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Introduction
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative 
disease characterized by progressive degeneration of spinal and 
cortical motor neurons that leads to paralysis and eventually 

death, primarily from respiratory failure.1–3 Currently, there is 
no cure or effective treatment for ALS.4 Several genetic variants 
have been associated with the disease, but only about 5%–10% 
of cases are familial with a Mendelian inheritance pattern.3,5 
90 to 95% of ALS cases are classified as sporadic, that is, have 
no family history of the disease.5 ALS has an incidence of 1.9 
cases per 100,000 people that varies with geography, sex, and 
age.6–11 Globally, the average age of symptoms onset ranges 
from 46.2 to 70 years.6,12 Disease progression in ALS is also 
variable: about 10% of patients have a slow form of the disease 
with a post-diagnosis survival of 10 years or longer, but most 
cases have a shorter survival from symptoms onset to death 
of 24–50 months.4 To date, several studies have assessed risk 
factors associated with progression and aggravation of ALS, 
including genetic variants, age at onset, body mass index, nutri-
tional status, comorbidities, and to a less extent environmental 
factors13–16; however, little is still known to inform disease prog-
nosis or treatment.

What this study adds

Assessing the specific associations of PM2.5 components with 
amyotrophic lateral sclerosis (ALS) aggravation provides valu-
able information for understanding the potential for particulate 
matter chemical composition to influence PM2.5 toxicity. This 
information is essential in the development of source-targeted 
air pollution regulations, and, importantly, identifying modifi-
able environmental factors that aggravate ALS may open new 
venues to reduce the burden of the disease.
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Background: Long-term exposure to fine particulate matter (PM2.5) has been associated with disease aggravation in amyo-
trophic lateral sclerosis (ALS). In this study, we characterized long-term exposure to six major PM2.5 components and their individual 
association with disease aggravation in ALS.
Methods: We leveraged 15 years of data from the New York Department of Health Statewide Planning and Research Cooperative 
System (2000–2014) to calculate annual ALS first hospitalizations in New York State. We used the first hospital admission as a sur-
rogate of disease aggravation and a prediction model to estimate population-weighted annual black carbon, organic matter (OM), 
nitrate, sulfate, sea salt, and soil concentrations at the county level. We used a multi-pollutant mixed quasi-Poisson model with 
county-specific random intercepts to estimate rate ratios (RR) of 1-year exposure to each PM2.5 component and disease aggravation 
in ALS, adjusting for potential confounders.
Results: We observed 5,655 first ALS-related hospitalizations. The annual average hospitalization count per county was 6.08 
and the average PM2.5 total mass concentration per county was 8.1 μg/m3—below the United States’ National Ambient Air Quality 
Standard of 12 μg/m3. We found a consistent positive association between ALS aggravation and OM (1.17, 95% confidence intervals 
[CI], 1.11, 1.24 per standard deviation [SD] increase) and a negative association with soil (RR = 0.91, 95% CI, 0.86, 0.97).
Conclusion: Our findings suggest that PM2.5 composition may influence its effect on ALS. We found that annual increases in coun-
ty-level particulate OM may be associated with disease aggravation in ALS, even at PM2.5 levels below current standards.

Key words: PM2.5 components; fine particulate matter composition; air pollution; amyotrophic lateral sclerosis; ALS; neurodegen-
eration; long-term exposures
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Several experimental studies have shown that fine particulate 
matter (PM2.5, particles with a diameter ≤2.5 µm) can trigger 
biological responses that may aggravate neurodegenerative dis-
eases, such as oxidative stress, proteinopathies,17–25 mitochon-
drial damage,26,27 glutamatergic neurotoxicity,28 and systemic 
inflammation, in turn, linked to neuroinflammation.21,25,29–31 
However, only three epidemiological studies have previously 
evaluated the potential PM2.5–ALS association,32–34 in part 
because the rare nature of the disease presents statistical power 
challenges. Two of the three previous studies focused on disease 
aggravation as the outcome. Myung et al33 linked short-term 
exposure to PM2.5 with disease aggravation using hospitaliza-
tion data in Korea; and a previous study by our group also 
estimated a positive association between long-term exposure 
to PM2.5 and disease aggravation in ALS.34 Disease aggravation 
is an important and relevant area of study in ALS, and other 
neurodegenerative diseases. Identifying modifiable factors that 
contribute to disease aggravation could provide valuable infor-
mation to improve disease prognosis and inform the develop-
ment of interventions aiming to minimize disease burden. Thus, 
in this study, we further investigate the potential link between 
exposure to PM2.5 components and disease aggravation in ALS.

