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ABSTRACT
Objective Hepatocellular carcinoma (HCC) often 
develops in patients with alcohol- related cirrhosis 
at an annual risk of up to 2.5%. Some host genetic 
risk factors have been identified but do not account 
for the majority of the variance in occurrence. This 
study aimed to identify novel susceptibility loci for the 
development of HCC in people with alcohol related 
cirrhosis.
Design Patients with alcohol- related cirrhosis 
and HCC (cases: n=1214) and controls without 
HCC (n=1866), recruited from Germany, Austria, 
Switzerland, Italy and the UK, were included in a two- 
stage genome- wide association study using a case–
control design. A validation cohort of 1520 people 
misusing alcohol but with no evidence of liver disease 
was included to control for possible association effects 
with alcohol misuse. Genotyping was performed using 
the InfiniumGlobal Screening Array (V.24v2, Illumina) 
and the OmniExpress Array (V.24v1- 0a, Illumina).
Results Associations with variants rs738409 in 
PNPLA3 and rs58542926 in TM6SF2 previously 
associated with an increased risk of HCC in patients 
with alcohol- related cirrhosis were confirmed at 
genome- wide significance. A novel locus rs2242652(A) 
in TERT (telomerase reverse transcriptase) was also 
associated with a decreased risk of HCC, in the 
combined meta- analysis, at genome- wide significance 
(p=6.41×10−9, OR=0.61 (95% CI 0.52 to 0.70). 
This protective association remained significant 

after correction for sex, age, body mass index and 
type 2 diabetes (p=7.94×10−5, OR=0.63 (95% CI 
0.50 to 0.79). Carriage of rs2242652(A) in TERT 

WHAT IS ALREADY KNOWN ON THIS SUBJECT?
 ⇒ Hepatocellular carcinoma (HCC) is the most 
common primary malignancy of the liver, 
responsible for ~0.8M deaths per year 
worldwide. Most alcohol- related HCCs develop 
in patients with established alcohol- related 
cirrhosis (ArC).

 ⇒ Older age, male sex, obesity and type 2 
diabetes are risk factors for the development of 
HCC in people with ArC.

 ⇒ Only three genetic loci—PNPLA3, TM6SF2 and 
WNT3A- WNT9A—have been associated with 
the development of alcohol- related HCC, at 
genome- wide significance, to date. Other risk 
loci are likely to exist.

WHAT ARE THE NEW FINDINGS?
 ⇒ We identify the rs2242652 germline variant in 
TERT as a novel susceptibility locus for HCC 
development in ArC.

 ⇒ Specifically, the rs2242652 A allele is associated 
with an decreased risk of HCC development in 
ArC.

 ⇒ Carriage of rs2242652 in TERT is not associated 
with the risk for developing ArC.
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was associated with an increased leucocyte telomere length 
(p=2.12×10−44).
Conclusion This study identifies rs2242652 in TERT as a novel 
protective factor for HCC in patients with alcohol- related cirrhosis.

INTRODUCTION
Hepatocellular carcinoma (HCC) is the most common primary 
liver malignancy worldwide and is responsible for ~0.8 million 
deaths per annum.1 The global incidence of HCC is rising and 
may surpass 1 million cases annually by 2025.2 Alcohol- related 
liver disease (ArLD) is a leading underlying cause of HCC in 
Europe and Northern America.3 4 Most cases of alcohol- 
related HCC develop in patients with established cirrhosis. 
Cohort studies indicate that the cumulative incidence of HCC 
approaches 2.5% per annum for alcohol- related cirrhosis (ArC) 
patients attending specialist care centres.3 4 Clinical risk factors 
for the development of HCC in people with ArC include older 
age, male sex, type 2 diabetes and obesity2 5—but explain only a 
fraction of the total variability in HCC occurrence.6 7

In recent years, interest has focused on dissecting the under-
lying host genetics of HCC through candidate gene association 
studies. In the studies undertaken to date, loci in the genes 
coding for patatin- like phospholipase domain containing 3 
(PNPLA3; rs738409) and transmembrane 6 superfamily member 
2 (TM6SF2; rs58542926) were robustly confirmed to increase 
the risk of developing HCC in ArC,8 while loci, rs72613567:TA 
in hydroxysteroid 17- beta dehydrogenase 13 (HSD17B13) and 
rs429358:C in apolipoprotein E (APOE), were found to atten-
uate risk.9–11 As the products of these genes are involved in lipid 
turnover and processing, it is not surprising that the same loci 
also modulate the risk for HCC development in people with 
non- alcoholic fatty liver disease (NAFLD).12

The variants currently identified as associated with HCC risk 
in ArC only account for a small proportion of the heritability 
risk, suggesting the existence of additional genetic modulators.7 8 
Also, the genetic risk loci recognised hitherto do not relate to 
genes considered pivotal to hepatocarcinogenesis.13 Identifying 
these additional, potential genetic modulators of hepatocarcino-
genesis requires large genome- wide association studies (GWASs) 
in which cases are defined as people with ArC with HCC and 
controls as people with ArC who have no evidence of HCC. 
These definitions are critical to enable the detection of risk 
loci with a direct molecular link to hepatocarcinogenesis per 
se, rather than to the development of alcohol- related steatosis, 
inflammation or fibrosis.

A European GWAS of HCC in ArLD, while not conforming 
to this exact design, was recently undertaken by Trépo et al.14 In 
their discovery analysis comparing 775 HCC cases (80% with 
F3/F4 fibrosis) against 1332 non- HCC controls (94% with F3/
F4 fibrosis), a genome- wide significant association was identified 
between the rs708113:T allele locus near WNT3A- WNT9A and 
a reduction in the risk for developing alcohol- related HCC.14

The aim of his study was to undertake a GWAS in patients 
with HCC against a background of ArC comprising 1066 cases 
and 844 controls using a case–control design.

