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Abstract. Mad is a basic region helix-loop-helix leu- 
cine zipper transcription factor which can dimerize 
with the Max protein and antagonize transcriptional 
activation by the Myc-Max transcription factor hetero- 
dimer. While the expression of Myc is necessary for 
cell proliferation, the expression of Mad is induced 
upon differentiation of at least some leukemia cell 
lines. Here, the expression of the mad gene has been 
explored in developing mouse tissues. During organo- 
genesis in mouse embryos mad mRNA was predomi- 
nantly expressed in the liver and in the mantle layer of 
the developing brain. At later stages mad expression 
was detected in neuroretina, epidermis, and whisker 
follicles, and in adult mice mad was expressed at vari- 
able levels in most organs analyzed. Interestingly, in 

the skin mad was highly expressed in the differentiat- 
ing epidermal keratinocytes, but not in the underlying 
proliferating basal keratinocyte layer. Also, in the gut 
mad mRNA was abundant in the intestinal villi, where 
cells cease proliferation and differentiate, but not in 
the crypts, where the intestinal epithelial cells prolifer- 
ate. In the testis, mad expression was associated with 
the completion of meiosis and early development of 
haploid cells. In cell culture, Mad inhibited colony 
formation of a mouse keratinocyte cell line and rat 
embryo fibroblast transformation by Myc and Ras. The 
pattern of mad expression in tissues and its ability to 
inhibit cell growth in vitro suggests that Mad can 
cause the cessation of cell proliferation associated 
with cell differentiation in vivo. 

M 
~.MBERS of the myc proto-oncogene family (c-, N-, 
and L-myc) regulate cell proliferation and are com- 
monly activated in various types of neoplasia (for 

reviews see Alitalo et al., 1992; Blackwood et al., 1992a; 
Evan and Littlewood, 1993; Koskinen and Alitalo, 1993; 
V/istrik et al., 1994). c-myc is expressed in most growing 
cells and it is rapidly induced upon growth stimulation of 
quiescent cells (Kelly et al., 1983; Waters et al., 1991). The 
ectopic expression of Myc induces quiescent cells to reenter 
the cell cycle (Armelin et al., 1984; Eilers et al., 1991). On 
the other hand differentiation can be induced or inhibited by 
decreasing or increasing the levels of the Myc proteins, 
respectively (Griep and Westphal, 1988; Holt et al., 1988; 
Larsson et al., 1988; Miner and Wold, 1991). 

During development, the three myc genes have distinct 
spatial and temporal expression patterns (Downs et al., 
1989; Hirvonen et al., 1990; Morgenbesser and DePinho, 
1994; Stanton et al., 1992). In general, differentiation or 

Imre V/istrik and Aria Kaipalnen both contributed equally to this work. 
Please address all correspondence to Dr. Karl Alitalo, Molecular/Cancer 

Biology Laboratory, Haartrnan Institute, University of Helsinki, P.O.B. 21 
(Haartmanink. 3), 00014 Helsinki, Finland. Tel.: 358 434 6723. Fax: 358 
434 6348. 

cessauon of cell proliferation is associated with downregula- 
tion of the myc mRNA and protein levels, although in some 
cases the expression of the myc genes can be observed in cells 
that have ceased proliferation (see Liischer and Eisenman, 
1990). For example, ganglion cells in the inner layer of the 
neural retina and postmitotic neuronal cells in the mantle 
layer of telencephalon sustain N-myc expression after cessa- 
tion of proliferation (Hirning et al., 1991; Hirvonen et al., 
1990; Mugrauer et al., 1988). In embryonic gut epithelium 
N-myc is expressed in non-proliferating cells covering the 
villi, while proliferating cells in the crypts express c-myc 
(Hirning et al., 1991). 

Myc proteins are thought to function as transcription fac- 
tors (Blackwood et al., 1992a). They have an NH2-terminal 
transcription activation domain and a COOH-terminal basic 
region-helix-loop-helix-leucine zipper domain (bHLHZip) 
(Kato et al., 1990; Landschulz et al., 1988; Murre et al., 
1989), which mediates dimerization with the Max protein 
and recognition of the DNA sequence CACGTG (Blackwell 
et al., 1990; Blackwood and Eisenman, 1991). Dimerization 
with Max is essential for activation of transcription from 
CACGTG-containing promoters and for the oncogenic activ- 
ity of the Myc proteins (Amati et al., 1992, 1993). Max is 
a constitutively expressed bHLHZip protein (Blackwood 
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and Eisenman, 1991; V/istrik et al., 1993). Max can also 
form homodimers (Kato et al., 1992), which bind to the 
CACGTG-containing core DNA sequence, but unlike Myc- 
Max heterodimers, Max homodimers suppress transcrip- 
tional activation (Amati et al., 1993). Accordingly, ectopic 
overexpresslon of Max suppresses also the oncogenic ac- 
tivity of the Myc proteins (Amati et al., 1993; Mfikelfi et 
al., 1992a). 