PM2.5 is a heterogeneous mixture of particles with various 
chemical components that change geographically and temporally 
based on local pollution sources and weather patterns.35,36 As a 
result, evaluating exposure to total PM2.5 mass does not provide 
information into specific pollution sources or chemical species 
that may be associated with ALS. Variations in PM2.5 composi-
tion, among other factors (e.g., exposure windows, adjustment 
for confounders, exposure measurement error, and study design), 
may influence PM2.5 effects on ALS, as shown in other health out-
comes.37–39 Thus, to further characterize the potential PM2.5–ALS 
association, in this study, we assessed exposure to six major PM2.5 
components: black carbon (BC), organic matter (OM), sulfate, 
nitrate, sea salt (SS), and soil. We leveraged data on first ALS hos-
pitalizations from all New York State (NYS) from 2000 to 2014 
and air pollution estimates from a previously validated model40 
to evaluate PM2.5 components’ independent association with ALS 
disease aggravation. We focused our study on a 1-year exposure 
window based on existing evidence for a likely causal relationship 
between long-term PM2.5 exposure and nervous system effects.41 
Our study’s objective is to assess whether year-long exposures 
to relatively medium-to-low concentrations of PM2.5, such as the 
ones observed throughout NYS, differ in their association with 
ALS aggravation based on PM2.5 composition.

Methods

Study population

Hospitalization data were obtained from the New York 
Department of Health Statewide Planning and Research 
Cooperative System (SPARCS). SPARCS is a comprehensive data 
reporting system containing information on hospital admissions 
and emergency department (ED) visits for all New York State 
(NYS). SPARCS encompasses roughly 98% of all hospitaliza-
tions in nonfederal acute care facilities, regardless of insurance 
status. In addition to hospitalization diagnosis, SPARCS con-
tains information on age, sex, and residential addresses. Patients 
are also assigned a unique identification number after their first 
hospital visit, which allows for patient tracking over time. We 
identified ALS patients based on hospitalizations with an ALS 
discharge between the years 2000 and 2014. For each patient, we 
only used the first hospitalization event. We used available data 
from 1995 to 1999 to remove some of the cases with an existing 
ALS hospitalization before 2000. Finally, we calculated annual 
first hospitalization counts per county for all NYS. We obtained 
approval from Columbia University Institutional Review Board 
to conduct the analysis. The same board waived the need for 
informed consent because of the public nature of the data.

Outcome definition

The International Classification of Diseases ninth revision (ICD-9)  
code 335.20 corresponds specifically to ALS. We used hospital-
izations with a primary or secondary 335.20 discharge code to 
identify ALS cases. Hospitalizations with a primary discharge 
of ALS included patients hospitalized for a health condition 
directly related to ALS, such as motor complications or respi-
ratory failure. Subjects with a secondary discharge code of ALS 
were hospitalized primarily for health reasons unrelated or indi-
rectly related to ALS (e.g., infections, heart attacks). We focused 
our study specifically on first hospitalizations. We considered 
the first hospitalization as a proxy for disease aggravation. 
Using the incidence of the first hospitalization, we aimed to cap-
ture cases crossing to a more severe stage of the disease—cases 
developing for the first time clinical symptoms severe enough to 
require hospitalization.

