.g., multi-compartmental
model with a given morphology and channel specifications, or
integrate-and-fire model of a given type) and as a specific imple-
mentation (e.g., a set of .hoc and .mod files in NEURON); (2) the
set of tunable parameters in the model (along with their possi-
ble ranges); (3) the simulation protocol, i.e., the way the model
should be stimulated and the variables to be recorded; (4) the
target data (from experiments, or sometimes from a different
model); (5) the cost function, i.e., a measure of how different the
output of a particular simulated model is from the target data
(this may be as simple as the sum of squared error over corre-
sponding data points, or may involve the extraction and com-
parison of various features from the simulations and the target
data). If there are multiple error measures (objectives), one pos-
sible approach, called single-objective optimization, is to define
a single combined cost function by appropriately weighting the
different objectives. Another approach, known as multi-objective
optimization, is to treat each error measure separately, and look
for a whole set of optimal solutions which represent different
trade-offs between the objectives. Once the problem has been
fully specified, the last critical ingredient is the algorithm which
attempts to solve the model optimization problem by finding
the set of tunable parameters which minimizes the cost func-
tion, i.e., the parameters for which the output of the model is
as similar as possible to the target data. For relatively simple
problems, several common algorithms will be able to find the
single best set of parameters to a high degree of precision in a
relatively short time; for very complex problems, no algorithm

1http://optimal-neuron.readthedocs.org/en/latest/
2Software available at https://github.com/vellamike/optimizer, online docu-
mentation at http://optimizer.readthedocs.org/

can be guaranteed to find this global optimum in a reasonable
amount of time. In these latter cases, different optimization algo-
rithms use qualitatively different strategies to come up with good
solutions (which may or may not be the globally optimal one).
Local algorithms (such as gradient descent) find the best solu-
tion in a limited part of the parameter space (typically defined
by the initial set of parameters from which the search begins);
global algorithms (such as evolutionary algorithms and simu-
lated annealing) employ various heuristic strategies to explore
the parameter space more extensively, while taking advantage of
intermediate results to come up with new promising candidate
solutions.

All of the components above may have almost infinitely many
variants, so it may seem hopeless to create a simple user interface
which allows one to specify such a large variety of problems effec-
tively. However, several facts help alleviate this problem to some
extent. First, a large percentage of the use cases that occur in prac-
tice are covered by a limited set of components; for instance, many
electrophysiological experiments apply either current clamp or
voltage clamp configurations with step stimuli while recording
the membrane potential or holding current, respectively. These
common situations can be managed effectively from a GUI.
Second, for the models themselves, which show the largest pos-
sible variability, there are widely used structured descriptions,
partly in generic formats [such as NeuroML (Gleeson et al., 2010)
and NineML3], and partly in the form of model definitions in
the languages of neural simulators (such as NEURON’s .hoc and
.mod files). These descriptions may be read and manipulated by
the model optimization software, and also directly lead to code
which may be executed by the simulators. Finally, the nature of
the task is modular; the same ingredients may be combined in
many different ways so that it becomes possible, for example,
to implement a new cost function and then use it in combina-
tion with existing models, simulation protocols, and optimization
algorithms.

Following these considerations, we set two (apparently con-
flicting) goals for our implementation of model optimization.
On one hand, we wanted our solution to be as flexible as pos-
sible, supporting a wide and easily extensible range of model
types, modeling software, simulation protocols, cost functions,
and optimization algorithms. On the other hand, we wanted to
provide a simple and intuitive interface which would guide the
user through a variety of commonly occurring model optimiza-
tion scenarios, without requiring programming expertise or deep
knowledge of the optimization process.

In order to attain both of these goals, we decided to imple-
ment an essentially two-level design. The lower level (back end)
would define the components of the model optimization work-
flow as described above, as well as the ways these must interact
with each other to solve the task. This would be implemented in a
highly modular fashion to allow the independent replacement of
individual elements as well as the straightforward addition of new
elements. The higher level (front end) would be implemented pri-
marily as a GUI (although a command-line interface would also
be provided to allow non-interactive processing). The front ends

3http://software.incf.org/software/nineml

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 2

http://optimal-neuron.readthedocs.org/en/latest/
https://github.com/vellamike/optimizer
http://optimizer.readthedocs.org/
http://software.incf.org/software/nineml
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

would allow the user to select from the components provided by
the back end, and to set all relevant options and parameters within
these components. In addition, the GUI would also provide some
basic tools for the inspection of data and the results of model
optimization.

IMPLEMENTATION
The Python programing language was the obvious choice for the
implementation of the software. First, Python offers the necessary
power and flexibility to handle the task. Second, the open source
modules offered by Python already include solutions to many
important sub-tasks, such as data handling, visualization, and
non-linear optimization. Almost all of the commonly used neural
simulation packages now have a Python interface (Eppler et al.,
2008; Goodman and Brette, 2009; Hines et al., 2009; Cornelis
et al., 2012). This makes Python an optimal tool for the creation
of the aforementioned framework.

The software can interface directly with NEURON to read,
modify, and run models described in NEURON’s own format.
Other simulators are supported indirectly as “black boxes” which
communicate with Optimizer through files, and return sim-
ulation results based on parameters generated by Optimizer.
Optimization itself can be carried out using a selection of (local
and global) algorithms from the inspyred4 and scipy5 pack-
ages. Most cost functions are implemented within Optimizer,
except for Phase Plane Trajectory Density (PPTD), which relies

4http://inspyred.github.io/
5http://www.scipy.org/

on the pyelectro package6. The GUI was implemented using
the wxPython package7, a wrapper for the C++ GUI toolkit
wxWidgets.

The program has a modular structure, and each module han-
dles distinct tasks (Figure 1). The modules are the following:

(1) Core module:
This is the main module for the software. It interacts with all
the other modules, and performs the necessary steps of model
optimization via the methods of the coreModule:

(a) reading input data
(b) loading the model file and selecting the parameters subject

to optimization
(c) setting up the stimulation and recording protocol
(d) selecting a fitness function (or a weighted combination)
(e) selecting the algorithm with different parameters and

performing the optimization
(f) storing the configuration file and saving the results of

optimization in various formats

(2) traceHandler module:
Contains the main data holder class, called Data, which
encapsulates the Trace class which is responsible for the han-
dling of an independent trace set. The Data class is also
responsible for reading the input data files appropriately. The
traceHandler module also contains functions performing

6http://pyelectro.readthedocs.org/
7http://www.wxpython.org/

FIGURE 1 | Schematic representation of the design of the software, showing the main components of Optimizer (within the blue shaded area),

interactions among its modules and with critical external modules.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 3

http://inspyred.github.io/
http://www.scipy.org/
http://pyelectro.readthedocs.org/
http://www.wxpython.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

subtasks related to data handling, such as unit conversion.
Currently the Data class can handle only one set of data of
identical types (e.g., a series of voltage traces of given length),
but we are planning to support multiple sets of data with
different types (e.g., voltage traces plus explicit spike times)
as well as abstract inputs (such as the values of extracted
features).

(3) modelHandler module:
Contains two main classes which are responsible for handling
neuronal models. The first one, called modelHandlerNeuron,
is responsible for the built-in support of the NEURON envi-
ronment, and handles the various stimulation protocols and
recording methods which are directly accessible for models
implemented in NEURON, as well as parameter assign-
ment and other model-related tasks. The second class, called
externalHandler, is responsible for the handling of external,
user-specified simulators.

(4) optionHandler module:
A simple container class to hold the specified settings. This
class can also read and write a configuration file.

(5) optimizerHandler module:
This module contains the implementations of the differ-
ent optimization algorithms as separate classes, along with
assorted auxiliary functions such as parameter normaliza-
tion, boundary selection, etc.