Max can dimerize and bind DNA with at least two addi- 
tional bHLHZip proteins, named Mad and Mxil, which are 
not able to form homodimers (Ayer et al., 1993; Zervos et 
al., 1993). Mad has been shown to repress transcription 
from CACGTG-containing promoter constructs (Ayer et al., 
1993). Although Mxil has not been tested for such repressor 
activity, it does not seem to activate transcription in a heter- 
ologous yeast system (Zervos et al., 1993). Thus, it is likely 
that the relative abundance of Myc in relation to Mad and 
Mxil, as well as the level of Max, determine the activity of 
Myc-Max target genes. 

Max protein is ubiquitously expressed and very stable 
(Blackwood et al., 1992b). As Mad and Mxil have been only 
recently cloned, there is little data on their expression. In- 
terestingly however, it has been shown that at least in certain 
cells Mad and/or Mxil are induced upon differentiation in 
vitro. For example, upon induction of monocyte/macrophage 
differentiation of U937 leukemia cells the expression of both 
mad and rex//mRNAs is upregulated while the expression 
of c-myc mRNA declines (Ayer and Eisenman, 1993; Lars- 
son et al., 1994; Zervos et al., 1993). An analogous shift is 
observed also in the composition of Max heterodimers. 
While in undifferentiated 13937 cells Max is found com- 
plexed with c-Myc, differentiation is accompanied by a shift 
from Myc-Max heterodimers to Mad-Max heterodimers 
(Ayer and Eisenman, 1993). On the basis of these observa- 
tions it has been suggested that the switch from Myc-Max 
to Mad-Max or Mxil-Max complexes represses Myc-Max 
target genes involved in cell proliferation and maintenance 
of the undifferentiated state (Ayer and Eisenman, 1993). 
This raises the interesting possibility that Mad and Mxil may 
be required for development, because they counterbalance 
the growth promoting effects of Myc proteins and promote 
the cessation of cell proliferation associated with differentia- 
tion. To further investigate this possibility we have studied 
mad expression during mouse embryonic development and 
in adult mouse and rat tissues undergoing continuous cell 
proliferation and differentiation. 

Materials and Methods 

Cloning of Mouse mad eDNA 

The coding region of human mad was PCR amplified from eDNA made 
from K562 leukemia cell RNA using two .sets of nested primers flanking 
the open reading frame of the published human mad eDNA sequence (Ayer 
et al., 1993). The initial PCR was performed with upstream primer 5'-CAT 
AGC GC_K~ CTC CAC AGC-3' and downstream primer 5'-AGG AGA CAG 
CCG CAG TGC-Y. The second PCR was performed with upstream primer 
5tGCT CTA GAC CCC GGT GCA GAA TGG-Y and downstream primer 
5~GGA ATI" CAC TCT CTT AGA GAC C-3'. The resulting DNA fragment 
containing the human mad coding region was subcloned into the XbaI and 
EcoRI sites of pGEM3Zf(÷) using the respective sites in the second set of 
PCR primers (shown in italics), verified by partial sequencing, and used as 
a probe for screening a mouse eDNA library. 

Screening of ,,ol.5 × 106 plaques of a 12-d p.c. mouse embryo eDNA 
library in the )~EXlox vector (Novagen, Madison, Wl) with human mad 
eDNA probe resulted in one positive clone containing a 2.5-kb insert. Par- 

tial sequencing revealed in the 5' part of the clone an open reading frame 
of 226 amino acid residues homologous to the human Mad protein. 

RNase Protection Assay 

A KpnI fragment, containing 11 bp of the vector sequence and nucleotides 
1-297 of the mouse mad eDNA was subcloned into the Kpnl site of 
pGEM3Zf(+). An in vitro transcription template was prepared by PCR am- 
plification with the M13 universal and reverse sequencing primers. Mad an- 
tisense cRNA was synthesized using T7 polymerase and [32P]UTP. The 
mouse B-actin cRNA was similarly synthesized from nucleotides 1188-1279 
of the published eDNA sequence (Tokunaga et al., 1986). After purification 
in a 6% polyacrylamide/7 M urea gel, the labeled transcripts were hy- 
bridized to 30 #g of total RNA overnight at 55°C. Single-stranded RNA 
was then digested with RNase T1 and RNase A at 30°C and purified pro- 
tected fragments were analyzed in a 6% polyacrylamide/7 M urea gel. 

Total RNA was isolated from 8-18-d p.c. embryos and 1-d-old mice by 
guanidium thiocyanate-phenol-chloroform extraction (Chomczynski and 
Sacchi, 1987). The sample from 8-d p.c. embryos included also the 
placenta. 