METHODS
Patient cohorts
Germany/Switzerland/Austria Alcohol Cohort (discovery cohort)
The diagnosis of ArC was established based on a history of 
long- term, sustained alcohol intake of a minimum of 40 g/day in 
women and 60 g/day in men, together with histological examina-
tion of liver tissue; or compatible historical, clinical, laboratory, 
radiological and endoscopic features. Patients were excluded if 
they had any other potential cause of liver injury, specifically 
if they were positive for hepatitis B surface antigen (HBsAg), 
anti- hepatitis C IgG (anti- hepatitis C virus (HCV) IgG), antinu-
clear antibodies (titre >1:80) or antimitochondrial antibodies 
(titre >1:40), had elevated serum ferritin levels with a trans-
ferrin saturation of >50%, a serum ceruloplasmin of <20 mg/
dL (0.2 g/dL), a serum alpha- 1 antitrypsin of <70 mg/dL 
(13 µmol/L) or were morbidly obese. The diagnosis of HCC was 
made following on histological examination of tumour tissue or 
based on criteria applied to images obtained using multiphasic 
CT or dynamic contrast- enhanced MRI15 16 (online supple-
mental methods A).

UK Alcohol Cohort (replication cohort 1)
The UK Biobank (UKB) is a large- scale biomedical database 
containing in depth genetic and health information from a 
prospective study of approximately half a million middle- aged 
individuals from the UK recruited in 2006–2010.17 Participants 
have been deeply phenotyped and are linked to UK hospital 
in- patient, cancer and mortality registries. A nested case–control 
dataset (n=860) was created using this resource. Cases were 
defined as participants with a hospital admission for ArC Inter-
national Classification of Diseases 10 (ICD10:K70.3), and an 
HCC diagnosis (ICD10:C22.0 or ICD9:155.0). Controls were 
participants with a hospital admission for ArC but with no 
record of an HCC diagnosis. Analyses were restricted to partic-
ipants of white British ancestry. These nested case–control data 
were then pooled with 306 patients recruited from the Centre 
for Hepatology at the Royal Free Hospital, London who had 
histologically proven ArC with or without HCC, as described 
previously18 (online supplemental methods B).

Germany and Italy Alcohol Cohort (replication cohort 2)
The replication cohort included 238 patients with ArC (42 with 
HCC) from the University of Bonn, and 72 patients with ArC 
(36 with HCC) from the University of Milan.

Validation cohorts
Patients with a history of alcohol misuse (AM) but without 
evidence of significant alcohol- related liver injury were recruited 
from psychiatric units in Germany (n=1080)19 20 and from Hepa-
tology Centres in Heidelberg, Germany (n=99) and London, 
UK (n=341)18 (online supplemental methods C).

Genotyping and imputation
Discovery cohort
Genotyping was performed using genomic DNA extracted from 
peripheral blood samples as described previously.18 The GWAS 
(stage 1) included 1910 patients with ArC genotyped on the 
InfiniumGlobal Screening Array (V.24v2, Illumina) (table 1) 
(online supplemental methods D). Genotype imputation was 

HOW MIGHT IT IMPACT ON CLINICAL PRACTICE IN THE 
FORESEEABLE FUTURE?

 ⇒ Exploration of the functional significance of TERT variants 
could provide important insights into the pathogenesis of 
HCC in people with ArC.

 ⇒ Genetic profiling of patients with ArC might inform HCC 
screening programmes.
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performed with Minimac4 to the Haplotype Reference Consor-
tium reference panel (HRC r1.1)21 using the Michigan Imputa-
tion Server22 (online supplemental methods E).

Replication and validation samples
Patients from the Royal Free Hospital, London and Germany 
were genotyped using the OmniExpress array (24v1- 0a, Illu-
mina).12 The replication (stage 2) included 1170 patients with 
ArC (table 1). Patients from Italy were genotyped on the Infini-
umGlobal Screening Array (24v2, Illumina) (online supplemental 
methods D). Genotypic data were imputed for each cohort to 
the HRC reference (online supplemental methods E). Imputed 
genotypic data from 606 patients were obtained from the UKB 
Resource.23

Statistical analyses
GWAS analysis
Association analyses for 7 946 762 variants were performed 
using Plink V.2.024 with allele dosages obtained after imputa-
tion (imputation info score >0.3, minor allele frequency >1%). 
The lambda inflation factor λGC for the unadjusted GWAS anal-
ysis was 1.085 indicative of subtle population stratification. To 
account for the observed inflation, the top 20 principal compo-
nents (PCs) on the LD- pruned data set were calculated and the 
top 15 PCs of genetic ancestry included as covariates in the 
regression models.25 The corrected λGC was 1.03. Two discovery 
GWAS analyses were performed: GWAS 1 (primary GWAS anal-
ysis): included only the top 15 PCs as covariates in the regression 
model. The p value threshold for lead single- nucleotide polymor-
phism (SNPs) for replication follow- up was set to p<5×10−6 to 
allow loci with suggestive association to be included at the repli-
cation stage. GWAS 2 (sensitivity GWAS analysis): included sex, 
age and the top 15 PCs as covariates; the top 15 independent 
loci were follow- up at Stage 2.

Loci discovery and annotation
Independent genomic risk loci and lead variants (for p<5×10−6) 
were derived from FUMA (V.1.3.1)26 based on GWAS summary 
statistics, as previously described.27 For a locus to be defined as 
independent it had to be separated from other loci by at least 
500 kb of genomic distance; the top- ranking SNPs were deemed 
potential lead markers.