Air pollution data

Annual PM2.5 BC, nitrate, sulfate, OM, SS, and soil mass con-
centrations were predicted by a well-validated air pollution 
prediction model described in detail in van Donkelaar et al.40 
In summary, the PM2.5 total mass was estimated from satellite 
retrievals, then partitioned into chemical composition based on 
a chemical transport model. Finally, the resulting mass estimates 
were statistically fused with ground-based measurements to 
obtain accurate continuous estimates at a 1 × 1 km grid despite 
the sparse composition of monitor density. The prediction mod-
els perform well: the cross-validated R2 values range from 0.57 
to 0.96 with the strongest agreement for sulfate (R2 = 0.96) and 
nitrate (R2 = 0.86) and the lowest for OM (R2 = 0.57). We cal-
culated annual population-weighted county averages from the 
grid estimates for each component and total PM2.5 mass for our 
analyses. We first averaged the predicted annual concentrations 
over all grids within a county subdivision (minor civil county 
division, e.g., towns and townships), then calculated an overall 
county average weighting in more heavily the county subdivi-
sions with larger populations. Finally, we scaled the air pollut-
ant concentrations by dividing by the respective component’s 
standard deviation (SD); scaling by SD facilitates comparability 
of effect estimates across components. We assigned exposures 
based on the patients’ county of residence and year of the first 
hospitalization.

Potential confounders

Due to the rare nature of ALS, the unit of analysis in our study 
is county-year to ensure enough cases per spatial and temporal 
unit. By definition, in this study design, potential confounders 
can only be variables that vary from year to year and across 
counties and co-vary both with ALS first hospitalization counts 
(outcome) and PM2.5 components concentration (exposure). In 
a county-year analysis, there can be no confounding by per-
son-specific factors that vary within years and counties because 
all persons in a county during a given year are assigned the same 
pollutant concentration.42

We accounted for potential geographically varying confound-
ing by including county-specific socioeconomic status (SES) vari-
ables. From the US Census Bureau and American Community 
Survey, we obtained annual median household income, percent 
of residents below poverty, percent of residents without a high 
school degree, and racial/ethnic distribution (proportion of 
White, Asian, Black, and Hispanic residents) data for the years 
2000, 2004–2014. For years without census data (2001–2003), 
we interpolated available data using a generalized additive model 
with a penalized spline for year to allow for nonlinear time 
trends. To improve SES characterization, we also included annual 
county-level smoking prevalence and percent obesity data, which 
we obtained from the Behavioral Risk Factor Surveillance System 
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for 2000–2014. We also adjusted for urbanization level using the 
2013 urban–rural classification scheme developed by the National 
Center for Health Statistics (NCHS).43 This classification was 
explicitly developed for counties and consists of six urbanicity 
levels. We summarized it into four levels by combining small and 
medium metropolitan areas into one level and the two most rural 
levels into another single level. In summary, from most urban to 
rural, the four urbanization levels are (1) “central metro”: coun-
ties that encompass the largest principal city of a metropolitan 
area; (2) “fringe metro”: counties that do not include principal 
metropolitan cities (both central and fringe metro have a popu-
lation ≥1 million); (3) “metro”: small and medium metropolitan 
areas with a population of ≤999,999; and (4) “rural”: micropoli-
tan or non-metropolitan counties.43

We adjusted for long-term time trends by including a calendar 
year variable, mean winter temperature, and summer mean tem-
perature to account for potential temporally varying confound-
ers. We acquired data on the daily temperature at a 1/8th-degree 
grid from the North America Land Data Assimilation System.44 
We calculated monthly mean temperatures at the county level 
from the daily estimates over all grids within a county, then 
averaged June–August and December–February to get summer 
and winter mean temperatures each year, respectively.

Statistical analysis

We used a variation of the approach described in Wang et al42 
to estimate the association between long-term exposure to 
PM2.5 components and ALS aggravation. Specifically, we ran a 
multivariable Poisson generalized additive mixed model with 
a log link and a quasi-likelihood that included all PM2.5 com-
ponents (BC, nitrate, OM, sulfate, soil, and SS), temporal and 
geographical confounders, population size as an offset term, 
and county-specific random intercepts. The quasi-likelihood 
allows for potential overdispersion in the outcome, the random 
effect accounts for within-county correlation in the exposure 
estimates, and the offset term for differences in population size 
across counties. The additive aspect of our model allowed us to 
test for nonlinear relationships between outcome and exposure/ 
(we discuss this in more detail in the following paragraph). Our 
model design evaluates the associations between specific PM2.5 
components and first ALS hospitalization. We included all PM2.5 
components in a single model to isolate component-specific 
effects and control potential co-pollutant confounding. From 
here on, we refer to this model as the multipollutant model.