Microdissection of Seminiferous Tubules, RNA 
Isolation, and Northern Blots 

Pooled segments of rat seminiferous tubules representing different stages of 
the spermatogenic cycle were collected by transillumination-assisted mi- 
crodissection (Parvinen, 1993). Total RNA was isolated as above and 10 
ttg from each pool was fractionated in 1.2 % agarose gels containing formal- 
dehyde, stained in ethidium bromide to visualize the rRNAs, and trans- 
ferred by blotting to GeneSereen (DuFont) filters. A PCR amplified probe 
corresponding to nucleotides 215-804 of mouse mad eDNA was used for 
analysis of mad expression. 

Embryos and Tissues 

Mouse embryos were derived from matings of CBA and NMRI mice. Preg- 
nant mice were killed by cervical dislocation and the embryos were trans- 
ferred immediately via PBS into 4% paraformaldehyde. For paraffin sec- 
tions (skin, gut, embryos), the embryos and isolated mouse organs were 
fixed for 18 h at 4°C, dehydrated, embedded in paraffin wax, and cut into 
6-gin sections. To make cryostat sections (14-d p.c. embryos, spleen) fresh 
embryos and organs were immediately embedded in Tissue-Tek (Miles, 
Inc., Elkhart, IN) and stored at -70°C. 

Testes of adult Sprague-Dawley rats were fixed in 10% buffered formalin 
at room temperature for 24 h, dehydrated, embedded in paraffin wax, and 
cut into 5-~m sections. 

In Situ Hybridization 

The mouse mad antisense and sense cRNA probes were synthesized from 
linearized pBluescript II SK+ plasmid (Stratagene, La Jolla, CA), contain- 
ing an Apal-PstI fragment of the mouse mad eDNA (nucleotides 301-1001) 
using T3 and T7 polymerases and [3~S]UTP (Amersham Corp., Arlington 
Heights, IL). Similarly, mouse c-myc antisense and sense cRNA probes 
were synthesized from linearized mcxs plasmid (a kind gift of Drs. Ronald 
DePinho and Nicole Schreiber Agus) containing a 750-bp XbaI-SacI frag- 
ment of the mouse c-myc in pBluescript SK+ plasmid (Stratagene). 

In situ hybridization of paraffin sections was performed as described in 
Wilkinson et al. (1987a,b) with the following modifications: (a) instead of 
toluene, xylene was used before embedding in paraffin wax; (b) cut sections 
were placed on a layer of diethyl pyrocarbonate-treated water on the surface 
of glass slides pretreated with 2 % 3-triethoxysilylpropylamine; (c) alkaline 
hydrolysis of the probes was omitted; (d) the hybridization mixture con- 
tained 60% deionized formamide; and (e) the high stringency wash was fi3r 
80 min at 65°C in a solution containing 50 mM DTT and 1 x SSC. The 
sections were covered with NTB-2 emulsion (Kodak) and stored at 4°C. The 
slides were exposed for 14 d, developed, and stained with hematoxylin. 
Control hybridizations with sense strand and RNAse A-treated sections did 
not give a specific signal above background. 

Frozen sections of 6 pm were cut onto aminoalkylsilane-pretreated mi- 
croscope slides. The sections were immediately fixed in freshly prepared 
4% paraformaldehyde (PFA) I in PBS for 15 rain at room temperature 
(RT), washed in 70% and 100% ethanol, for 5 rain each, air-dried for 10 

1. Abbreviations used in this paper: PFA, paraformaidehyde, RT, room tem- 
perature. 
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rain at RT, frozen, and stored at -70"C. Frozen specimens were rehydrated 
in PBS at RT and treated with 0.5/~g/rnl proteinase K (Boehringer Mann- mouse 
heim Corp., Indianapolis, IN), for 5 rain at RT. Then the slides were washed 
with glycine (0.1 M in PBS) for 5 min at RT, postflxed in 4% PFA in PBS, human 
and rinsed with PBS. The sections were then acetylated in freshly prepared 
0.25% acetic anhydride in 0.1 M triethanolamine (pH 8.0) for 10 min at RT 
and rinsed again in PBS. Hybridization was performed as described for 
paraffin sections, mouse 

Cell Culture and Transfections human 

Rat embryo fibroblast transformation assay was performed essentially as de- 
scribed by M~kel/i et al. (1992a), except that a modified calcium phosphate 
precipitation was used for transfoction (Sambrook et al., 1989). The cells 
were cotransfocted with 2/~g of pSV2neo, 7/~g pGF.J(6.6) (M~ikel~i et al., mouse 
1992a), 7 txg pLTR-Tc-Myc and 15 tzg of pLTRMax (Mikeli et al., 1992a), 
pLTRMad or empty vector, pLTRMad was constructed by transferring a human 
PCR-amplified human mad eDNA as a HindIII-EcoRI fragment from 
pGEM3Zff+) to the respective sites of pLTRpoly (M/ikel~i et al., 1992b). 
pLTR-Tc-Myc contains human c-myc eDNA in pLTRpoly. 