Power analysis
The expected power to identify a true association between a 
SNP and HCC development in ArC was calculated using the 
GAS Power Calculator.28 The power for SNPs with minor allele 
frequencies of >20% was estimated to be 49% for alleles with a 
relative risk of 1.5, increasing to 81% for a relative risk of 1.6, 
for a p value threshold of 5×10−8 (online supplemental table 1).

Replication analysis
In stage 2, the selected SNPs were validated in independent 
samples from the UK, Germany and Italy. Study- specific β esti-
mates and standard errors were further analysed using fixed- 
effect meta- analysis. Two criteria were required to demonstrate 
replication: (1) p<5.55×10−3 (corresponding to p<0.05 after 
Bonferroni correction for nine tests in the primary analysis); 
or p<3.33×10−3 (corresponding to p<0.05 after Bonferroni 
correction for 15 tests in the sensitivity analysis) (2) and consis-
tency of allelic effect direction between discovery and replica-
tion samples (online supplemental methods F).

Additional replication analyses
The association between novel risk loci and HCC/liver cancer 
were also assessed using: (1) publicly available summary statis-
tics from a recent alcohol- related HCC GWAS performed by 
Trépo et al14; (2) data from two large population- based cohorts 

Table 1 Overview of the study populations included in the discovery and replication cohorts

Variable

Discovery (GWAS stage 1)*
(n=1910)

Replication (stage 2)*
(n=1170)

Validation†
Patients with alcohol misuse 
(n=1520)

Germany- Switzerland- Austria
(n=1910)

UK (cohort 1)
(n=860)

Germany (cohort 2)
(n=238)

Italy (cohort 3)
(n=72)

Germany
(n=1179)

UK
(n=341)

Cases
(n=1066)

Controls
(n=844) ‡P value

Cases
(n=70)

Controls
(n=790) ‡P value

Cases
(n=42)

Controls
(n=196)

P 
value‡

Cases
(n=36)

Controls
(n=36) ‡P value

Non- cirrhosis
controls

Non- cirrhosis
controls

Age (yr) 64.8 (8.5)
(100%)

57.1 (9.7)
(100%)

<0.0001 60.2 
(5.9)
(100%)

56.3 (8.9)
(100%)

<0.0001 67.1 
(9.1)
(100%)

58.5 (9.7)
(100%)

>0.05 72.7 
(8.0)
(100%)

53.3 (8.9)
(100%)

<0.0001 42.7 (10.4)
(100%)

48.6 (10.5)
(100%)

Proportion 
male
(n: %)

968 (90.8) 624 (73.9) <0.0001 67 (95.7) 577 (73.0) <0.0001 35 (83.3) 131 (66.8) <0.05 32 (88.9) 31 (86.1) >0.05 1148 (97.4) 263 (77.1)

BMI (kg/
m2) §

28.1 (4.8)
(69%)

26.5 (5.3)
(91%)

<0.0001 29.3 
(4.4)
(100%)

27.5 (4.8)
(92%)

<0.05 24.8 
(3.5)
(57%)

26.1 (5.8)
(52%)

>0.05 27.0 
(3.8)
(64%)

27.0 (6.8)
(75%)

>0.05 25.3 (4.5)
(81%)

24.7 (2.3)
(53%)

BMI kg/m2;
(n: %) <25

183 (24.7) 308 (40.3) <0.0001 13 (18.6) 227 (31.3) <0.05 13 (54.2) 52 (51.0) >0.05 6 (26.1) 13 (48.1) >0.05 505 (52.6) 94 (52.2)

25–30 333 (45.0) 295 (38.6)   27 (38.6) 288 (39.7)   8 (33.3) 27 (26.5)   12 (52.2) 7 (25.9)   345 (35.9) 86 (47.8)

>30 224 (30.3) 162 (21.2)   30 (42.9) 211 (29.1)   3 (12.5) 23 (22.5)   5 (21.7) 7 (25.9)   110 (11.5) 0 (0)

Diabetes
type II + (n: 
%)§

337 (47.1)
(67%)

136 (30.1)
(54%)

<0.0001 20 (28.6)
(100%)

102 (12.9)
(100%)

<0.0001 14 (36.8)
(90%)

36 (19.7)
(93%)

<0.05 16 (44.4)
(100%)

5 (13.9)
(100%)

<0.05 58 (5.7)
(86%)

8 (3.6)
(66%)

*Cases and controls were assigned to groups as detailed in the Methods section.
†Validation cohorts were used in post hoc risk assessment.
‡P values were calculated from Student’s t- test for quantitative variables and as Pearson’s χ2 test for categorical variables.
§Data are reported as mean±SD or as number (%) ; Completeness of phenotypic information for age, BMI and type 2 diabetes status are reported as percentage of subjects with available 
information below the mean value.
BMI, body mass index; GWAS, Genome- Wide Association Study.
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(Finngen and BioBank Japan) and (3) data from a UK cohort 
of patients with HCV- related cirrhosis (STOP- HCV) (online 
supplemental methods F).

Association with other cancers (pleiotropy)
Moreover, we assessed if novel risk loci were associated with 
selected cancers unrelated to the liver in both the UKB and 
FinnGen population- based cohorts. Each cancer phenotype 
was defined by ICD codes present in hospital admissions, death 
records and cancer registry records. In addition, the NHGRI- EBI 
Catalogue of human GWAS was searched for association of novel 
risk loci with cancer phenotypes (online supplemental methods 
F).

Meta-analysis GWAS
A fixed- effect meta- analysis restricted to markers present in all 
data sets (n=5 552 382) was performed using METAL29 to: (1) 
use the total study sample (n=3080) for the discovery stage and 
(2) to determine the combined effect size of replicated loci across 
stages 1 and 2 datasets.

eQTL analysis
Variants at novel loci were tested for cis- eQTL effect on gene 
expression in: (1) liver tissue (n=266) using the database of the 
Genotype- Tissue Expression Project (GTEx) release V830 and (2) 
whole- blood (n=24 376) using the database of the eQTLGen 
Consortium.31

SNP Heritability Analysis
The proportion of phenotypic variance explained by the additive 
genetic effect of common genome- wide significant SNPs (h²SNP: 
SNP heritability) was estimated using a Genomic relatedness 
matrix REstricted Maximum Likelihood analysis implemented 
in GCTA32 (online supplemental methods G).