To avoid potential misspecification and comprehensively 
characterize the exposure–response relationships, we evaluated 
nonlinearities in both confounders and PM2.5 components. We 
used penalized splines (p-spline) to flexibly model the asso-
ciations between the outcome and PM2.5 components and all 
continuous covariates. Then, we used the generalized cross-vali-
dation (GCV) criterion to select the optimal degrees of freedom 
(df) in the exposure and confounding variables. Relationships 
with estimated df (edf) >1 were considered nonlinear and those 
with edf = 1 linear. When no evidence of nonlinearity was found 
(optimal edf = 1), we included each the PM2.5 component or 
covariant as a continuous measure and modeled its linear effect. 
We reported the linear estimates for all PM2.5 components and 
the exposure–response curve for components that deviated from 
linearity.

Sensitivity analysis

To assess the robustness of results from the multipollutant 
model, we ran six single-pollutant models, one model for each 
PM2.5 component (BC, nitrate, sulfate, OM, SS, or soil). These 
models were constructed following the same steps as in the main 
analysis, with the difference that they included only one PM2.5 

component per model and were adjusted for the difference of 
the population-weighted PM2.5 total mass concentration with 
the component (calculated as total PM2.5 mass concentration–
PM2.5 component concentration).45 By adjusting for the differ-
ence of PM2.5 mass concentration with each component, we 
are accounting for components of PM2.5 that may be correlated 
both with other components and the outcome.46 Additionally, 
by including a single pollutant per model, the sensitivity analysis 
addressed potential issues resulting from collinearity.

We adjusted for potential confounding by long-term trends in 
all health models by including the calendar year. Thus, we per-
formed a second sensitivity analysis to assess the robustness of 
our results to the parameterization of the variable year. For this, 
we compared component-specific effect estimates obtained from 
three multipollutant models specifying year as (a) a linear term, 
(b) a natural spline with 4 df, and (c) a categorical variable.

Finally, to assess whether the effects differ by age, we per-
formed an age-stratified analysis of the multipollutant model for 
age groups ≥65 and <65. The stratified models were adjusted for 
SES and temporal and geographical confounding using the same 
covariates as the main analysis.

For all analyses, the linear results are presented as rate ratios 
(RR) per 1 SD increase in the annual concentration of a given 
PM2.5 component, along with 95% confidence intervals (CI). All 
analyses were performed using the R Statistical Software version 
4.0.3 (Foundation for Statistical Computing, Vienna, Austria).

Results

Study population characteristics

Across all 62 NYS counties, the annual mean of first ALS hos-
pitalizations per county was 6.0 with a SD of 9.6. There were 
5,655 first ALS hospitalizations (either as primary or second-
ary diagnosis) from 2000 to 2014. The data included 2,561 
female (45.3%) and 3,093 male hospitalizations (54.7%) and 
one patient with anonymous sex. Across counties and years, the 
mean age at first hospitalization was 64.3 years (SD = 13.5). 
Descriptive statistics for the outcome and covariates are pre-
sented in the Table, and time trends across counties in Figure S.1;  
http://links.lww.com/EE/A182. Out of the total hospitalizations, 
a primary diagnosis for ALS was the most common primary 
diagnosis (41.0%), and the second most common diagnoses 
were for diseases of the respiratory system (16.0%). Figure 1 
presents the hospitalization percent breakdown for various pri-
mary diagnosis categories.