The user can extend the list of algorithms by implement-
ing a new class within this module and adding a single line
to the Core module. To make the new algorithm available
via the GUI one must add the name of the algorithm to the
appropriate list.

Five different algorithms are currently implemented,
including a customized evolutionary algorithm and a simple
simulated annealing algorithm from the inspyred package, as
well as the scipy implementations of simulated annealing, the
downhill simplex method, and the L-BFGS-B algorithm (see
next section for details).

(6) fitnessFunctions module:
Contains the class responsible for implementing and using
the different cost functions (fitness functions). The module
also contains a class to handle spike objects, which are used
in various cost functions. To extend the list of available func-
tions the user can implement his/her own function here as a
class method. To make the new function available, the user
must add the alias name-function object pair to the list of
cost functions, and add the alias name for the function which
will appear in the GUI to the Core module.

The currently available cost functions are the following
(see next section for detailed descriptions): mean squared
error, mean squared error excluding spikes, spike count, spike
count during stimulus, ISI differences, latency to first spike,
AP overshoot, AP width, AHP depth, derivative difference,
PPTD. The PPTD method is available through the exter-
nal pyelectro module, while the rest are implemented by
Optimizer.

As the program supports arbitrary combinations of these
cost functions, the main method in this class is the combine-
Features function, which creates the appropriate weighted

combination of the given fitness functions, and calculates
the accumulated fitness value over the corresponding pairs
of traces in the simulated and target data sets.

PROGRAM CAPABILITIES AND BASIC USAGE
Depending on the exact needs and degree of expertise of the user,
the software can be used at three different levels of complexity. At
the simplest level the user can perform optimization tasks using
the built-in tools of the graphical interface or run the optimiza-
tion from the command line using a configuration file. At the next
level the user can extend various capabilities of the GUI by using
external files (see below). At the most advanced level the user can
construct his/her own optimization framework using the build-
ing blocks provided by the package, or extend its functionality by
adding new algorithms or fitness functions. To support this last
level, we concentrated on structural simplicity while creating the
modules.

As we briefly mentioned earlier, model implementations for
certain simulators (currently NEURON) can be handled, inter-
preted, and modified internally by Optimizer (“internal sim-
ulators”), while models designed for other simulators can be
optimized as “black boxes” (i.e., only looking at their inputs
and outputs), and only if they provide their own interface to
Optimizer (by taking inputs and producing outputs in the format
expected by Optimizer; see Appendix). These “external simu-
lators” must take care of setting up the simulations (including
the model itself, but also the stimulation and recording pro-
tocols), but they can still take advantage of the variety of cost
functions and powerful optimization algorithms provided by
Optimizer. Internal simulators are supported at a much higher
level; in particular, their internal parameters can be viewed
and selected for optimization, and several common simula-
tion protocols (such as current and voltage clamp recordings
using step stimuli) can be set up directly from the Optimizer
GUI.

There are two parts of the specification of the model opti-
mization problem where several commonly occurring scenarios
are difficult to capture by a few discrete choices and continu-
ous parameters, and are thus inconvenient to control entirely
from a GUI. First, while the GUI allows the user to select for
optimization any combination of the parameters of a NEURON
model, this does not cover the frequent cases where multiple
model parameters (at the level of the actual implementation) are
controlled by a single (or a few) abstract parameters, or there
are other kinds of joint constraints on the model parameters.
For example, when we wish to determine the passive biophysical
properties of a realistic multi-compartmental model based on the
measured response to injected current, we normally do not want
to consider the membrane resistance values of all the dendritic
sections as independent parameters (which would lead to a very
high number of free parameters and an intractable optimization
problem); instead, we take as the free parameter the value of the
specific membrane resistance, and calculate the corresponding
values of the actual membrane resistance (or leak conductance)
in each part of the cell based on the measured geometry. In
order to allow the distinction between the (potentially abstract)
parameters set by the optimization algorithms and the actual

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

parameters of a particular model implementation, and to allow
the implementation of an arbitrary mapping between the two, we
introduced “user functions” into our model optimization frame-
work. These user functions define the (abstract) parameters to be
optimized, and also define (using NEURON’s Python interface)
how these abstract parameters should control the internal param-
eters of the NEURON simulation (see Appendix for details). This
solution also makes it possible to optimize parameters of the sim-
ulation which are not strictly part of the model neuron (such as
the properties of incoming synaptic connections, as demonstrated
by one of the use cases described below).

Second, while current and voltage steps are fairly common
ways of stimulating a neuron, and their characteristics are easily
specified by a handful of parameters which are straightforward
to control from a GUI or a configuration file, many other stim-
ulation protocols are also widely used in both experiments and
simulations to characterize the behavior of neurons in different
ways. Some of these protocols (such as sine wave and noise
stimulation) will probably be added to the GUI in the future.
Meanwhile, we opted for the more generic approach of allowing
input whose time dependence is given explicitly in an external file
(see Appendix). We demonstrate the utility of this approach in
one of the use cases described below, where input to the neuron
consisted of two consecutive current pulses of different duration
and amplitude.

One of the most critical choices in setting up a model opti-
mization problem involves the cost function (or fitness function),
as this choice (along with the simulation protocol) determines
the sense in which the behavior of the optimized model neuron
should be close to that of the target neuron. The importance of
this choice is also reflected in the large variety of different cost
functions which have been proposed, and we aimed to provide
access to many of these within Optimizer. The software currently
supports the following cost functions (full details can be found in
the package reference part of the online documentation):

Mean squared error: the mean squared difference of the two
traces in a point by point manner, normalized by the squared
range of the experimental data.
Mean squared error excluding spikes: the same as above, but
compares only the subthreshold part of both traces, excluding
parts of both traces in time windows of a given width around
each spike.
Derivative difference: the normalized average squared differ-
ence of the temporal derivatives of the given traces.
Spike count: the absolute difference in the number of spikes
in the entire trace, normalized by the sum of the two spike
counts (plus one, to properly handle the case with no spikes)
Spike count during stimulus: the same as above, but only
takes into account spikes which occur during the time of the
stimulus.
ISI differences: the sum of the absolute differences between
the corresponding inter-spike intervals in the two traces,
normalized by the length of the traces.
Latency to 1st spike: the squared difference in the latency of
the first spikes, normalized by the squared length of the traces.
AP overshoot: the average squared difference of action
potential amplitudes, normalized by the squared maximal AP

amplitude of the experimental trace. AP amplitude is defined
as the difference of the AP peak voltage and the AP threshold.
AP width: the average squared difference of the width of APs,
normalized by the squared average width of experimental
APs.
AHP depth: the squared average of the differences in after-
hyperpolarization depth, normalized by the squared range of
subthreshold potential in the target trace.
PPTD: Compares the two traces in the phase plane using the
method proposed by Van Geit et al. (2007), as implemented
by the pptd_error function from the pyelectro package.

Many of these cost functions have associated parameters which
may be set by the user (although sensible default values are also
provided). For instance, several cost functions require the detec-
tion of spikes, and these allow the setting of the action potential
detection threshold, while the subthreshold version of the mean
squared error cost function also allows setting of the width of the
exclusion window around each spike.

Optimizer also supports arbitrary linear combinations of these
cost functions. In order to ensure that the weights given actu-
ally correspond to the relative importance of the component
cost functions in determining the final cost value, all individ-
ual cost functions are normalized in appropriate ways such that
their possible values are (at least approximately) in the 0–1 range,
as described above. When the input data and the corresponding
simulation results consist of multiple traces, the cost functions
return the sum of the cost values over the corresponding pairs of
traces.