Association with HCC-related phenotypes
Replicating loci were tested in the total UKB for association with 
two HCC- related phenotypes: leucocyte telomere length33 and 
liver fat content.34 Leucocyte telomere length was available for 
474 074 participants in UKB (Field ID: 22191), while liver fat 
content was available for 8315 imaging substudy participants 
(Field ID: 22436) (online supplemental methods H).

Patient and public involvement
There was no patient and public involvement in the design and 
conduct of this study.

RESULTS
GWAS and validation of the loci
After imputation a total of 7 946 762 variants with a MAF >0.01 
were tested for association with HCC in 1066 cases with ArC 
and HCC and 844 controls with ArC but with no evidence of 
HCC (table 1).

Associations with HCC were observed at genome- wide signifi-
cance (p<5×10−8) for two independent genomic loci viz PNPLA3 
and TM6SF2 (table 2; figure 1A, online supplemental figure 
1). The strongest signal was at rs2294915, located in PNPLA3 
(p=6.21×10−15) which encodes 1- acylglycerol- 3- phosphate 
O- acyltransferase. This tag SNP rs2294915, located in intron 8 
of PNPLA3, is in strong linkage disequilibrium (LD) (r2=0.92) 
with the functional variant rs738409 C>G p.I148M in exon 3 
of PNPLA3 that yielded a similar p value at the discovery stage 
(p=7.23×10−15, OR (95% CI)=1.71 (1.49 to 1.96)).

The other signal associated with HCC at genome- wide 
significance was rs58489806, located in intron 1 of MAU2 
(p=1.49×10−9) encoding MAU2 sister chromatid cohesion 
factor; 49 additional genome- wide significant SNPs were 
mapped to this locus. The variant rs58489806 is in strong LD 
(r2=0.80) with the coding variant rs58542926 p.E167K at the 
TM6SF2 locus (encoding transmembrane 6 superfamily member 
2) that yielded (p=2.81×10−9, OR (95% CI)=1.94 (1.56 to 
2.42)) at the discovery stage.

In stage 2, the nine lead SNPs from HCC associated loci were 
validated in independent cohorts from the UK, Germany and 
Italy in fixed- effect meta- analysis (table 1; online supplemental 
tables 2–4). In addition to rs2294915 in PNPLA3 (p=6.19×10−6) 
and rs58489806 in TM6SF2/MAU2 (p=5.22×10−4), disease 
association was replicated for the minor allele in rs2242652:A 
(p=1.07×10−3) in TERT (telomerase reverse transcriptase) 
(table 2). In the combined analysis of all stage 1 and stage 2 
samples, the association of rs2242652:A in TERT with alcohol- 
related HCC attained genome- wide significance (p=6.41×10−9, 
OR (95% CI)=0.61 (0.52 to 0.72) (table 2). The protective effect 
associated with carriage of TERT rs2242652:A remained signifi-
cant after correction for sex, age, body mass index (BMI), type 2 
diabetes and the top 15 PCs of genetic ancestry, but did not reach 
genome- wide significance (p=7.94×10−5; OR (95% CI)=0.63 
(0.50 to 0.79) (online supplemental table 5) reflecting the loss 
of power associated with the high number of missing BMI and 
diabetes data points in the analysis (table 1).

A sensitivity analysis in which the genome- wide analysis was 
additionally adjusted for sex and age also showed genome- wide 
significant association with HCC for two independent genomic 
loci PNPLA3 and TM6SF2 with HCC and suggestive evidence of 
association for TERT (p=9.28×10−6). (table 2; online supple-
mental figures 2 and 3). Of the top 15 associated loci, only 
the variants in PNPLA3, TM6SF2 and TERT were replicated 
(table 2).

The combined GWAS meta- analyses of stage 1 and 2 data sets 
of the primary and the sensitivity analyses confirmed genome- 
wide significant association with HCC for genomic loci in 
rs738409 in PNPLA3, rs58542926 in TM6SF2 and rs2242652 
in TERT. No additional risk locus attained genome- wide signif-
icance p<5.0×10−8 (online supplemental table 6). Forest plots 
showing the association between genomic loci in PNPLA3, 
TM6SF2, TERT and HCC are shown in online supplemental 
figures 4–6. Regional association plots of these three loci are 
shown in figure 1B–1D and in online supplemental figures 7–9.

Previously reported associations of HCC in the context of ArC 
with variants of HSD17B13 rs72613567:TA (p=8.95×10−3; 
OR=0.81 (95% CI 0.69 to 0.95) and APOE rs429358:C 
(p=5.44×10−3; OR=0.74 (95% CI 0.60 to 0.91) were nomi-
nally significant in this study, but did not achieve genome- wide 
significance in the discovery cohort (online supplemental tables 
5 and 7). In contrast, a recently reported association between 
rs708113:T near WNT3A was not confirmed (online supple-
mental tables 5 and 7). Other previously described HCC risk 
loci, for example, DEPDC5 in HCV- related HCC35 or STAT4 
and HLA- DQ36 were not significantly associated with ArC- 
related HCC in this study (online supplemental table 7).