PM2.5 component characteristics

Average annual concentrations of PM2.5 components are sum-
marized in the Table. OM and sulfate had the highest mean mass 
concentrations constituting 35% and 31% of total PM2.5 mass, 
respectively, and SS had the lowest, accounting for only 3% of 
total PM2.5 mass. The concentrations of PM2.5 components var-
ied across counties and years. Overall, sulfate and soil concen-
trations have a consistent downward pattern across time; OM, 
nitrate, and SS also decreased over time but more gradually; 
BC reached a pick in 2005 and has since been decreasing (these 
patterns varied slightly from county to county, Figure 2). The 
Spearman correlation coefficient among components ranged 
from 0.39 to 0.9. The highest correlation was observed between 
soil and nitrate (0.83), followed by sulfate and nitrate (0.73). 
Nitrate and sulfate had the strongest correlations with PM2.5, 
0.90 and 0.86, respectively (Figure 3).

Exposure–response relationships

We found no deviations from linearity in any of the exposure-re-
sponse associations. In the multi-pollutant model, we found that 

http://links.lww.com/EE/A182
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one SD increase in OM concentration is associated with a 17% 
(RR = 1.17, 95% CI, 1.11, 1.24) increase in the annual ALS first 
hospitalization rate, and 1 SD increase in SS with a 6% increase 
(RR = 1.06, 95% CI, 1.01, 1.11). We also found negative soil– 
and BC–ALS associations (RR = 0.91, 95% CI, 0.86, 0.97, and 
RR = 0.94, 95% CI, 0.89, 0.99, respectively). For nitrate and 
sulfate, we found null results (Figure 4).

Sensitivity analysis

As sensitivity analyses, we ran single-pollutant models that 
included only one PM2.5 component and were adjusted for 

confounders and the difference of PM2.5 mass concentration with 
the component. We found no deviations from linearity in any  
of the exposure–response associations (optimal edf = 1). Overall, 
the sensitivity analysis results support the main analysis except 
for sulfate. For OM (RR = 1.14, 95% CI, 1.07, 1.20) and soil 
(RR = 0.89, 95% CI, 0.83, 0.95), we found a positive and nega-
tive association respectively. We found a marginal negative asso-
ciation between BC and ALS first hospitalization (RR = 0.94, 
95% CI, 0.87, 1.01) and a marginal positive SS–ALS association 
(RR = 1.05, 95% CI, 0.99, 1.11). In the case of sulfate, we found 
a marginal negative association with ALS (RR = 0.90, 95% 
CI, 0.80, 1.00), which we did not observe in the main analysis 
(Figure 4). We found no differences by age group (≥65 vs. <65, 
Figure S.2; http://links.lww.com/EE/A182).

In the main analysis, calendar year was parameterized as a 
linear term, based on the optimal df estimated by GCV (edf = 1). 
In the second sensitivity analysis, we evaluated the robustness of 
our results to this parameterization. The effect estimates for OM 
and soil remained robust regardless of whether year was speci-
fied as linear, with a natural spline, or as categorical. The results 
for sulfate were null across all models. The effect estimates for 
SS were null when year was specified as categorical (RR = 1.04, 
95% CI, 0.96, 1.12) or with a natural spline (RR = 1.03, 95% 
CI, 0.97, 1.11) but positive if year was linear (RR = 1.06, 95% 
CI, 1.01, 1.11). Overall, the BC and nitrate results were the most 
sensitive to adjustment for time trends. The ALS–nitrate associ-
ation was null when year was linear (RR = 1.02, 95% CI, 0.95, 
1.10) or with a natural spline (RR = 1.02, 95% CI, 0.94, 1.11) 
but significantly positive when year was categorical (RR = 1.15, 
95% CI, 1.03, 1.27). In the case of BC, the association was null 
when year was categorical (RR = 1.02, 95% CI, 0.94, 1.11) 
or with a natural spline (RR = 0.96, 95% CI, 0.90, 1.04), but 
significantly negative if year was specified as linear (RR = 0.94, 
95% CI, 0.89, 0.99; Figure S.3; http://links.lww.com/EE/A182).

Discussion
Exposure to PM2.5 has been linked with disease aggravation in 
ALS and other neurodegenerative diseases. However, the effect 
of the chemical composition of PM2.5 on those associations has 
been less studied. This study analyzed exposure to six major 
PM2.5 components and their association with disease aggrava-
tion in ALS. We found a robust positive association between 

Table.