As the implemented functions all use pointwise comparisons
at some stage of the calculations, we had to guarantee that the
appropriate points are compared. This becomes a problem when
the user wants to compare two traces sampled at different fre-
quencies (these traces would have different numbers of points but
correspond to the same length of time). We solved this issue by
applying the following rules:

If the sampling frequency of the input is higher than the
model’s sampling frequency, then the simulation time step is
adjusted appropriately. If the sampling frequency of the input
is lower than the model’s sampling rate, then the input is re-
sampled at the model’s sampling frequency using linear interpo-
lation. Note that, after re-sampling, the program considers the
re-sampled trace to be the input trace, and if the original data
are required for any reason, they must be reloaded.

Although a very large selection of algorithms have been pro-
posed for the solution of nonlinear optimization problems, we
decided to focus (at least initially) on methods which have proved
to be efficient for neuronal model fitting. In particular, both evo-
lutionary (genetic) algorithms and simulated annealing methods
have been used successfully to fit models with up to tens of param-
eters (Vanier and Bower, 1999), so we included both of them in
the list of supported optimization algorithms. In fact, as different
implementations can heavily affect performance, we included two
different implementations of the simulated annealing algorithm
(one from the inspyred and another from the scipy package). In
addition to these global optimization methods, we also included
two options for local optimization: the classic downhill simplex
method, and the L-BFGS-B algorithm, which is considered to be

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

one of the state-of-the-art local methods (Byrd et al., 1995). We
found that all the problems we have considered could be solved
efficiently using one or more of these methods; however, the pro-
gram can also be easily extended with additional algorithms. As
several algorithms work best when all the parameters to be opti-
mized are of similar magnitude, while the actual parameters may
have very different magnitudes, we run the algorithms with nor-
malized parameters (0–1) and pass the re-normalized values to
the simulator. By default, the algorithms start from a random
point or set of points (within the specified boundaries), but the
user can select a specific starting point, which will be the initial
point of the algorithm or will be part of the initial set of points.
The optimization algorithms currently supported by Optimizer
are the following:

GLOBAL ALGORITHMS
Evolutionary algorithm
Minimizes the error function using a customized evolutionary
algorithm, which uses generational replacement with weak elitism
(so that the best solution is always retained) and Gaussian muta-
tion in combination with blend crossover (see the documentation
of the inspyred package for details). The size of the population
(which may be set by the user, and defaults to 100) is constant
throughout the process. The mutation rate can also be specified,
with a default value of 0.25.

Simulated annealing 1
Uses the framework of evolutionary computation (as imple-
mented by the inspyred package with simulated annealing
replacement). The parameters which can be adjusted by the
user include the number of generations, the rate and standard
deviation of Gaussian mutation, the initial temperature and the
cooling rate.

Simulated annealing 2
Uses a canonical simulated annealing algorithm (Kirkpatrick
et al., 1983) (as implemented in scipy). Adjustable parameters
include the number of generations, the cooling schedule, the ini-
tial and final temperature, the dwell time, the mutation rate, and
the error tolerance.

LOCAL ALGORITHMS
Downhill simplex method
Uses the Nelder-Mead simplex algorithm (Nelder and Mead,
1965) to find a local minimum of the cost function. The
adjustable parameters are the maximum number of iterations,
and independent tolerance limits for the input vector and the
value of the cost function.

L-BFGS-B
Uses the limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm with bound constraints (L-BFGS-B) (Byrd et al., 1995)
to minimize the cost function. The maximum number of itera-
tions and the target accuracy can be set by the user.

USAGE OF THE GRAPHICAL INTERFACE
As briefly discussed above, all the basic functionality of Optimizer,
along with many of its more advanced features, can be accessed

conveniently from a GUI. The GUI consists of seven so-called lay-
ers, which are responsible for guiding the user through the steps
of the optimization process. A detailed guide to the GUI, with
screenshots and explanations of all of its components, is avail-
able online from the documentation page of Optimizer8, and is
also included with the software itself, so only a brief summary
will be provided here. The graphical interface can be started from
the command prompt with the line:

python optimizer.py -g
Once the program has started, the first layer will appear, where

the user can select the file containing the input trace(s). The user
must specify the path to this file, and the working directory (base
directory) where the output of the program will be written. In
addition, the user must provide the type and basic characteris-
tics of the trace set. After loading the selected file, the traces are
listed in a tree display, and their successful loading can be verified
in a plot which displays all the traces concatenated (concatena-
tion is performed only for displaying purposes, and the traces are
otherwise handled separately).

On the second layer the user can specify the simulator (cur-
rently NEURON or “external,” see above). With NEURON as the
simulator, the model can be loaded simply after selecting the main
.hoc file as the model file; if the model requires .mod files which
reside in a different directory, the location of this folder must also
be provided. The model file should contain only the specification
of the neuron and the necessary mechanisms. We note that, in the
current version of Optimizer, loading a model (.hoc file) whose
special mechanisms (compiled .mod files) cannot be found, leads
to a situation from which the program cannot recover the correct
model, and the software should be restarted.

Once the model is loaded successfully, the content of the model
will be displayed, and the user can select parameters by pick-
ing them in the list and pressing the “set” button. Removing a
parameter is done in a similar fashion (Figure 2).

As mentioned earlier, the functionality of the GUI can be
extended by using external files. The second layer also allows the
user to load or define the “user function” which defines a set of
abstract parameters to be optimized, and describes the mapping
from these abstract parameters to actual parameters of the model
implementation (in NEURON).

The next layer specifies the simulation protocol, and con-
tains the settings regarding stimulation and recording. The user
can select the stimulation protocol which can be either current
clamp or voltage clamp. The stimulus type can also be selected
(currently, either step protocol or custom waveform). If the step
protocol is selected, the properties of the step can be specified.
Multiple stimuli of different amplitudes can also be specified; via
the GUI, the user can provide up to 10 stimulus amplitudes. If
custom waveform is selected as stimulus type, the time course of
the stimulus can be loaded from an external file specified by the
user. Finally, the user must choose a section and a position inside
that section to stimulate the model.

In the second column of this layer, the parameters controlling
the simulation and the recording process can be given. The user
must give an initial voltage parameter, the length of the simulation

8http://optimizer.readthedocs.org/en/latest/

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 6

http://optimizer.readthedocs.org/en/latest/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

FIGURE 2 | Screenshot from the Optimizer GUI, showing the model selection and parameter selection interface.

and the integration time step (variable time step methods are not
supported yet). The user can select the parameter to be measured
(either current or voltage), the section and the position where the
measurement takes place.

The next layer is responsible for the selection of the cost func-
tion, or combination of cost functions with the desired weights.
Optimizer offers weight normalization with the press of a button,
but unnormalized values are accepted as well. The user can fine-
tune the behavior of the cost functions by giving parameters to
them (the value of the same parameter should be the same across
the functions).

On the next layer, the user can select the desired optimiza-
tion algorithm from a list and tune its parameters. The program
requires boundaries for all the parameters. The user can also
provide initial values for the parameters, which will be inter-
preted differently depending on the algorithm used. In the case
of local algorithms, the algorithm will start form the point spec-
ified. In the case of global algorithms, the set of values given will
be included in the initial set of parameters. At this point, the
model optimization problem is fully specified, and optimization
will start when the Run button is pressed.

After the program finished the optimization process, the result
can be viewed and compared to the target data in a graph. This
result is then saved into a text file, picture files in .png and .eps
formats, and into an HTML file. The text file contains the data
trace(s) obtained from the model by running the simulation with
the optimal parameters. The picture shows the target and the
resulting trace for visual comparison. The HTML file serves as
a report, as it contains the most important settings of the opti-
mization process as well as the resulting parameter values and
a plot of the target and result trace. The program also saves all
the settings required to reproduce the optimization process in a

configuration file in XML format, which can also be used to run
the optimization using the command-line interface (see below).