BALB/MK-2 cells were grown in MEM containing 0.05 nM calcium, mouse 

10 % FCS, and 4 ng/ml EGF (Collaborative Research, Inc., Waltham, MA). 
The cells were cotransfected with 0.5 pg of SV2neo and 4.5 #g of LTRMad, human 
LTRMax, or empty vector using electroporation. To monitor the transfec- 
tion efficiency, 0.5 #g of CMV/3gal plasmid (MacGregor and Caskey, 1989) 
was also included. The electroporation was performed as described by 
Ustav and Stenlund (1991). Briefly, the cells (from 2 subconfluent 10-era 
diam dishes per sample) were trypsinized, centrifuged, and resuspended in 
normal medium, 0.25 mi of cell suspension was mixed with plasmid DNA, 
50/~g of salmon sperm DNA was added as a carrier and the mixture was 
pipetted into an electroporation cuvette with 4-ram gap size. The celI/DNA 
mixture was subjected to an electric discharge (220 V, 960/zF) using a Gene 
Pulser with a capacitance extender (BioRad Labs., Hercules, CA). After 
incubation at room temperature for 5-10 min, the cells were washed with 
1 ml of medium. After centrifugation and resuspension, the cells were 
plated onto 10-era diam dishes. A small aliquot was plated separately for 
determination of the transfection efficiency. G418 (0.5 mg/ml) was added 
to the culture medium 1 d after transfection and drug selection was carried 
out for ,'.,3 wk. Transfection efficiency was determined one day after trans- 
fection by in situ staining of cells for #-galactosidase activity (Ustav and 
Steniund, 1991) and was found to be similar in different samples of the same 
experiment. 
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Figure 1. Alignment of the amino acid sequences derived from 
mouse and human Mad cDNAs. The eDNA for mouse Mad con- 
tains an open reading frame of 226 amino acid residues which is 
shown in the figure, aligned with the 85.5% identical human Mad 
sequence. The basic region (b), the helix-loop-helix (HLH) and the 
leueine zipper (Z/p) are boxed, the amino acid residues that form 
the hydrophobie heptad repeat of the leucine zipper are indicated 
in bold. Note that due to the expansion of the DV diamino acid pep- 
tide motif (underlined), the mouse sequence is five amino acids 
longer than the human one. The nucleotide sequence data is available 
from EMBL/G-enBank/DDBJ under accession number 83106. 

Results 

Isolation and Analysis of  Mouse mad cDNA 

To study the expression of mad mRNA in developing mouse 
embryos, we isolated mad clones from a eDNA library made 
from RNA of 12 d mouse embryos (see Materials and 
Methods). The 2.5-kb Mad cDNA insert contained an open 
reading frame encoding a polypeptide of 226 amino acid 
residues with a predicted molecular mass of 25 kD. The 
predicted mouse Mad protein showed 85.5 % amino acid se- 
quence identity with its human homologue (Fig. 1). This 
homology is highest in the central part of the molecule en- 
compassing a bHLHZip DNA-binding and dimerization in- 
terface. A curious difference between the mouse and human 
amino acid sequences is the diaminoacid peptide of aspartate 
and valine, which is repeated six times in the mouse Mad 
(residues 163-174), but only twice in the human protein 
(Ayer et al., 1993). 

mad Expression in Developing Mouse Embryos 
Total RNA from mouse embryos of different gestational ages 
was analyzed by RNase protection and found to contain mad 
mRNA through days 8-18 p.c. of development (Fig. 2 B). A 
slight increase of the mad mRNA levels occurred between 
days 10 and 14 p.c. (Fig. 2 B). Sections of mouse embryos 

of 8-18 days p.c. were analyzed by in situ hybridization to 
localize the expression of mad in more detail. No mad RNA 
was seen on days 8-10 p.c. with this approach. On days 11, 
12.5, and 14 p.c. mad signal was evident in the liver and the 
mantle layer of the brain (Fig. 3). In the liver mad expression 
was maximal on day 12.5 and decreased subsequently, cor- 
relating with the time course of hepatic hematopoiesis. On 
day 18 p.o. expression was also found in the inner layer of 
neural retina in the developing eye (Fig. 4, A-C) and in the 
developing epidermis and whisker follicles (D-F). 

Expression of  mad in Adult Mouse 7issues • 

A Northern blot containing polyA+ RNA from several adult 
mouse tissues and organs was hybridized with the mad probe 
and analyzed by autoradiography. Strong signals from ̀ o5 kb 
and 3 kb mRNAs were obtained from the spleen and testis, 
and lower levels were detected in all other tissues tested 
(Fig. 2 C). In the testis the mad probe recognized also addi- 
tional, shorter mRNA forms of ,o2.3 kb and 1.3 kb. The 
2.3-kb mRNA was about equally abundant with the 5-kb 
and 3-kb mRNAs, while the 1.3-kb transcript was barely 
detectable. 