Descriptive statistics per county per year (2000–2014) for the 
outcome, exposure variables, and covariates

 Mean (SD) 25% Median 75%

Outcome     
 ALS 6.0 (9.6) 1 2 6
  Female 2.7 (4.5) 0 1 3
  Male 3.3 (5.3) 0 1 3
  <70 years 2.8 (5.0) 0 1 3
  ≥70 years 3.2 (5.1) 0 1 3.7
Exposure (μg/m3)     
 PM

2.5
8.1 (2.3) 6.4 7.6 9.2

 Black carbon 0.6 (0.2) 0.5 0.6 0.7
 Nitrate 0.9 (0.3) 0.7 0.9 1.1
 Organic matter 2.9 (0.7) 2.4 2.7 3.3
 Sulfate 2.5 (0.9) 1.8 2.4 3.1
 Soil 0.3 (0.1) 0.2 0.3 0.3
 Sea salt 0.2 (0.2) 0.1 0.2 0.3
Covariates     
 Median income (× $1,000) 49.1 (12.6) 41.3 45.7 52.4
 Percent below poverty 12.9 (4.1) 10.4 12.6 14.9
 Percent without high school 18.1 (7.3) 12.8 17.3 22.2
 Percent smoking prevalence 22. (3.9) 20.7 23.6 26.1
 Percent obesity 25 (4.5) 22.3 25.4 27.8
 Percent Hispanic 6.5 (8.6) 1.9 2.9 6.2
 Percent White not Hispanic 83.6 (16.8) 80.3 90.2 94
 Percent Black not Hispanic 5.7 (6.3) 1.4 3.4 7.5
 Percent Asian not Hispanic 2.2 (3.4) 0.5 0.9 2.2
 Summer mean temperature (°C) 20.2 (1.5) 19.2 20.2 21.1
 Winter mean temperature (°C) −3.1 (2.5) −4.9 −3.3 −1.5

Figure 1. Primary diagnosis. Percent hospitalizations (x axis) out of total with a primary diagnosis within each diagnosis category (y axis). The percent of hos-
pitalizations with an ALS primary diagnosis (41.0%) is highlighted in green.

http://links.lww.com/EE/A182
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ALS aggravation and OM and a negative association with soil. 
The results from the multipollutant model were stable as indi-
cated by the similarity in CIs compared to single-pollutant mod-
els, indicating that there is enough information in the model to 
handle any correlations among components adequately.

Only a small number of epidemiological studies have evalu-
ated the association between exposure to specific air pollution 
sources or chemical compounds and ALS. Seelen et al. found a 
positive association between exposure to nitrogen dioxide and 
traffic-related PM2.5 with ALS diagnosis but Filippini et al.47 
found limited evidence for an association between traffic-related 

particles with a diameter ≤10 μm (PM10) and ALS diagnosis, 
indicating that fine particle components may be of more rele-
vance. Furthermore, an occupational study found a higher risk 
for ALS among workers exposed to diesel . Myung et al.33 and 
Dickerson et al.48 found a positive association between expo-
sure to carbon monoxide (a combustion product) and sulfur 
dioxide (associated with coal power plants and oil industry49,50) 
with ALS aggravation. Another study evaluated exposure to 
various hazardous air pollutants including metals, aromatic 
solvents, chlorinated solvents, and pesticides and reported a 
positive association between exposure to aromatic solvents—a 

Figure 2. PM2.5 components concentrations. The spaghetti plots show the annual mean concentrations per county (gray lines) and across NYS (colored lines) 
from 2000 to 2014 for each PM2.5 component and total PM2.5 mass.
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Figure 3. PM2.5 component correlations. Spearman correlation coefficients were estimated from annual population-weighted county mean concentrations in 
NYS from 2000 to 2014.