The last layer offers some additional tools to analyze the
results. Here, the software displays the basic statistics of the
last population of results. If one of the algorithms from the
inspyred package (such as the evolutionary algorithm or its
implementation of simulated annealing) was used, a generation
plot (which displays the change in the cost value from generation
to generation) and an allele plot are also available.

The final analytical tool offered by Optimizer is the grid plot
which evaluates and plots the cost function over a set of param-
eters, thus allowing the user to observe a part of the search space
(Figure 3). The parameter set is created by fixing every parameter
except one to their optimal values and allowing the remaining one
parameter to vary. By repeating this process for every parameter,
we obtain one-dimensional slices of the cost function around the
optimum. Ranges for the grid plot are initialized to the bound-
aries of the search space defined earlier, but they can be reset to
wider or narrower ranges (the latter can be useful to observe the
close proximity of the optimum), providing an insight into the
model’s parameter sensitivity.

USAGE OF THE COMMAND LINE INTERFACE
The command line interface can be started similarly to the GUI
(with a different option), but requires an additional argument,
the name of the configuration file. The program can be started by
typing:

python optimizer.py -c conf.xml
The configuration file must be an XML file, which contains the

settings for the optimization process in XML tags. Every option
has its own XML tag and the value between the tags must be in
the appropriate format for the software to recognize. This feature

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

FIGURE 3 | An example of the grid plot of Optimizer, showing one-dimensional slices of the error as a function of the parameters, in the vicinity of an

optimum found by the software.

was added to support systems where a graphical interface is not
needed or not available (the optimization must run without user
interaction).

As this interface is considered an auxiliary one, it currently has
no error detection implemented; e.g., a missing parameter will be
detected only during runtime. Thus we recommend that the user
generate the configuration file via the GUI by running a simple
optimization, and modify the resulting file where necessary.

USE CASES
We designed Optimizer to be able to handle a wide range of model
optimization tasks, and we have tested it on a large number of
different problems. Model optimization problems can differ in
many characteristics (including model type, tunable parameters,
simulation protocol, target data, and cost function), and can be
attacked using various optimization methods, as described earlier.
One important aspect of the problem that we have not discussed
is the source and nature of the target data. A traditional way
of testing a model optimization algorithm is to generate target
data from a model, and then consider some of the parameters to
be unknown and attempt to reconstruct their correct values by
optimizing the same type of model. This type of target data will
be referred to as surrogate data, and tests using surrogate data
are useful to debug software, and also to analyze the difficulty
of optimization tasks and the power of optimization algorithms.
However, it has been pointed out that tests using surrogate data
are very artificial in that an exact solution (a parameter com-
bination with zero error) is known to exist, and methods that
perform well on surrogate data do not necessarily do well on
real data (Druckmann et al., 2008). Therefore, we have tested
Optimizer using surrogate data, but also on problems where an
exact solution is unlikely to exist. This includes the case where
the target data were generated by a more complex model than the
one being optimized, and fitting is thus performed as a crucial
part of model simplification, and also the case where the target
data were recorded in a physiological experiment. Here we present

our results on a selection of five problems, chosen primarily to
showcase the diversity of tasks that Optimizer is able to solve,
but also to highlight the features of the software that enable us
to efficiently define and solve these problems. All of the examples
were run on standard desktop and laptop PCs running various
versions of Linux (for details, see the Installation section of the
online documentation). A full optimization run required from a
few minutes up to about 2 days, depending on the complexity
of the model, the number of iterations, and (in the case of the
evolutionary algorithm) the size of the population. All the files
required for an exact reproduction of these examples, as well as
the results of the optimization runs, have been deposited into the
public repository of the software. The simplest way to re-run one
of the examples involves using the XML file provided with the
command line interface described above.

1. Recovering the correct conductance densities (Na, K, leak) of a
single-compartment Hodgkin-Huxley model based on a single
(suprathreshold) step current injection.

We created in NEURON a single-compartment model contain-
ing the original Na+, K+, and leak conductances of the classical
Hodgkin-Huxley model, and set the diameter of the section to
10 µm (the length remained 100 µm, and all the passive parame-
ters and the conductance densities were unchanged). We injected
a step current (amplitude = 200 pA, delay = 200 ms, duration =
500 ms) into the soma of this model to create surrogate data (a
single 1000 ms long voltage trace). We then changed the densi-
ties of the three conductances to create variants of the original
model, and tried to find the parameters used for generating the
target trace with Optimizer’s genetic algorithm (Classical EO; 100
generations with 100 candidates per generation), using the com-
bination of the mean squared error (excluding spikes) and the
spike count error functions with equal (0.5) weights. The original
and recovered parameters are displayed in Table 2. The two traces
can be visually compared in Figure 4, which also shows how the

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

lowest value of the cost function changed across generations. It is
interesting to note that while the best-fitting trace found matches
the target data very well, the algorithm did not manage to recover
the exact values of the original parameters. This likely reflects
the fact that several different combinations of parameters result
in similar voltage traces in response to this current input. This
possibility was further investigated by repeating the optimization
process using different random seeds, which resulted in different
final parameters, but similarly good fits to the data. These findings
supported the conclusion that the conductance density parame-
ters of the Hodgkin-Huxley model are not uniquely identifiable
using this current injection protocol, but also confirmed that
Optimizer was consistently able to find parameter combinations
which provide good solutions to this optimization problem.

2. Recovering some basic synaptic parameters from simulated
voltage clamp recordings during synaptic stimulation in a
single-compartment model.

The target data consisted of the recorded clamp current
from a virtual voltage clamp electrode inserted into a single-
compartment model, which was essentially the same as the one

in Use case 1, and contained Hodgkin-Huxley-type Na+, K+, and
leak conductances plus a conductance-based synapse with a dou-
ble exponential time course (rise time = 0.3 ms, decay time =
3 ms, maximal conductance = 10 nS, delay = 2 ms). The model
neuron received through the synapse a spike train input, which
consisted of 4 spikes at regular 100 ms intervals. The task was to
recover the four parameters of the synaptic connection.

As we needed to set the parameters of the synapse and the con-
nection (NEURON’s NetCon object), and the heuristics used by
Optimizer to discover tunable parameters in NEURON models
automatically do not cover synaptic parameters (which belong
to objects other than the model neuron), we used a simple user
function to adjust the parameters. We used the built-in functions
of the Optimizer GUI to set up voltage clamp at a constant level
(−70 mV); one way to accomplish this is to use a step protocol in
voltage clamp with a single amplitude of −70 mV (and arbitrary
delay and duration), and an initial voltage of −70 mV.

Optimization was carried out using the mean squared error
cost function. Evolutionary optimization (Classical EO) for 100
generations with a population of 100 restored the original param-
eters with high precision (Table 3; Figure 5). In this case, starting
the program with different random seeds always resulted in

FIGURE 4 | The results of Optimizer on Use case 1 (fitting

conductance densities in the Hodgkin-Huxley model). (A)

Comparison of the original (surrogate) data (blue) and the best-fitting

trace (red). Further details of the spike shape are shown in Figure 9.
(B) Evolution of the lowest and median error value across generations
in the evolutionary algorithm.

FIGURE 5 | The results of Optimizer on Use case 2 (fitting synaptic parameters in voltage clamp). Figure layout and notation are similar to Figure 4; the
error plot in (B) also shows the average and worst fitness values for each generation.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

essentially the same final parameters and consistently low error
values.

3. Fitting the densities of somatic voltage-gated channels in
a simplified (6-compartment) model to approximate the
somatic voltage response of a morphologically and biophysi-
cally detailed (CA1 PC) model to a somatic current step, using
a combination of features.

The target data trace was obtained from the biophysically accu-
rate and morphologically detailed model of a hippocampal CA1
pyramidal cell (Káli and Freund, 2005) by stimulating the somatic
section with a 200 pA step current stimulus. The experiment
lasted for 1000 ms and the stimulus started at 200 ms and lasted
for 600 ms.