Allelic and genotypic associations for TERT were highly 
significant, in the univariate analyses, for the comparisons HCC 
vs ArC (Pallelic=2.81×10−11, Pgenotypic 2.32×10−10) and HCC 
versus alcohol misuse but not for ArC vs alcohol misuse using 
combined genotype counts from the stage 1 and 2 data sets 
(online supplemental table 8; figure 2). The protective effect for 
HCC was greater in homozygous carriers of TERT rs2242652:A 
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(OR=0.41 (95% CI 0.25 to 0.67)) than in heterozygous carriers 
(OR=0.61 (95% CI 0.51 to 0.72)). In contrast, variants in 
PNPLA3 and TM6SF2 were strongly associated both with ArC 
and ArC- related HCC (online supplemental tables 9 and 10, 
figure 2).

Fine-mapping of TERT locus
In the primary meta- analysis of stage 1 and stage 2 samples, the 
strongest association signal was obtained for the minor allele 
in rs2242652:A (p=6.40×10−09; OR=0.61 (95% CI 0.52 to 
0.72)), although the alternative allele in rs10069690:T was 
similarly associated (p=5.19×10−08, OR=0.66 (95% CI 0.57 
to 0.77)). Both variants are located in intron 4 of TERT and are 
correlated (r2=0.70; online supplemental table 11). The analysis 

of LD structure at the TERT locus showed that the association 
signal spans a narrow range from intron 2 to intron 6 of TERT—
here termed LD block B- 3 region (online supplemental table 
11 and figure 7). The conditional analysis on allele dosage of 
rs2242652:A or rs10069690:T on each of the 20 SNPs from 
the B- 3 region confirmed rs2242652 to be the lead locus (online 
supplemental table 11 and 12). Indeed, none of the other vari-
ants within the B- 3 block, including rs10069690 was associated 
with HCC after conditioning on rs2242652 (online supple-
mental table 11).

Replication of the TERT variant’s association with HCC
Significant associations were observed between rs2242652:A 
and HCC in patients with HCV- related cirrhosis (p=0.047; 

Figure 1 Genome- wide association study (Discovery GWAS) results. Principal findings of genetic analyses. (A): Manhattan plot of genome- wide 
association results for alcohol- related hepatocellular carcinoma (HCC) in the primary discovery cohort. P values (−log10) are shown for SNPs that 
passed quality control. The genome- wide significance threshold (5×10−8) is shown as a black line. The threshold for replication follow- up (p<5×10−6) 
is shown as a dashed line. Gene names for replicating loci (table 2) are shown. Variants with significance p<5×10−8 are highlighted in red, those 
with p<5×10−6 are highlighted in green. (B) Locus plot for HCC risk locus PNPLA3. The −log10 (p values, meta- analysis of discovery and replication 
samples) are plotted against SNP genomic position based on NCBI Build 37, with the names and location of nearest genes shown at the bottom. 
The variant with the lowest p value (lead variant) in the discovery analysis in the region is marked by a purple diamond. SNPs are coloured to reflect 
correlation with the most significant SNP, with red denoting the highest LD (r2 >0.8) with the lead SNP. The top association signal is located in 
exon 3 of PNPLA3. Estimated recombination rates from the 1000 Genomes Project (hg19, EUR population) are plotted in blue to reflect the local LD 
structure. (C) Locus plot for HCC risk locus TM6SF2. The top association signal is located in exon 6 of TM6SF2. (D) Locus plot for HCC risk locus TERT. 
Fine- mapping analysis of the TERT association signals. Annotated LD- Blocks are clusters of strong pairwise LD SNPs and reflect the LD pattern in the 
Discovery GWAS cohort. The lead association signal is located in intron 4 of the TERT gene (annotated on the reverse strand), located in LD block B- 3 
spanning from intron 4 to intron 2 of TERT. NCBI, National Center for Biotechnology Information; SNP, single- nucleotide polymorphism.
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OR=0.72 (95% CI 0.53 to 0.99) and in the population- based 
FinnGen, UKB and BioBank Japan cohorts (table 3, online 
supplemental figure 10 and table 13).

Association of TERT variants with non-liver cancers
Associations between TERT rs2242652:A and the 10 most 
frequent cancers were explored in the UKB and FinnGen 
(FG) cohorts (online supplemental figure 10). Significant 

associations were observed with bladder cancer (FG: p=6.10 
× 10-6, OR=0.83 (95% CI 0.67 to 0.90)), UKB: p=5.82 × 
10−7, OR=0.84 (95% CI 0.79 to 0.90)), and prostate cancer 
(FG: p=5.11 × 10−11, OR=0.87 (95% CI 0.84 to 0.90)), UKB: 
p=6.16 × 10−16; OR=0.86 (95% CI 0.83 to 0.89)) while 
weaker associations were observed for lung and skin cancer. 
The effect sizes for prostate and bladder cancer were smaller 
than those for HCC/primary liver cancer in these cohort (UKB: 
HCC: p=0.028; OR=0.80 (95% CI 0.66 to 0.89), FG: primary 
liver cancer: p=0.009; OR=0.81 (95% CI 0.69 to 0.95)). These 
effect sizes are broadly consistent with those reported in the 
NHGRI- EBI Catalogue of human GWASs (online supplemental 
table 14).

Additive effect of risk variants
The proportions of patients with ArC, in the discovery and vali-
dation cohorts, who developed HCC increased with cumulative 
carriage of the risk increasing alleles rs738409:G in PNPLA3, 
rs58542926:T in TM6SF2 and rs2242652:G in TERT (online 
supplemental figure 11). In the discovery cohort, the OR for 
alcohol- related HCC was 2.12 (95% CI 1.76 to 2.56) in patients 
carrying three to four risk alleles, and 5.24 (95% CI 2.82 to 9.77) 
in patients carrying five to six risk alleles (online supplemental 
table 15). In the UK replication cohort, the ORs for carriage of 
three to four risk alleles and five to six risk alleles were even 
higher at 3.25 (95% CI 1.84 to 5.73) and 17.8 (95% CI 6.38 to 
49.6), respectively (online supplemental figure 12 and table 15).