To assign mad transcripts to cells and tissues, mouse tissue 
sections were hybridized in in situ with the labeled mad 
cRNAs. In the spleen the signal was detected in the red pulp 
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Figure 2. Expression of mad mRNA in mouse tissues, (,4) A 
schematic diagram of the mad cDNA, RNase protection probe and 
the protected fragment. Striped region indicates the open reading 
frame. (B) RNase protection analysis of RNA isolated from mouse 
embryos of the indicated gestational ages (ES-E/8) and from a new- 
born mouse (1 day). Sample E8+P contains also the placenta. The 
sizes of the probes and the protected mad fragment are given in base 
pairs; B-actin was used as a control. (C) A Northern blot containing 
polyA+ RNA from the indicated tissues of adult mice was hybrid- 
ized with the mouse mad probe. Positions of RNA size markers and 
the sizes of the mad RNAs are indicated. 
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Figure 4. mad expression in the developing eye and snout. Dark- (A) and bright-field (B) photomicrographs of an 18-d embryo showing 
mad expression in the inner layer of the neuroretina (nr) of the eye. (C) The signal from the pigmented retina (pr) is unspecific, as can 
be seen from the corresponding section hybridized with the sense probe. (D and E) In the developing snout, signal is detected in the 
epidermis and in the inner epithelial aspect of the whisker follicles (wf), whereas the (F) sense probe gives no signal. Bar, 0.1 mm. 

in clusters of cells beneath the capsule (Fig. 5, A and B). 
These areas contained developing hematopoietic cells ofmy- 
eloid origin, as assessed by their positivity with the Leder 
stain (Fig. 5 C, arrow). Furthermore, mouse bone marrow 
contained Mad-positive cells (data not shown). 

As in the 18-d p.c. embryos, mad mRNA was also present 
in the epidermis of adult skin. However, unlike in the em- 
bryos, the signal in adults was discontinuous, being present 

in the outer, more differentiated cells at sites where the 
epidermis was thicker (data not shown). In newborn mouse 
skin the mad signal was stronger, but the pattern was similar 
(Fig. 5, D and E). Several cell layers could be distinguished, 
allowing the determination of the stage of differentiation of 
the keratinocytes according to their stratified position be- 
tween the basement membrane and the surface of the 
epidermis. In higher magnification a strong signal was de- 

Figure 3. In situ hybridization of mad mRNA in 12.5 d p.c. mouse embryo. Dark- (A) and bright-field (B) photomicrographs of an in 
situ autoradiogram are shown. A sagittal section showing signal predominantly in the liver (li) and the mantle layer (ml) of the brain. 
Crosses indicate false signals (from e.g., the pigmented retina of the eye; see also Fig. 4). Bar, 1 mm. 
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Figure 5. mad mRNA in spleen, skin, and gut. Photomicrographs of adult spleen hybridized with antisense (A) and sense (B) mad cRNA. 
(C) Leder-staining of a section of the same region of spleen with the cells of myeloid origin staining red (arrow). Lower (D and E) and 
higher (F) magnifiations of skin of a newborn mouse showing mad expression in the outer layers of epidermis (pointed with arrowheads). 
Small intestine of adult mouse hybridized with antisense (G) and sense (H) mad probes. In the crypts no specific hybridization is detected, 
while signal increases in the epithelial cells towards the lumen of the gut, being very strong in the tips of the villi. The signal for c-rayc 
cRNA is confined to the crypts (I). Abbreviations: r, red pulp; w, white pulp; e, epidermis; d, dermis; b, basal cell layer; k, keratinized 
squames; c, crypt; v, villus. Bars: (A-E) 0.1 mm; (G--I) 0.025 mm for E 
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tected in the epidermal keratinocytes in the outer, differen- 
tiated layers of cells, whereas the basal cell layer was nega- 
tive for mad (Fig. 5 F). 

Particularly interesting results suggesting an involvement 
of mad in the regulation of cell proliferation and differentia- 
tion was obtained from sections of the small intestine. The 
intestinal epithelium has a high turnover rate with typical ki- 
netics of proliferation and differentiation related to its unique 
architecture. Cells proliferate in the bottom parts of the 
crypts and migrate up to the villi, where they are shed into 
the gut lumen. As the cells move upwards, they differentiate, 
senesce, and finally undergo programmed cell death before 
being disposed (summarized by Wright and Alison, 1984). 
In situ hybridization of sections of adult small intestine re- 
vealed strong mad RNA expression in the gut epithelium. A 
clearcut gradient of expression was evident in the intestinal 
villi: the epithelium of the intestinal crypts was negative, but 
a gradient of increasing signal extended towards the lumen 
of the gut, the tips of the villi being most intensely decorated 
with the autoradiographic grains (Fig. 5, G and H). Control 
hybridization with the sense probe gave no signal over back- 
ground (data not shown). Interestingly, the c-myc gene was 
expressed in the crypts containing the proliferating cells 
(Fig. 5 I), as has been described by Hirning et al. (1991). 