The structure of the simplified model was created before
the optimization step by clustering the branches of the detailed
model based on the amplitude of the response to subthreshold
current stimuli, and combining the branches within each clus-
ter into one compartment of the reduced model. The resulting
model had six compartments (one somatic, one basal dendritic,
and four corresponding to different parts of the apical dendritic
tree). Initial values of the densities of voltage-gated channels
in the simplified model were obtained by averaging the cor-
responding values in the detailed model. The somatic values
of the nine channel density parameters were then the subjects
of optimization, while dendritic conductance densities, passive
membrane characteristics, and geometric properties remained
fixed.

In this case we used a combination of six different cost func-
tions: mean squared error excluding spikes (with weight 0.2),
spike count (with weight 0.4), latency to first spike, AP ampli-
tude, AP width, and AHP depth (all four with weight 0.1). The
optimization algorithm was Classical EO, and in this case we
used 200 generations and 300 candidates per generation to allow
a better exploration of the relatively high-dimensional param-
eter space. The algorithm managed to find a reasonably good
solution to this difficult problem, closely matching all of the
optimized features (Figure 6; additional details are shown in
Figure 11).

4. Fitting the passive parameters of a morphologically detailed
CA1 pyramidal cell model to experimental data based on a
complex current clamp stimulus.

In this case we tried to fit the passive parameters of a morpho-
logically detailed passive model of a hippocampal CA1 pyramidal
cell to physiological data recorded from the same neuron (both
morphological and physiological data were kindly provided by
Miklós Szoboszlay and Zoltán Nusser). The cell was excited by
a short (3 ms, 500 pA) and then by a long (600 ms, 10 pA) cur-
rent pulse (separated by 300 ms) injected into the soma, which
is more complex than the simple step stimuli which can be
defined using the Optimizer GUI, so we had to use an external
stimulus file.

The parameters we were interested in were the specific capac-
itance and resistance of the membrane and the specific axial
resistance. Because we wanted to optimize the parameters cm,
Ra, and g_pas in every section of the NEURON model (and
also set the e_pas parameter to 0 everywhere in this example,
as the baseline voltage had been subtracted from the data), we
created a user function to set all the relevant local parameters
of the model based on the three global parameters which were
optimized.

This example demonstrates the importance of the extensi-
bility of the GUI using external files. We used mean squared
error as the cost function, and Classical EO; 100 generations
and 100 candidates per generation were sufficient to get a good
fit to the data (Figure 7; further details of the fit are shown in
Figure 12).

5. Optimizing the parameters of an abstract (AdExpIF) model to
fit the somatic voltage responses (including spikes) of a real
cell (CA3 PC) to multiple current step stimuli.

In this case we wanted to fit an adaptive exponential integrate-
and-fire model to four voltage traces obtained from a real
CA3 pyramidal cell. The recordings were 1100 ms long each
and the sampling frequency was 5 kHz. The stimulating cur-
rent amplitudes were 0.30, 0.35, 0.40, and 0.45 nA, respectively.
We then optimized the parameters of the model (capacitance,

FIGURE 6 | The results of Optimizer on Use case 3 (fitting voltage traces from a detailed compartmental model). Figure layout and notation are similar
to Figure 4.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

leak conductance, leak reversal potential, threshold voltage, reset
voltage, refractory period, steepness of exponential part of the
current-voltage relation, subthreshold adaptation conductance,
spike adaptation current, adaptation time constant—altogether
10 parameters). As the exponential integrate-and-fire model can
be numerically unstable for some combinations of parameters, we
had to apply some constraints to the parameters (for example:
the spike detection threshold was equal to the spike threshold for
exponential calculations plus five times the steepness of exponen-
tial approach to threshold). To do this, we created a user-defined
function which was loaded by the GUI. We used the combination
of the spike count, mean squared error (excluding spikes), latency
to first spike, and ISI difference features (which are all meaningful
in the context of integrate-and-fire models) with equal weights as
the error function, and obtained our results once again using the
Classical EO algorithm with 100 generations and 500 candidates
per generation (Figure 8). While the resulting model captures the
spiking of the neuron relatively well, it clearly cannot deal with
the complexities of the subthreshold voltage trace (which is likely
due mainly to limitations of the model class itself rather than the
fitting process).

COMPARISONS WITH OTHER MODEL OPTIMIZATION TOOLS
FEATURE COMPARISONS
Existing publicly available tools for the optimization of neuronal
models include NEURON, GENESIS, and Neurofitter. We will
now briefly discuss the merits and deficiencies of each of these
solutions in comparison to our software.

NEURON features the only GUI-based solution9 besides ours,
and integrates fully with the most commonly used simulator
today. It also includes many useful features, such as the ability
to combine results from an arbitrary set of simulations, and to
define several regions of interest under visual guidance, which are
not yet available in Optimizer. As a consequence, it has been used
by several groups, mostly for fitting a few parameters in relatively
simple cases. As the Multiple Run Fitter contains only a single
relatively basic local optimization algorithm (the principal axis
method; Brent, 2002), it may not be suitable for more complex
problems. Although an extension to NEURON using genetic algo-
rithms has been developed10, it has not been very widely adapted,

9http://www.neuron.yale.edu/neuron/static/docs/optimiz/main.html
10http://senselab.med.yale.edu/simtooldb/ShowTool.asp?Tool=102464

FIGURE 7 | The results of Optimizer on Use case 4 (fitting the parameters of a morphologically detailed passive multi-compartmental model to

experimental data). Figure layout and notation are similar to Figures 4, 5. Magnified plots of critical parts of the traces are included in Figure 12.

FIGURE 8 | The results of Optimizer on Use case 5 (fitting an adaptive exponential integrate-and-fire model to experimental data with multiple

traces). The four traces are displayed in concatenated form in the figure. Figure layout and notation are similar to Figures 4, 5.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 11

http://www.neuron.yale.edu/neuron/static/docs/optimiz/main.html
http://senselab.med.yale.edu/simtooldb/ShowTool.asp?Tool=102464
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

possibly because (unlike the Multiple Run Fitter and Optimizer)
using this extension requires a substantial amount of coding.

The optimization tools of the GENESIS simulator (Vanier
and Bower, 1999) cannot be accessed through a graphical inter-
face, and model fitting involves extensive programing in its own
script language (whereas, given an implementation of the model
itself, optimizing model parameters in Optimizer or NEURON’s
Multiple Run Fitter requires little or no programming). Thus,
implementing a new optimization problem in GENESIS can
be quite time-consuming and error-prone. On the other hand,
GENESIS implements several powerful optimization algorithms
(including customizable versions of a genetic algorithm and sim-
ulated annealing) which can produce remarkably good results
even by today’s standards (the GENESIS implementations are
relatively old). Some forms of parallelization are also possible
through the PGENESIS module. GENESIS contains a single built-
in cost function (a relatively sophisticated algorithm for matching
spike times); other error functions need to be added by hand.

Neurofitter is a general-purpose model optimization tool
which is in some ways similar to ours (Van Geit et al., 2007).
However, Neurofitter does not have a GUI, and the definition of
problems needs to be done through a configuration file. It also
implements a variety of optimization algorithms, but only a sin-
gle cost function (the PPTD method), which can be powerful in
certain problems, but may be totally inappropriate in other situ-
ations. Neurofitter also supports various forms of parallelization
through the MPI protocol.

Finally, we note that there are some potentially desirable fea-
tures which are not currently available in any of the above
software solutions (including ours). For instance, multi-objective
(rather than single-objective) optimization was found to be
advantageous in the context of fitting a full range of mod-
els to a diverse set of experimental data (Druckmann et al.,
2007), but is not supported by either NEURON, GENESIS, or
Neurofitter. Optimizer is also restricted to single-objective opti-
mization for the moment; however, as the inspyred package, one
of the main optimization tools used by Optimizer, also supports
multi-objective optimization, extending Optimizer to handle this
class of problems will be relatively straightforward.