Association with leucocyte telomere length and liver fat 
content in the UKB
The minor allele of the lead variant in TERT rs2242652:A 
(p=2.12×10−44) was significantly associated with an increase 
in LTL, as was rs10069690:T which is in strong LD with the 
lead variant (p=4.08×10−84) (online supplemental table 
16). Additional variants located in the tested interval, that 
is, rs7726159, showed even stronger association with LTL 
(p=1.16×10−219) despite weak LD with rs2242652 (r2=0.354) 

Figure 2 Association between novel (TERT) and confirmed loci 
(PNPLA3, TM6SF2) with HCC and cirrhosis phenotypes. ORs and 95% 
CIs for the susceptibility loci for alcohol- related HCC and alcohol- related 
cirrhosis (ArC) in comparison to alcohol misusers without cirrhosis 
(AM). The comparison HCC vs ArC displays allelic ORs of combined 
stage 1 and 2 samples (meta- analysis), derived from allele dosage 
data, adjusted for age, sex, BMI, type 2 diabetes status and top 15 
principal components of genetic ancestry. *The comparison HCC versus 
AM and ArC versus AM display unadjusted allelic ORs derived from 
2×2 contingency tables of allele counts observed in the total cohort, 
provided in online supplemental tables 2–4. BMI, body mass index; 
HCC, hepatocellular carcinoma.

Table 3 Replication of TERT variants in patients with alcohol- related and chronic HCV- related cirrhosis and in population- based cohorts

Cohort Controls Cases phenotype (ICD- 10) N cases | controls
TERT
Variant EA P value OR (95% CI)

Current study* ALD cirrhosis* C22.0 Liver cell carcinoma (HCC) in alcohol- related cirrhosis 1214 | 1866 rs2242652 A 6.40×10−9 0.61 (0.52 to 0.72)

Replication cohorts

Trépo et al† ALD F0- F4 fibrosis C22.0 HCC in alcohol- related liver disease (F0- F4 fibrosis) 775 | 1332 rs2242652 A 0.179 0.89 (0.75 to 1.06

Stop- HCV‡ HCV cirrhosis C22.0 Liver cell carcinoma (HCC) in HCV- related cirrhosis 169 | 890 rs2242652 A 0.047 § 0.72 (0.53 to 0.99)

Zhang et al¶ Healthy volunteers C22.0 Liver cell carcinoma (HCC) 473 | 564 rs2242652 A 0.004 0.70 (0.55 to 0.90)

Dong et al** Healthy volunteers C22.0 Liver cell carcinoma (HCC) (hepatitis- induced) 162 | 106 rs10069690 T 0.00014§ 0.36 (0.21 to 0.63)

FinnGen†† General population C22 malignant neoplasm of liver and intrahepatic bile duct 442 | 204 070 rs2242652 A 0.007 0.80 (0.68 to 0.94)

UKBB‡‡ General population C22 malignant neoplasm of liver and intrahepatic bile duct 874 | 348 465 rs2242652 A 0.027 0.87 (0.78 to 0.97)

UKBB‡‡ General population C22.0 Liver cell carcinoma (HCC) 383 | 348 956 rs2242652 A 0.028 0.80 (0.66 to 0.98)

BBJ Japan§§ BBJ population¶¶ C22.0 Liver cell carcinoma (HCC) 1866 | 195 745 rs72709458 T 0.00031 0.84 (0.76 to 0.92)

*Combined effect estimates of stage 1 and 2 samples of current study as shown in table 1 (for comparison).
†Cases: patients with ALD (80% with F3- 4 fibrosis; 20% F0- 2 fibrosis) and HCC, controls: patients with ALD (90% with F3- 4 fibrosis, 10% F0- 2 fibrosis) from Trépo et al.14

‡Cases: patients with HCV related cirrhosis and HCC, controls: patients with HCV related cirrhosis without HCC (online supplemental methods F).
§Allelic ORs were calculated from 2×2 tables on allele counts. Significance was calculated as 1 df χ2 test.
¶Zhang et al,52 Huang et al51 Han Chinese patients with HCC (individuals were excluded from the study if they had HCV).
**Dong et al61 62 male Han Chinese patients with viral hepatitis- induced primary hepatocellular carcinoma (r2=0.85 between rs10069690:T and rs2242652:A, both variants are in high linkage 
disequilibrium).
††General population controls (excluding all cancers).
‡‡As UKB data were incorporated into our discovery analysis, further interrogation of liver cancer phenotypes from UKB does not constitute independent validation.
§§Variants rs2242652 and rs10069690 were not available in the summary GWAS data from Ishigaki et al63 (PMID: 32514122, publicly available from http://jenger.riken.jp/en/result) (rs72709458 is 
the closest proxy to rs2242652 (r2=0.973)).
¶¶Removed diseases from control samples (biliary tract cancer, oesophageal cancer, gastric cancer, colorectal cancer and pancreatic cancer).
ALD, alcohol liver disease; BBJ, BioBank Japan; EA, effect allele; FinnGen, FinnGen Biobank; GWAS, Genome- Wide Association Studies; HCV, hepatitis C virus; ICD, International Classification of 
Diseases;; UKB, UK Biobank.
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(online supplemental table 11). The main association signals for 
HCC and LTL were both located in the LD block B- 3 region, 
but a direct correlation in the strength of association was not 
observed (online supplemental figure 13 and table 11). Lead vari-
ants in PNPLA3 and TM6SF2 were not significantly associated 
with LTL—rs738409 (p=0.458) and rs58542926 (p=0.475), 
but showed significant associations with liver fat content viz. 
rs738409 (p=3.39×10−61), rs58542926 (p=5.94×10−45), 
respectively (online supplemental table 16); rs2242652 in TERT 
was not significantly associated with liver fat content (p=0.144).