Figure 4. PM2.5 component associations. Linear associations between 1-year exposure to each PM2.5 component and first ALS hospitalization in New York 
State (2000–2014). The multipollutant model (blue) included all PM2.5 components and the single-pollutant models (black) included each PM2.5 component in 
separate models, adjusted for total PM2.5 mass. All models were adjusted for potential temporal and geographical confounders. The effect estimates correspond 
to the rate ratios of first ALS hospitalization per one standard deviation increase in annual PM2.5 component concentrations. Bars represent 95% confidence 
intervals.
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constituent of OM—and ALS.51 Finally, a recent cohort study 
found an association between ALS clinical diagnosis and var-
ious metals from road traffic non-tailpipe emissions.52 Overall, 
previous findings suggest that some traffic-related pollutants 
may be relevant to ALS diagnosis and aggravation. Our work 
complements previous studies by providing effect estimates for 
major PM2.5 components, some of which were not evaluated 
previously. The findings in our research bring particular atten-
tion to the OM PM2.5 component. Interestingly, in a previous 
study, we also found an association between OM and disease 
aggravation in Parkinson’s disease38—further highlighting the 
potential relevance of OM in neurodegenerative disease.
OM is frequently the major fraction of ambient PM2.5 in urban 
areas53,54—where much of the PM2.5 exposure occurs due to the 
high density of population and emission sources. In our exposure 
data, OM contributes the largest fraction to PM2.5 total mass 
(on average 35%). Over the past decades, regulatory actions 
resulted in significant reductions of sulfate and nitrate particle 
components in NYS but the improvements in OM were smaller.55 
OM is a complex mixture of thousands of individual com-
pounds directly emitted (primary) or generated by atmospheric 
chemical processes (secondary).55,56 Several OM compounds are 
well-known toxins (e.g., polycyclic aromatic hydrocarbons); 
however, the majority of OM mass remains unspeciated.53,54,56 
A large fraction of OM is organic carbon (OC).57 In NYS, an 
important source of OC emissions is motor vehicles. Primary 
PM2.5 emissions from automobiles are composed mainly of ele-
mental and organic carbon (>80%).55 Motor vehicle exhaust is 
also a source of volatile organic compounds that contribute to 
the formation of secondary OM particles.55 Residential wood 
combustion is another significant source of primary OC in NYS. 
In 2014, residential wood combustion accounted for 10% of 
primary PM2.5 emissions in NYC and NYS exceeded emissions 
from all other heating fuels.55 Furthermore, similar to vehicle 
exhaust, residential wood combustion is also a source of chem-
ical compounds that contribute to the formation of secondary 
OM.55 Although motor vehicles and residential wood combus-
tion are the major sources of OM in NYS, OM may not serve 
as a tracer to the same sources at a different location or even 
time period.58 Thus, up-to-date source apportionment studies 
specific to geographical regions are essential to identifying rele-
vant sources of air pollutants potentially associated with ALS or 
other neurodegenerative diseases.

Our results also suggest a marginally positive association 
between SS exposure and ALS and a negative association with 
soil and BC. In NYS, SS and soil contribute little to the net PM2.5 
mass (3.2% and 3.5%, respectively; see the Table). SS is mainly 
composed of chloride ions, and studies characterizing PM2.5 
composition in the United States indicate that the contribution 
of SS to PM2.5 is substantial only in non-urban coastal areas.57 
Soil particle mass in the northeastern United States tends to be 
low and patterns could reflect the impact of long-range trans-
port from North Africa.57 The protective association between 
soil and ALS could result from decreases of toxic components 
in the net PM2.5 mass as soil concentration increases. Our anal-
ysis does not evaluate this explicitly, but we observed a stronger 
negative association in the soil single-pollutant model relative to 
the multipollutant model, which would support this hypothesis. 
However, future studies are needed to determine if the nega-
tive soil–ALS association is real, but currently, anthropogenic 
activities are not significant contributors to this component. We 
also found a marginal negative BC–ALS association that did not 
hold to our sensitivity analyses, indicating this effect estimate is 
not robust and may be due to residual confounding.