Stage-dependent Expression of mad in the Testes 
Spermatogenesis in the seminiferous epithelium comprises 
three main phases: spermatogonial multiplication, meiosis, 
and spermiogenesis. Development from spermatogonia to 
spermatids is regulated by Sertoli cells in a cyclic fashion. 
Each stage of the seminiferous epithelium has a defined con- 
tent of spermatogenic cells at a certain phase of develop- 
ment. Along the seminiferous tubule, the stages follow each 
other in a wave-like fashion. Different stages can be dis- 
sected as morphologically identifiable segments and pre- 
pared for biochemical analysis (for a review see Parvinen, 
1993). Northern blotting and hybridization of total RNAs 
from such segments of rat seminiferous tubules showed that 
mad is expressed in a cyclic, stage-dependent manner. As in 
unfractionated mouse testicular RNA, the mad probe de- 
tected multiple RNA species (Fig. 6 A), although the 5-kb 
and the 2.3-kb transcripts were less prominent. The 1.3-kb 
mRNA was not detectable, which is probably due to the use 
of total RNA instead of polyA+ RNA. The level of the 3-kb 
transcript was constant in stages I-V, but decreased in stages 
VI-VIII, and then gradually returned back to the initial levels 
in stages IX-XIV. The level of the 5-kb RNA was regulated 
similarly to the 3-kb transcript, but the 2.3-kb RNA form 
was detected only in stages VI-VIIab, where the levels of 
other mad transcripts were decreased. 

Because each stage contains spermatogenic cells in at least 
four different phases of maturation in addition to Sertoli 
cells, in situ hybridization of sections of adult rat testes was 
used to identify the cells expressing mad mRNA. A sum- 
mary of mad expression in rat seminiferous epithelium is 
shown in Fig. 6 B. The expression was first detected in 
pachytene spermatocytes in stage X (data not shown). The 
signal increased through the following stages (Fig. 7, D and 
D'), was detected also during meiotic divisions in stages 
XIII-XIV (Fig. 7, E and E') and in the resulting round sper- 
matids until stage VI (Fig. 7, A, A', and C, C' and data not 

shown). No specific hybridization was observed in stages 
VII-IX (Fig. 7, A and A' and data not shown). Control hy- 
bridization with mad sense probe gave no specific signal 
(Fig. 7 B). 

Mad Antagonizes the Transforming Activity 
of Myc and Inhibits Colony Formation by a Mouse 
Keratinocyte Cell Line 
Mad has been shown to antagonize transcriptional activation 
of promoter constructs by Myc (Ayer et al., 1993). Because 
we found induction of mad expression in association with the 
cessation of cell proliferation and differentiation, we wanted 
to test whether Mad can inhibit cell growth and repress 
the growth promoting activity of Myc. We chose the Ras- 
Myc rat embryo fibroblast cotransformation assay to answer 
the latter question. Addition of Mad expression construct 
to Ras-Myc cotransfections reduced the number of trans- 
formed foci (Fig. 8 A). The extent of this effect was similar 
to that obtained with the addition of similar amounts of a 
Max expression construct cloned into the same vector. 

To determine whether Mad can inhibit cell proliferation, 
we employed the colony formation assay used previously for 
p53, pRB, and p107 (Zhu et al., 1993 and references therein). 
As mad was expressed in differentiated keratinocytes in the 
skin, we chose to use the mouse epidermal keratinocyte cell 
line BALB/MK-2 (Weissman and Aaronson, 1983) for these 
studies. The neomycin resistance plasmid was cotransfected 
together with Mad or Max expression plasmids or respective 
empty vector, and the number of neomycin resistant colonies 
was scored. As shown in Fig. 8 B, transfection of BABL/ 
MK-2 cells with either Mad or Max expression construct de- 
creased the number of neomycin resistant colonies, indicat- 
ing that both Mad and Max have a negative effect on cell 
growth. Consistent with this, we were also unable to detect 
Mad expression in the pooled colonies after neomycin selec- 
tion, although the same plasmid yielded a Mad polypeptide 
in transient transfection assay of BOSC23 cells (Pear et al., 
1994; data not shown). Taken together, these data strongly 
suggest that cell culture causes selection against Mad expres- 
sion and that Mad, like p53, pRB, and p107 proteins in a 
similar assay, inhibits cell growth. 