eQTL Analysis
Carriage of rs2242652:A was associated with increased expres-
sion of TERT in blood leucocytes (p=1.39×10−5) (online 
supplemental table 11). However, no significant eQTLs were 
found for rs2242652 in liver using the GTEx data base or in any 
other tissues.30

SNP Heritability Analysis
The percentage heritability for ArC- HCC explained by additive 
genome- wide SNPs expressed as h2 was 29.6% on the observed 
scale (GWAS cohort) and either 20.4% or 25.7% on the liability 
scale assuming a disease prevalence of 1% or 2.5%, respectively 
(online supplemental table 20 20). The proportion of pheno-
typic variation due to the underlying genetic variation in the 
PNPLA3/TM6SF2/TERT LD regions, expressed as h2, was 7.5% 
on the observed scale and 4.2% or 5.3% on the liability scale, 
assuming the same disease prevalence (online supplemental table 
17). The proportion of the total SNP heritability due to variance 
component 1 (PNPLA3/TM6SF2/TERT variants) was 25.5% for 
model 1, adjusted for 15 PCs, and 22.2% for model 2 adjusted 
for sex, age and 15 PCs. After adjustment of variance compo-
nent 1 for lead variants rs738409 in PNPLA3/rs58542926 in 
TM6SF2/rs2242652 in TERT h2 was reduced to 0.000001%, 
indicating that the genetic risk of variance component 1 was 
fully captured by the three identified lead variants.

DISCUSSION
In this study, associations at genome- wide significance were 
identified between HCC in ArC and previously recognised vari-
ants in PNPLA3 and TM6SF2, and with a variant in TERT (telo-
merase reverse transcriptase) on chromosome 5 not previously 
associated with this phenotype. In combination, these three loci 
may explain up to 25% of the total SNP heritability in HCC in 
patients with ArC.

The identification of host genetic risk factors for alcohol- 
related HCC has been largely undertaken using a candidate gene 
approach. Candidate genes have invariably been selected because 
of their association with progression of alcohol- related liver 
injury and positive robust associations for variants rs738409 in 
PNPLA3, and rs58542926 in TM6SF2 have been identified.8 9 
These variants are known to modify liver fat content and signal-
ling, but how they influence the mechanisms leading to tumour 
initiation or promotion is largely unknown.37 38 In this study, the 
increased risk associations between HCC in ArC and rs738409 
in PNPLA3 and rs58542926 in TM6SF2 were confirmed, at 
genome- wide significance.

Significant associations have also been identified between 
rs72613567 in HSD17B13 and rs429358 in APOE and a reduced 
risk for developing HCC in ArC.9–11 In this study, these protec-
tive associations were confirmed but failed to reach a detectable 
genome- wide significance level (online supplemental table 5).

Further insights into the genetic landscape of HCC in the 
context of ArLD were recently provided by Trépo et al14 who 
undertook a discovery GWAS of HCC in people with a spec-
trum of ArLD in a French- Belgian collaborative effort. Similar 
to this study, they confirmed genome- wide significant associ-
ations with an increased risk for developing alcohol- related 
HCC and variants in PNPLA3 and TM6SF2. In addition, they 
found an equally significant association with rs708113 in the 
WNT3A- WNT9A region on chromosome 1q42, which was asso-
ciated with a reduced risk for development of alcohol- related 
HCC. The presence of this variant was associated with increased 
immune cell infiltration of tumour tissues and a lower frequency 
of beta- catenin mutations (CTNNB1) which frequently precede 
HCC occurrence.39 This protective effect of rs708113 was not 
observed in people with HCC on a background of chronic HCV 
infection or NAFLD.14

In this study, rs708113 in the WNT3A- WNT9A region was not 
significantly associated with the development of HCC, possibly 
reflecting differences in the cohort composition between the two 
studies although both comprised of participants of European 
descent. This assumption of population diversity is supported, 
to some extent, by the fact that in the French- Belgian cohorts the 
effect size of rs58542926 in TM6SF2 surpassed that of rs738409 
in PNPLA3 which has been the strongest single genetic risk locus 
for ArLD in previous candidate gene association studies.40

The key finding in this study was the identification of a risk 
locus in TERT, that is not related to lipid turnover, inflam-
mation or fibrogenesis but appears to be highly influential in 
HCC development.41 Like any cancer, HCC arises when healthy 
hepatocytes acquire mutations in specific genes regulating cell 
division. In HCC, TERT is the most commonly mutated gene, 
with mutations (mainly in the promoter region) present in up 
to 60% of tumours.42 This lends clear plausibility to the associa-
tion reported in this study between inherited polymorphisms in 
TERT and alcohol- related HCC. Similar relationships between 
germline and somatic variants have been identified for other 
cancers types.43 The biology of telomere regulation is still being 
unravelled and remains incompletely understood. TERT encodes 
the catalytic subunit (hTERT) of the enzyme telomerase, which 
maintains telomeres, the repeated DNA segments found at the 
ends of chromosomes. In most cells telomeres progressively 
shorten as the cells repeatedly divide and this eventually triggers 
the cell to stop dividing or to undergo apoptosis. Telomerase 
counteracts the shortening of telomeres by adding small repet-
itive DNA segments to the ends of the chromosomes during 
each cell division cycle.44 Telomerase is also abnormally active 
in most cancer cells.45 TERT expression levels significantly affect 
telomerase activity in various cells and tissues.46 Previous studies 
show that older age, male gender and cirrhosis (all classic risk 
factors for HCC) are associated with shorter telomere length 
in liver tissue.47 Thus, this study, showing that rs2242652:A 
reduces HCC risk while at the same time increasing telomere 
length, is directionally concordant with this previous work. 
From a mechanistic perspective, it could be that shorter telo-
meres leave cells more vulnerable to mutations in driver genes, 
thus accelerating hepatocarcinogenesis.47 It is important to point 
out however that the association between rs2242652 and HCC 
may not be entirely mediated through telomere length alone. 
Indeed, for variants in TERT, we found that there was not a 
good correlation between strength of association with telomere 
length and strength of association with HCC. Thus, rs2242652 
is not simply acting as a surrogate for telomere length. Relevant 
to this point is that, as part of its non- canonical functions TERT 
also regulates the WNT/β-catenin pathway.48 49 This signalling 
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pathway is suggested to play a role in alcohol- induced fibrogen-
esis and hepatocarcinogenesis, too.14 50 However, regarding the 
risk of alcohol- induced fibrosis/cirrhosis, our data unequivocally 
show no association with rs2242652 in TERT.