PERFORMANCE COMPARISONS
We also wanted to compare, as much as possible, the quanti-
tative performance of different model optimization tools. We
therefore attempted to implement the use cases presented earlier

for NEURON, GENESIS, and Neurofitter. We did not manage to
implement all of the use cases on any of the three other soft-
ware tools (other than Optimizer). In the end, we successfully
completed model optimization in use cases 1–4 using NEURON.
We also managed to implement use cases 1–4 using GENESIS,
although each of these required a substantial programing and
debugging effort; we used the simulated annealing algorithm in
this case, as the GENESIS implementation of the genetic algo-
rithm resulted in program crashes on the computers that we used,
even for the examples that came with the software. Finally, as
we are not aware of any implementation of the AdExpIF model
for GENESIS, we could not run use case 5. With Neurofitter, we
could run use cases 1–4, while it could not handle the intrinsic
numerical instability of the AdExpIF model, and could not com-
plete this optimization without crashing. On the tasks which were
successfully solved by several tools, the resulting traces were com-
pared through the mean squared error, and also based on spike
count in spiking models (Table 1).

1. Recovering the correct conductance densities (Na, K, leak) of
a single-compartment Hodgkin-Huxley model based on a sin-
gle (suprathreshold) step current injection: Three of the four
tools (Optimizer, NEURON, and GENESIS) found parame-
ters which resulted in very good fits to the data in terms of
spike counts, spike timings, and mean squared error, while
Neurofitter found a substantially worse solution (Table 1;
Figure 9). However, it is interesting to note that the opti-
mal parameters found by the programs vary significantly
among them, and also deviate substantially from the orig-
inal values (Table 2). This highlights a fundamental issue
with the identifiability of the conductance density parame-
ters of the Hodgkin-Huxley model using this current injection
protocol.

2. Recovering some basic synaptic parameters from simulated
voltage clamp recordings during synaptic stimulation in a
single-compartment model: Optimizer and GENESIS could
solve this task essentially perfectly, both in terms of mean
squared error (Table 1), and in terms of recovering the true
values of the parameters (Table 3); Neuron’s solution was
also close, although slightly less accurate, while Neurofitter’s
solution had a substantially larger error (Table 1; Figure 10).

3. Fitting the densities of somatic voltage-gated channels
in a simplified (6-compartment) model to approximate
the somatic voltage response of a morphologically and

Table 1 | Comparison of the error in the best-fitting solution of different optimization software tools on the five problems defined in the Use

cases section.

Optimizer Neurofitter NEURON GENESIS

1—HH MSE (mV2) 0.0033 0.0438 7.32 × 10−4 0.0016
Spike count (28) 28 32 28 28

2—VC MSE (nA2) 1.73 × 10−7 0.0052 2.68 × 10−5 6.29 × 10−7

3—CA1 PC simple MSE (mV2) 0.0069 0.0125 0.0092 0.0028
Spike count (7) 7 10 6 7

4—CA1 PC morphology MSE (mV2) 3.10 × 10−5 3.09 × 10−4 3.29 × 10−5 3.58 × 10−5

Mean squared error (MSE) was measured in all cases. In problems involving spikes, the resulting spike counts are also shown (the original spike count is shown in

parentheses in the second column).

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

FIGURE 9 | Comparison of the performance of the four model fitting

tools on Use case 1 (fitting conductance densities in the

Hodgkin-Huxley model). (A) Comparison of the resulting best traces with
the target trace. Insets show magnifications of spike shapes. (B–D) Changes

in the lowest error value achieved in each generation (for Optimizer and
Neurofitter) or after each 100 model evaluations (GENESIS). Errors are
displayed here in arbitrary units, which are different across optimization tools,
reflecting differences in the choice of cost functions.

Table 2 | Comparison of the best-fitting parameter values with the

original values in Use case 1.

Parameter Original Optimizer Neurofitter GENESIS NEURON

gnabar_hh 0.12 0.4242 0.5014 0.2687 0.0968

gkbar_hh 0.036 0.1010 0.1191 0.0714 0.0294

gl_hh 0.000300 0.000769 0.000772 0.000313 0.000320

Conductance density values are given in S/cm2.

biophysically detailed (CA1 PC) model to a somatic current
step. In order to make the comparison between the differ-
ent programs as fair as possible, we allowed each program
to run for a comparable number of iterations (approximately
10,000); this also meant that, instead of the more extensive

Table 3 | Comparison of the best-fitting parameter values with the

original values in Use case 2.

Parameter Original Optimizer Neurofitter GENESIS NEURON

tau1 (ms) 0.3 0.3006 0.0406 0.3002 0.2561

tau2 (ms) 3 2.9960 2.9940 2.9998 3.0438

Weight (uS) 0.01 0.010002 0.01209 0.009997 0.010137

Delay (ms) 2 1.9783 0.3672 1.9863 2.0288

optimization allowed for Optimizer whose result was shown
in the Use cases section (Figure 6), here we ran Optimizer’s
Evolutionary Optimization algorithm for only 100 generations
with 100 individuals each. On this difficult task, GENESIS
came up with the best solution in terms of mean squared error

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

FIGURE 10 | Comparison of the performance of the four model

fitting tools on Use case 2 (fitting synaptic parameters in voltage

clamp). Figure layout and notation are similar to Figure 9. Error values

for Optimizer (B) and GENESIS (D) reflect mean squared error,
measured in (nA)2; the value of the PPTD error function in Neurofitter
is displayed in (C).

and spike timings (see Table 1), but Optimizer also found
a reasonably good solution (with a correct spike count, and
a fairly good fit to the subthreshold range, but a worse fit
to the actual spike times) (Figure 11). The solutions found
by NEURON and Neurofitter were substantially worse, with
incorrect spike counts, spike timings, and spike shapes. The
different results of the three tools which used global optimiza-
tion algorithms probably (at least partially) reflect differences
in the cost functions used: Neurofitter used its only built-in
cost function (PPTD), GENESIS used a combination of mean
squared error and its built-in function (spkcmp) for compar-
ing spike timings, while in Optimizer we used a combination
of six features (mean squared error, spike count, ISI differ-
ences, AP amplitude, latency to first spike, and AHP depth).
This example also illustrates that a few properly selected fea-
tures can result in a solution which is just as good (or better)
than one obtained using a larger number of features.

4. Fitting the passive parameters of a morphologically detailed
CA1 pyramidal cell model to experimental data based on
a complex current clamp stimulus: Optimizer, NEURON,
and GENESIS all found approximately equally good solu-
tions (using a mean squared error function), and significantly
outperformed Neurofitter (which used PPTD) on this task
(Figure 12).

In conclusion, Optimizer delivered the lowest or second low-
est error (according to our measures) among the four programs
tested on all four test cases, and successfully solved a wide vari-
ety of problems. While GENESIS could not handle all of these
problems (as it does not support integrate-and-fire type mod-
els), its simulated annealing algorithm performed very well on
the remaining tasks. As we expected, NEURON’s local optimiza-
tion algorithm provided good solutions when the number of
parameters was small and the error function contained a single

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 14

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

FIGURE 11 | Comparison of the performance of the four model fitting

tools on Use case 3 (fitting voltage traces from a detailed

compartmental model). Insets allow a better visual comparison of spike

shapes. Figure layout and notation are similar to Figure 9. Errors are in
arbitrary units, which differ between panels (B–D), due to differences in the
cost functions used.

well-defined minimum over a large region of the parameter
space, but it performed significantly worse in high-dimensional
search spaces, which probably contained multiple local minima.
Neurofitter’s generally poor performance came as a surprise to us
given its demonstrated ability to solve similar problems (Van Geit
et al., 2007). However, it is quite possible (even likely) that a better
fit could have been achieved with any of these tools by fine-tuning
the settings of the optimization algorithms or by using a different
cost function, especially on the more complex tasks.