Discussion 

We have cloned the mouse mad cDNA and used it to study 
mad expression in embryonic and adult mouse tissues. The 
deduced amino acid sequence of mouse mad was 85.5% 
identical with the corresponding human sequence, the most 
signifcant difference being an extended diaminoacid repeat 
found in its carboxyl-terminal part. We found that mad is 
highly expressed in non-proliferating, terminally differen- 
tiated cells in certain tissues. Two particularly clear exam- 
pies of this were the suprabasal layers of the epidermis and 
the epithelium of gut villi. We also show that, consistent with 
its effects on Myc-induced transactivation (Ayer et al., 1993) 
and transformation (Lahoz et al., 1994; the present results), 
Mad inhibits cell growth in vitro. Mad could thus be involved 
in the cessation of cell proliferation associated with terminal 
differentiation in vivo. 

As in human cells, also in mouse and rat, mad is expressed 
as two RNA transcripts of '~5 kb and 3 kb (Ayer and Eisen- 
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type B spermatogonia and preleptotene spermatocytes 
leptotene to zygotene spermatocytes 
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mid- and late pachytene spermatocytes 

meiotic divisions 
secondary spermatocytes 
spermatids at different maturation levels 

Figure 6. Stage-dependent expression of 
mad mRNAs in the rat testes. (,4) North- 
ern blotting hybridization of total RNAs 
from different segments of rat seminifer- 
ous tubules representing the indicated 
stages of the cycle of the seminiferous 
epithelium. The sizes of the mad mRNA 
bands are indicated. (B) A schematic 
summary of mad expression in the semi- 
niferous epithelium during the different 
stages of spermatogenesis. The cell types 
expressing mad are shown in stippled 
boxes (sparse spotting indicates lower 
expression). The black line indicating 
the relative levels of 3 kb mad mRNA in 
different stages was obtained by densi- 
tometric scanning of the Northern blot 
shown in panel A. 

man, 1993; Larsson et al . ,  1994). In the testis additional 
forms of 2.3 kb and 1.3 kb were detected. Currently the cod- 
ing capacities of these different mRNA forms are unknown. 
The major diamino acid repeat difference between the hu- 

man and mouse Mad amino acid sequences could be the re- 
sult of alternative splicing. However, the sequence of mad 
cDNA encoding the diaminoacid repeat consists of an imper- 
fect six-nucleotide repeat. It is thus possible that the number 
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Figure 7. In situ hybridization of mad mRNA in adult rat testes. Bright- (A, C, D, and E) and dark-field (A', C', D', and E') photomicrographs 
are shown. Strong hybridization signals are seen in stages I, V, XII, and XIV, whereas in stages VII and IX the signal is at the level of 
background (A and A'). High magnifications of stage V and VII (C and C' ), XII (D and D' ) and XIV (E and E') tubules show grain 
accumulation over pachytene spermatocytes (ps), spermatocytes in the second meiotic division (d), secondary spermatocytes (ss), and 
postmeiotic round spermatids (rs). Control hybridization with sense probe (B). Bars: (A, A', and B) 0.1 mm; (C, C'-E, E') 0.05 mm. 

of these repeats differs between mouse and man due to fre- 
quent mutations of these repetitive elements during DNA 
replication or crossing over. These mechanisms are thought 
to cause expansion or contraction of so-called microsatellite 
DNA consisting of such repeats (for a review see Kunkel, 
1993). 

Induction of mad and its close relative rex/ /has  been ob- 
served upon in vitro differentiation of HL-60, U937, and 
ML-1 leukemia cell lines (Ayer and Eisenman, 1993; Lars- 
son et al., 1994; Zervos et al., 1993). Here we have shown 
that mad is expressed in fetal liver and in adult spleen, organs 
active in hematopoiesis. As assessed by the Leder-staining, 
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Transfected 
constructs 
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0 20 40 60 80 100 

% of colonies relative to Neo alone 

0 20 40 60 80 100 

Figure 8. Mad suppresses 
transformation of rat embryo 
fibroblasts by Myc and Ras 
and inhibits growth of a mouse 
keratinocyte line. (A) Number 
of transformed foci obtained 
from cotransfection of rat em- 
bryo fibroblasts with the indi- 
cated expression constructs. 
The column chart shows the 
relative effect of Mad and Max 
on Myc-Ras cotransformation 
expressed as percent of trans- 
formed foci obtained with 
Myc and Ras only. (B) Num- 
ber of colonies after transfec- 
tion with neomycin resistance 
gene (Neo) and the indicated 
expression constructs, fol- 
lowed by neomycin selection. 
The column chart shows the 
relative effect of Mad and Max 
on colony formation expressed 
as percent of colonies ob- 
tained with Neo only. The 
bars beside the columns de- 
note the standard error. 

mad was expressed in myeloproliferative areas of the spleen, 
but also in certain other cells that we were unable to identify. 
This and the expression of mad in human bone marrow and 
peripheral blood leukocytes (unpublished observations of 
the authors) support the involvement of mad in the differenti- 
ation of certain hematopoietic cell lineages. 