There is also some support for the findings in this study in 
previous publications. In the GWAS undertaken by Trépo et 
al14 rs2242652:A in TERT was associated with a reduced risk 
of HCC, but the OR was weaker than in this study and did 
not reach statistical significance (p=0.179; OR=0.89 (95% CI 
0.75 to 1.06)). However, carriage of rs10069690:T in TERT—
the nearest available proxy to rs2242652—was associated with 
a significantly reduced risk of HCC development (p=0.036; 
OR=0.84 (95% CI 0.71 to 0.99)). The significant association 
between rs2242652:A in TERT with liver and intrahepatic bile 
duct carcinoma in the population- based FinnGen cohort and 
with HCC in the BioBank Japan cohort additionally substan-
tiate this study’s findings. A case–control study in Han Chinese 
involving 473 patients with HCC and 564 healthy volunteers, 
which is reported in two separate publications (Huang et al and 
Zhang et al51 52), also identified associations between variants in 
TERT and the development of HCC; carriage of rs2242652:A in 
TERT was associated with a reduced risk for HCC development 
(OR =0.70, 95% CI 0.55 to 0.90, p =0.004), as was carriage 
of rs10069690:T (OR =0.75, 95% CI 0.59 to 0.96, p=0.021). 
Patients with chronic HCV infection were excluded from this 
study but otherwise it is unclear whether the patients with HCC 
had underlying chronic liver disease and, if so, its aetiology.

A number of HCC risk loci have been identified in patients 
developing HCC on a background of chronic HCV35 and 
chronic HBV,36 but none was significantly associated with ArC- 
related HCC in this study. However, there is some evidence 
that variants in TERT may predispose to HCC in other types 
of chronic liver disease. Thus, a significant association between 
rs2242652:A and the reduced risk for developing HCC was 
observed in patients with HCV- related cirrhosis in this study 
following reanalysis of the STOP- HCV53 data. Also, in a small 
study Dong et al54 showed that carriage of the common allele T 
in rs10069690 is associated with an increased risk of developing 
HCC on a background of chronic viral hepatitis (OR = 2.78, 
95% CI 1.62 to 4.78, p=0.00014). Thus, the association between 
rs2242652 and HCC may extend beyond its relationship with 
ArC. Further work is warranted to assess if a similar association 
applies to patients with NAFLD. A previous study showed that 
rare loss of function germline mutations in TERT are enriched in 
patients with NAFLD- HCC relative to controls—however, the 
specific relevance of the rs2242652 locus in this patient group 
is unknown.55

TERT rs2242652 has also been implicated in the susceptibility 
for developing other cancers but the direction of association 
seems to vary between cancer types (online supplemental table 
14). In this study, rs2242652:A was significantly associated with 
reduced risks for developing bladder cancer and prostate cancer 
in the UKB and FinnGen cohorts. Kote- Jarai et al56 found that 
carriage of TERT rs2242652:A: was associated with a lower risk 
for developing prostate cancer and with increased TERT expres-
sion which has been reported to improves survival, in prostate 
cancer. Further large studies involving diverse populations are 
clearly needed.

This study has a number of strengths including: (1) use of 
a two stage GWAS approach; (2) large, carefully selected case 
and control samples focusing on HCC in patients with estab-
lished ArC; (3) careful exclusion of confounding comorbidities; 
(4) uniform inclusion of Caucasians participants of European 
ancestry; (5) the protective effect of rs2242652:A on HCC 

has been confirmed in the Japanese and Chinese population, 
suggesting that it may be applicable to East Asian population 
too, and (6) although the study was confined, by design, to 
patients with HCC on a background of ArC a cohort of patients 
with HCV- related HCC was also included to assess the gener-
alisability of our findings to other aetiologies. The study also 
has a number of limitations: (1) it was performed retrospectively 
and hence potentially important information such as the lifetime 
alcohol history, information on diabetes and obesity were not 
generally available; (2) it had comparatively low power to detect 
true disease associations with smaller effect sizes (OR <1.4), at 
the levels of significance needed for GWAS analysis, and (3) only 
a minority of the HCC cases had histological confirmation of 
the diagnosis so tissue specimen for molecular analyses were not 
available.

In conclusion, this study identifies TERT rs2242652:A as a 
novel genetic factor for HCC development in ArC and confirmed 
the importance of the PNPLA3 and TM6SF2 as risk factors for 
HCC in this population. While the association between HCC 
and rs2242652:A in TERT is robust, the functional implications 
of carriage of this protective allele remains unclear. Carriage 
of rs2242652:A was significantly associated with an increase 
in leucocyte telomere lengths, but data on its effect on TERT 
transcription in liver tissue were not available. Thus, the func-
tional implications of this association require further study in 
this specific context since the impact of TERT transcription, telo-
mere length and the risk of malignancy remains controversial.57
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