Strengths and limitations

To our knowledge, our study is the first to assess exposure to 
specific fine particle components in association with ALS dis-
ease aggravation. Disease prognosis in ALS patients is variable 

and little is known about environmental factors that contribute 
to patient deterioration. Our study is one of the most exten-
sive studies to date of environmental risk factors of ALS and 
one of the few epidemiological studies that assessed exposure 
to air pollution in ALS. PM2.5 exposure has been identified as 
a risk factor for several adverse health outcomes, but more 
studies are needed to determine if chemical composition influ-
ences PM2.5 toxicity and identify potential toxic components 
and relevant sources. Thus, we evaluated long-term exposure 
to specific PM2.5 components and estimated component-specific 
associations with disease aggravation in ALS. Our study brings 
insight into the role that PM2.5 chemical composition may play 
in its adverse effects and highlights potentially relevant pollu-
tion sources. Importantly, our study covers a geographical area 
that includes urban and rural locations and a diverse popula-
tion. Other studies using hospitalization data to examine the 
PM2.5 association with neurodegenerative disease in the United 
States have leveraged information from the Medicare popula-
tion, which only includes enrollees ≥65 years old.59,60 SPARCS 
includes information on hospitalizations of all ages and inde-
pendently of health insurance.

However, our findings should be interpreted in light of our 
limitations. Since SPARCS only includes information on hos-
pitalizations, we did not have data on noncases to perform 
an individual-level time-to-event analysis. In our study design, 
the unit of observation is county-year; the number of events 
per unit of analysis is important for statistical power in this 
design, and—due to the rare nature of the disease—we were 
limited to a county-level analysis. To assess exposure, we used 
population-weighted averages for each PM2.5 component to 
reduce exposure measurement error. Although aggregation 
is expected to induce some exposure measurement error, the 
error component specific to the aggregation is expected to be 
Berkson61–63 and should not bias the estimated effects, albeit 
classical error contributions cannot be excluded. Exposure 
measurement error can also be induced by patient mobility 
if a patient relocates to a different county in the year of hos-
pitalization. A second limitation is that we used predicted 
PM2.5 component concentrations to assign exposures rather 
than actual measurements. The prediction models have good 
predictive accuracy40 and are highly spatially resolved to cap-
ture county-level population-wide exposures, but some expo-
sure measurement error is still expected. The cross-validated 
R2 varied by PM2.5 component and we would, thus, expect 
more error for OM.40 It is also important to note that a coun-
ty-wide average may inadequately reflect population expo-
sures for components with high spatial heterogeneity, such as 
BC. However, the resulting bias is likely toward the null, as 
suggested by previous studies.63–65 The PM2.5 components ana-
lyzed in our study account for a significant fraction of total 
PM2.5 mass; however, they do not encompass all PM2.5 com-
ponents. For example, metals account for a small percentage 
of total PM2.5 mass and were not evaluated in this study but 
were previously linked to neurodegenerative diseases.52,66,67 
Additionally, we analyzed OM’s total particulate mass but 
OM is itself a mixture and includes multiple chemical com-
pounds. We also did not evaluate potential interactions or 
additive effects among the components, which could play 
a role in the overall PM2.5 neurotoxicity. It should be noted 
that there are other routes of exposure to some of these com-
ponents, other than through ambient PM2.5, such as occupa-
tional exposures. However, given the exposure window (year 
of hospitalization) and the county-level analysis, we do not 
expect other contributions to the total personal component 
exposures to induce bias. Finally, first hospitalization data are 
likely to miss some aggravation cases, as patients may not 
be hospitalized even as disease symptoms worsen. However, 
although the first hospitalization is not specific to disease 
aggravation, it captures a significant number of cases entering 
a severe stage of the disease.68
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Conclusion
Our study provides valuable information into particulate 
characteristics that may contribute to the adverse association 
between PM2.5 and ALS. We found positive associations for 
some—but not all—PM2.5 chemical components, providing fur-
ther evidence that PM2.5 compositional characteristics may play 
a role in its adverse neurotoxic effects. Specifically, we found a 
robust association between the OM PM2.5 component and dis-
ease aggravation in ALS. This information can be useful in iden-
tifying relevant pollution sources for targeted regulations and in 
studies of PM2.5 toxicity and ALS pathology.
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