FUTURE DEVELOPMENT
This paper describes only a snapshot of the development of
our model optimization software. As we demonstrated above,
Optimizer is already a working piece of software with many use-
ful functions. Initial development of the program was driven by
the realization that no currently available neuronal optimization
tool could handle the variety of problems that we encountered

in our research, and we are already using Optimizer in the lab-
oratory in several different projects. However, we also aim to
provide a tool which is useful for the wider neuroscience commu-
nity (both the core community of computational neuroscientists
and those experimentalists who use modeling as an auxiliary
method). Therefore, based on the feedback we receive, we intend
to further improve the usability of the program, and also to keep
adding features requested by the users. We envisage that some of
this development will be handled by the core team of developers
(currently three persons), but also hope that the open and mod-
ular design of our software will encourage other researchers to
contribute and add their favorite protocols, cost functions, and
optimization algorithms to Optimizer. We also encourage poten-
tial users to send us further use cases, specifying the kinds of
model optimization problems that they need solve, so that we
can tell them whether and how they can use Optimizer to solve
these problems, and to see how we should further extend the

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 15

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

FIGURE 12 | Comparison of the performance of the four

parameter optimization tools on Use case 4 (fitting the

parameters of a morphologically detailed passive multi-

compartmental model to experimental data). (A–C) Comparison of
the best-fitting traces with the target trace. (A) Overview of the

whole fit. (B) More detailed view of the response to the short
input pulse. (C) Detailed view of the response to the long pulse.
(D–F) Plots of the evolution of the lowest error. Error values in
panels (D,F) reflect mean squared error, measured in (mV)2, while
PPTD error is shown in panel (E).

capabilities of the program to make it more widely useful. Finally,
as Optimizer is released under the GNU Lesser General Public
License, it can be used and potentially further developed in other
projects.

We have a long and growing list of improvements that we plan
to make, and we will describe some of the most important items
here. First, as the uniqueness of our software comes mainly from
its convenient user interface, we plan to extend the GUI to sup-
port an even wider range of problems and options. In particular,
as control of the simulations from the GUI is possible only for
internal simulators, we aim to support some additional popu-
lar simulators (in addition to NEURON) at this level. Adding
the simulation platform PyNN (Davison et al., 2008) would be
a logical next step, as this would enable us to control all the
simulators (including NEST, Brian, and PCSIM) supported by
PyNN. Second, we also plan to extend the range of possible

target data (and corresponding simulation results) to more com-
plex data sets, possibly including (at the same time) time series
(current, voltage, and other continuous variables), discrete events
(such as spike times), and abstract (derived) features. This task
could be made easier by taking advantage of a Python-based
data representation framework such as the neo package (Garcia
et al., 2014). Third, we plan to add batch-processing capabili-
ties to the software (first using the command-line interface, but
eventually also through the GUI) so that, for instance, the same
type of model (with different parameters) could be fitted auto-
matically to data obtained from multiple cells. Finally, as model
optimization can be extremely time-consuming, we will look into
different ways of parallelizing the process of model fitting. As a
first step, we will take advantage of the existing parallel capabilities
of the optimization modules (inspyred and scipy) and possibly
the simulators themselves. We also plan to make the code within

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 16

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

Optimizer more efficient by vectorizing critical calculations (such
as the evaluation of the cost functions).

CONCLUSIONS
In this article, we have described a novel tool for the optimiza-
tion of the parameters of neuronal models. This is a critical, but
also complex and often time-consuming step in the construction
of biologically relevant models of single neurons and networks.
Fitting appropriate models is also becoming an important tool
in the quantitative analysis of physiological data sets. However,
the results of model fitting can be heavily affected by techni-
cal details such as the choice of the optimization algorithm, and
actually implementing model fitting has been cumbersome with
previously existing tools. This is where we believe our software
can make a difference: by making available the power of some
of the most advanced methods in model optimization through
an intuitive user interface, we hope to make it possible for a
larger community of non-expert users to create better models and
analyze data in a more efficient and consistent way.

ACKNOWLEDGMENTS
We thank Miklós Szoboszlay and Zoltán Nusser for sharing
their data and analysis scripts. Support from OTKA (K83251),
ERC-2011-ADG-294313 (SERRACO), and the EU FP7 grant
no. 604102 (Human Brain Project) is gratefully acknowledged.
Michael Vella is funded by a Medical Research Council (MRC)
Capacity Building Studentship.

REFERENCES
Bahl, A., Stemmler, M. B., Herz, A. V. M., and Roth, A. (2012). Automated opti-

mization of a reduced layer 5 pyramidal cell model based on experimental data.
J. Neurosci. Methods 210, 22–34. doi: 10.1016/j.jneumeth.2012.04.006

Bower, J. M., and Beeman, D. (1998). The Book of GENESIS (2nd Edn.): Exploring
Realistic Neural Models with the GEneral NEural SImulation System. New York,
NY: Springer-Verlag, Inc.

Brent, R. P. (2002). Algorithms for Minimization Without Derivatives. Mineola, NY:
Dover Publications.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm
for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208. doi:
10.1137/0916069

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:
Cambridge University Press. doi: 10.1017/CBO9780511541612

Cornelis, H., Rodriguez, A. L., Coop, A. D., and Bower, J. M. (2012). Python as
a federation tool for GENESIS 3.0. PLoS ONE 7:e29018. doi: 10.1371/jour-
nal.pone.0029018

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.
(2008). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

De Schutter, E., and Bower, J. M. (1994a). An active membrane model of the cere-
bellar Purkinje cell II. Simulation of synaptic responses. J. Neurophysiol. 71,
401–419.

De Schutter, E., and Bower, J. M. (1994b). An active membrane model of the cere-
bellar Purkinje cell. I. Simulation of current clamps in slice. J. Neurophysiol. 71,
375–400.

Druckmann, S., Banitt, Y., Gidon, A., Schürmann, F., Markram, H., and Segev,
I. (2007). A novel multiple objective optimization framework for constrain-
ing conductance-based neuron models by experimental data. Front. Neurosci.
1, 7–18. doi: 10.3389/neuro.01.1.1.001.2007

Druckmann, S., Berger, T. K., Hill, S., Schürmann, F., Markram, H., and Segev,
I. (2008). Evaluating automated parameter constraining procedures of neuron
models by experimental and surrogate data. Biol. Cybern. 99, 371–379. doi:
10.1007/s00422-008-0269-2

Eichner, H., and Borst, A. (2011). Hands-on parameter search for neural
simulations by a MIDI-controller. PLoS ONE 6:e27013. doi: 10.1371/jour-
nal.pone.0027013

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2008).
PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.
2:12. doi: 10.3389/neuro.11.012.2008

Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P. L., et al.
(2014). Neo: an object model for handling electrophysiology data in multiple
formats. Front. Neuroinform. 8:10. doi: 10.3389/fninf.2014.00010

Gerstner, W., and Naud, R. (2009). Neuroscience. How good are neuron models?
Science 326, 379–380. doi: 10.1126/science.1181936

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M.,
et al. (2010). NeuroML: a language for describing data driven models of neu-
rons and networks with a high degree of biological detail. PLoS Comput. Biol.
6:e1000815. doi: 10.1371/journal.pcbi.1000815

Goodman, D. F. M., and Brette, R. (2009). The brian simulator. Front. Neurosci. 3,
192–197. doi: 10.3389/neuro.01.026.2009