Epidermal keratinocytes form a multilayered structure 
with cell proliferation confined to the basal cell layer. As the 
cells move upwards, they cease proliferation, differentiate, 
form keratinized squames, and finally flake off from the sur- 
face of the epidermis (for a review see Zinkel and Fuchs, 
1994). As demonstrated by in situ hybridization, mad ex- 
pression is associated with the differentiation of epidermal 
keratinocytes being most prominent in the outer, more 
differentiated cells. A similar expression pattern was seen 
also in the inner epithelial aspect of the whisker follicles 
which are organized topologically similarly to the outer 
layers of epidermis. Thus, if the mad mRNA levels reflect 
the expression of the protein product, the Mad protein could 
contribute to the differentiation of keratinocytes. In compari- 
son, N-myc is expressed in the proliferating cells of the 
germinative zones of hair follicles, but not in the epidermis 
of newborn mice (Mugrauer et al., 1988). Also, c-myc and 
L-myc genes have been reported to be expressed in skin (Hir- 
vonen et al., 1990; Semsei et al., 1989), but the exact pattern 
of their expression is not known. 

Gut epithelium provides another system, where prolifera- 
tion and differentiation take place in a spatially restricted 
compartment. Cells divide in the crypts and as they stop 
proliferating, they are pushed towards the tips of the villi 
where they are finally shed into the gut lumen (summarized 
by Wright and Alison, 1984). The expression of c-myc in the 
gut epithelium correlates with cell proliferation: the signal 
is detected in the crypts while the villi are negative (Hirning 
et al., 1991). This expression pattern fits very well with cur- 

rent ideas about Myc as an inducer of cell proliferation. 
Somewhat surprisingly, the non-proliferating cells of the epi- 
thelial lining of villi have been reported to express N-myc 
(Hirning et al., 1991). Similar examples of N-myc expression 
in non-proliferating cells are found for example in the gan- 
glion cell layer of neural retina and mantle layer of the de- 
veloping telencephalon (Hirning et al., 1991; Hirvonen et 
al., 1990; Mugrauer et al., 1988). Yet the ability of N-Myc 
to induce cell proliferation, transformation, and tumorigene- 
sis in transgenic mice is very similar to that of c-Myc 
(Cavalieri and Goldfarb, 1988; Dildrop et al., 1989; Rosen- 
baum et al., 1989; Schwab et al., 1985; Yancopoulos et al., 
1985). However, the expression of mad in these tissues and 
its ability to suppress at least some functions of N-myc (La- 
hoz et al., 1994) may explain how N-myc expression can be 
uncoupled from proliferation. 

Yet another example of induction of mad expression during 
differentiation was observed during spermatogenesis. Dur- 
ing the multi-step process of spermatogenesis the primitive 
type A spermatogonia, the precursor stem cells, can either 
undergo renewal or differentiate into intermediate and B type 
spermatogonia. Type B spermatogonia divide once (in stage 
VIII), and then enter the prophase of meiosis as preleptotene 
spermatocytes (for a review, see Parvinen, 1993). Spermato- 
cyte development continues through the leptotene, zygotene, 
and pachytene stages of meiotic prophase, which is followed 
by two rapid cell divisions resulting in formation of round 
spermatids, the earliest haploid postmeiotic cells. The ex- 
pression.of mad was observed in pachytene in stage X, in- 
creased in the following stages and continued through the 
meiotic divisions and in the resulting haploid secondary 
spermatocytes, where it decreased in stage VI. In contrast, 
the expression of c-myc is confined to type A and B sper- 
matogonia and preleptotene spermatocytes in the earlier 
phases of spermatogenesis, with no detectable expression in 
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the phases where mad was expressed (Wolfes et al., 1989). 
However, nothing is known about the expression of the other 
myc genes during spermatogenesis. 

Consistent with the expression of mad in non-proliferat- 
ing, terminally differentiated cells in several tissues, we pres- 
ent also evidence that the ectopic expression of Mad in a 
mouse epidermal keratinocyte cell line inhibits cell growth 
as measured by the colony formation assay. Similar effects 
have recently been observed in two other cell lines tested 
(unpublished results of the authors). However, it should be 
noted that the colony formation assay does not allow us to 
conclude whether the negative effect of Mad on cell growth 
is due to a block of the cell cycle or due to a loss of cell viabil- 
ity. The ability of Mad to repress transcriptional (Ayer et al., 
1993) and transforming (Lahoz et al., 1994; the present re- 
suits) activities of the Myc proteins suggests that Mad can 
inhibit cell proliferation by competing with the Myc proteins 
and downregulating their activity. Thus Mad could contrib- 
ute to terminal cell differentiation by inducing a cessation of 
cell proliferation. 
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