Gurkiewicz, M., and Korngreen, A. (2007). A numerical approach to ion channel
modelling using whole-cell voltage-clamp recordings and a genetic algorithm.
PLoS Comput. Biol. 3:e169. doi: 10.1371/journal.pcbi.0030169

Hay, E., Hill, S., Schürmann, F., Markram, H., and Segev, I. (2011). Models of neo-
cortical layer 5b pyramidal cells capturing a wide range of dendritic and peri-
somatic active properties. PLoS Comput. Biol. 7:e1002107. doi: 10.1371/jour-
nal.pcbi.1002107

Hendrickson, E. B., Edgerton, J. R., and Jaeger, D. (2011). The use of auto-
mated parameter searches to improve ion channel kinetics for neural modeling.
J. Comput. Neurosci. 31, 329–346. doi: 10.1007/s10827-010-0312-x

Hines, M. L., Davison, A. P., and Muller, E. (2009). NEURON and python. Front.
Neuroinform. 3:1. doi: 10.3389/neuro.11.001.2009

Huys, Q. J. M., Ahrens, M. B., and Paninski, L. (2006). Efficient estima-
tion of detailed single-neuron models. J. Neurophysiol. 96, 872–890. doi:
10.1152/jn.00079.2006

Huys, Q. J. M., and Paninski, L. (2009). Smoothing of, and parameter estima-
tion from, noisy biophysical recordings. PLoS Comput. Biol. 5:e1000379. doi:
10.1371/journal.pcbi.1000379

Káli, S., and Freund, T. F. (2005). Distinct properties of two major excitatory inputs
to hippocampal pyramidal cells: a computational study. Eur. J. Neurosci. 22,
2027–2048. doi: 10.1111/j.1460-9568.2005.04406.x

Keren, N., Peled, N., and Korngreen, A. (2005). Constraining compartmental mod-
els using multiple voltage recordings and genetic algorithms. J. Neurophysiol. 94,
3730–3742. doi: 10.1152/jn.00408.2005

Kirkpatrick, S., Gelatt, C. D. Jr., and Vecchi, M. P. (1983). Optimization by
simulated annealing. Science 220, 671–680. doi: 10.1126/science.220.4598.671

Naud, R., Marcille, N., Clopath, C., and Gerstner, W. (2008). Firing patterns in the
adaptive exponential integrate-and-fire model. Biol. Cybern. 99, 335–347. doi:
10.1007/s00422-008-0264-7

Nelder, J. A., and Mead, R. (1965). A simplex method for function minimization.
Comput. J. 7, 308–313. doi: 10.1093/comjnl/7.4.308

Poirazi, P., Brannon, T., and Mel, B. W. (2003). Arithmetic of subthreshold synap-
tic summation in a model CA1 pyramidal cell. Neuron 37, 977–987. doi:
10.1016/S0896-6273(03)00148-X

Rossant, C., Goodman, D. F. M., Fontaine, B., Platkiewicz, J., Magnusson, A. K.,
and Brette, R. (2011). Fitting neuron models to spike trains. Front. Neurosci.
5:9. doi: 10.3389/fnins.2011.00009

Rossant, C., Goodman, D. F. M., Platkiewicz, J., and Brette, R. (2010). Automatic
fitting of spiking neuron models to electrophysiological recordings. Front.
Neuroinform. 4:2. doi: 10.3389/neuro.11.002.2010

Svensson, C.-M., Coombes, S., and Peirce, J. W. (2012). Using evolutionary algo-
rithms for fitting high-dimensional models to neuronal data. Neuroinformatics
10, 199–218. doi: 10.1007/s12021-012-9140-7

Van Geit, W., Achard, P., and De Schutter, E. (2007). Neurofitter: a parameter
tuning package for a wide range of electrophysiological neuron models. Front.
Neuroinform. 1:1. doi: 10.3389/neuro.11.001.2007

Van Geit, W., De Schutter, E., and Achard, P. (2008). Automated neuron
model optimization techniques: a review. Biol. Cybern. 99, 241–251. doi:
10.1007/s00422-008-0257-6

Vanier, M. C., and Bower, J. M. (1999). A comparative survey of automated
parameter-search methods for compartmental neural models. J. Comput.

Neurosci. 7, 149–171. doi: 10.1023/A:1008972005316

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 17

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

Vavoulis, D. V., Straub, V. A., Aston, J. A. D., and Feng, J. (2012). A self-organizing
state-space-model approach for parameter estimation in hodgkin-huxley-type
models of single neurons. PLoS Comput. Biol. 8:e1002401. doi: 10.1371/jour-
nal.pcbi.1002401

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 November 2013; accepted: 11 June 2014; published online: 10 July 2014.

Citation: Friedrich P, Vella M, Gulyás AI, Freund TF and Káli S (2014) A flexi-
ble, interactive software tool for fitting the parameters of neuronal models. Front.
Neuroinform. 8:63. doi: 10.3389/fninf.2014.00063
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Friedrich, Vella, Gulyás, Freund and Káli. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 18

http://dx.doi.org/10.3389/fninf.2014.00063
http://dx.doi.org/10.3389/fninf.2014.00063
http://dx.doi.org/10.3389/fninf.2014.00063
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedrich et al. Software for fitting neuronal models

APPENDIX: EXTENDING OPTIMIZER (TECHNICAL DETAILS)
USING AN EXTERNAL SIMULATOR
In the model selection layer, the external simulator option can be
selected. In this case a command line statement should be entered
into the appropriate box, which consists of the following:

– the command that calls the simulator
– the name of the model file
– options to the simulator (optional)
– as the last parameter, the number of parameters subject to

optimization

In order to use an external simulator, the model file must
be modified to contain the stimulation and recording protocol
and to be able to take input parameters from a text file called
“params.param” located in the base directory, which should con-
tain one parameter value on each line. The model must also be
able to write the traces resulting from running the simulation to
a file called “trace.dat” located in the base directory, in a text file
containing TAB-separated numerical values, with each trace in a
separate column.

USER FUNCTION
Also in the model selection layer, the user can define a function
which will be executed for every set of parameters, and maps

the parameters optimized to the appropriate parameters of the
NEURON model. This function can be created via the template
provided by the GUI or loaded from a previously written file.
The function must use the Python syntax of NEURON (with
one exception: there can be no empty lines in the section which
defines the names of the parameters) to access model elements,
and allows the user to optimize a combination of model param-
eters or set parameters to a specific value, not known during
the creation of the model (see use case 4). If such a function is
defined, the GUI will hide the list of parameters, and direct selec-
tion of model parameters is no longer allowed. The function is
checked against basic syntax errors, but we strongly recommend
to double-check the function as other errors will be detected only
during runtime.

LOADING A TIME-VARYING STIMULUS
The stimulation settings layer offers an option to load a time-
varying stimulus, which will use the play method of NEURON
to use the values in the given file to stimulate the model. The
file should be a simple text file containing only the stimulation
values. The number of values must be equal to the number of
sample points generated by the simulation (one can calculate
this by dividing the length of the simulation by the integration
step size).

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 63 | 19

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	A flexible, interactive software tool for fitting the parameters of neuronal models
	Introduction
	Design Goals and Principles
	Implementation
	Program Capabilities and Basic Usage
	Global Algorithms
	Evolutionary algorithm
	Simulated annealing 1
	Simulated annealing 2

	Local Algorithms
	Downhill simplex method
	L-BFGS-B

	Usage of the Graphical Interface
	Usage of the Command Line Interface

	Use Cases
	Comparisons with Other Model Optimization Tools
	Feature Comparisons
	Performance Comparisons

	Future Development
	Conclusions
	Acknowledgments
	References
	Appendix: Extending Optimizer (Technical Details)
	Using an External Simulator
	User Function
	Loading a Time-Varying Stimulus

