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Abstract—The latest X-ray photon-counting computed tomography
(PCCT) for extremity allows multi-energy high-resolution (HR) imaging
for tissue characterization and material decomposition. However, both ra-
diation dose and imaging speed need improvement for contrast-enhanced
and other studies. Despite the success of deep learning methods for 2D
few-view reconstruction, applying them to HR volumetric reconstruction
of extremity scans for clinical diagnosis has been limited due to GPU
memory constraints, training data scarcity, and domain gap issues. In
this paper, we propose a deep learning-based approach for PCCT image
reconstruction at halved dose and doubled speed in a New Zealand clin-
ical trial. Particularly, we present a patch-based volumetric refinement
network to alleviate the GPU memory limitation, train network with
synthetic data, and use model-based iterative refinement to bridge the
gap between synthetic and real-world data. The simulation and phantom
experiments demonstrate consistently improved results under different
acquisition conditions on both in- and off-domain structures using a
fixed network. The image quality of 8 patients from the clinical trial
are evaluated by three radiologists in comparison with the standard
image reconstruction with a full-view dataset. It is shown that our
proposed approach is essentially identical to or better than the clinical
benchmark in terms of diagnostic image quality scores. Our approach has
a great potential to improve the safety and efficiency of PCCT without
compromising image quality.

Index Terms—Photon-counting CT, few-view reconstruction, dose re-
duction, high resolution, deep learning, clinical trial.

I. INTRODUCTION

Computed tomography (CT) is a major imaging modality in
clinical exams of anatomical, physiological, and pathological fea-
tures. To limit radiation-induced risks, extensive methods without
compromising diagnostic image quality are actively investigated
to reduce radiation dose [1], following the as low as reasonably
achievable (ALARA) guideline in our community. For example, we
can appropriately select scanning parameters (such as tube voltage,
current, pitch, bowtie, and scan time) or use automatic exposure
control [2]. Recent development of photon-counting CT (PCCT) and
algorithms allows to further cut radiation dose [3], [4].

The PCCT technique uses photon-counting detectors (PCDs) to
allow multi-energy high-resolution (HR) imaging at reduced radiation
dose. General Electric brought in the first patient spectral scans with
a PCCT prototype as early as 2008 [5], and Siemens announced the
first FDA approved whole body PCCT recently [6] while similar
products from other key players are under rapid development includ-
ing General Electric, Cannon, and Philips. Clinical utilities of PCCT
have been well demonstrated in atherosclerosis imaging, extremity
scanning, and multi-contrast-enhanced studies [7], [8]. Since 2019,
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the PCCT company MARS has been conducting human clinical
trials for orthopaedic and cardiovascular applications with university
collaborators, and already expanded the trials into the local acute care
clinics. The orthopaedic trials have shown that HR PPCT imaging is
advantageous in the acute, follow-up, pre-surgical and post-surgical
stages. Efforts are being made to conduct clinical trials in Europe for
rheumatology applications.

Despite the huge potential of extremity HR PCCT, a few challenges
must be addressed to improve its current performance [9]. First,
scanning speed needs to be increased. For example, the MARS
micro-PCCT scanner currently can scan a sample in 8 minutes,
but such a temporal resolution cannot support dynamic contrast-
enhanced studies due to the fast diffusion of contrast agents. Second,
the channel-wise projections suffer from low signal-noise-ratios. For
instance, with our current protocol, less than 1,500 photons are
split into five non-overlapping energy bins, resulting only hundreds
of photons in one channel as opposed to ∼ 1 × 105 photons for
conventional CT. It is more problematic with a narrow energy bin.
To mitigate these issues, it becomes a natural solution to reduce the
number of projection views per scan or acquisition time per view
for better temporal resolution at less radiation dose and to adopt
advanced reconstruction techniques to suppress noise and maintain
image contrast.

Being a long standing problem, decades of efforts have been made
to reconstruct CT images at few-view and low-dose conditions. In
early stages, compressed sensing solved the problem with various
regularization terms to incorporate prior knowledge of the image.
Notably, methods like total variation (TV) for a piece-wise constant
model and dictionary learning for an over-complete sparse image
representation were developed and significantly improved the re-
sults [10]–[12]. More recently, deep learning technology delivers
exciting achievements in image reconstruction [13]. The inductive
nature of a deep network makes it a powerful data-driven prior,
becoming the new frontier along the direction. However, there
are still several gaps to meet for HR PCCT. First, these existing
methods were mainly developed for CT image reconstruction in
single channel mode and 2D imaging geometry, few of which target
on volumetric reconstruction at high resolution due to the GPU
memory constraint [14]–[19]. Second, it is well known that the
network performance could drop significantly if the data condition
during inference differs from that of training. This domain gap
issue becomes more critical for diagnostic image reconstruction
as medical applications are often more sensitive to artifacts and
hallucinations than other fields [20]–[22]. Besides the higher bar,
the image characteristics could be affected by too many factors
in practice, limiting the performance and general applicability of
one trained network, e.g., one network often needs to be retrained
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to accommodate any imaging protocol change even for the same
task. Third, HR PCCT is a very new technology to enter clinical
practice, making good quality dataset scarce for network training.
Although some emerging unsupervised and self-supervised methods
report promising results without using paired data for training, they
often rely on specific assumptions about noise characteristics in the
images or demonstrate suboptimal performance and do not consider
the inter-channel correlation in spectral images [22]–[27].

In this paper, we present a deep learning-based approach addressing
above challenges for uncompromised HR PCCT image reconstruc-
tion, in a few-view mode at halved dose and doubled speed relative
to the commercial PCCT technology used in the current New Zealand
clinical trial. We summarize the primary contributions as follows:

• We develop a deep learning-based reconstruction pipeline for
volumetric spectral reconstruction of HR PCCT images at
reduced dose. The pipeline is memory efficient for a single
workstation following the strategy of constructing a shared
low noise prior for all channels, then reconstructing channel-
wise volumes with patch-based deep iterative refinement on the
prior, followed by final texture tuning in a slice-wise manner
leveraging inter-channel correlations;

• We demonstrate the potential of patch-based volumetric denois-
ing combined with model-based iterative refinement framework
in addressing the domain gap issues. We achieve consistently
improved results on both phantom data and patient scans, which
are acquired on different machines and with different protocols,
using a fixed network trained on synthetic data, showing the
effectiveness of deep iterative refinement technique;

• Our half-view PCCT reconstruction results are favored by radi-
ologists over the proprietary reconstruction from the full-view
dataset in terms of diagnostic image quality, suggesting the great
potential of our methods in scenarios with scarcity of proper
training data.

To the best of our knowledge, this is the first attempt at deep learning-
based volumetric reconstruction for multi-channel PCCT imaging at
such large volume, e.g., 1, 2003 × 5. This also represents the first
one achieved superior diagnostic quality at half-dose with synthetic
training data over full-dose clinical proprietary reconstruction in
PCCT imaging.

II. METHODS

An overview of our approach is presented in Fig. 1, mainly
consisting of three parts: structure prior reconstruction, deep iterative
refinement, and texture appearance tuning. The details are elaborated
in the following subsections.

A. MARS Extremity PCCT

The clinical trail was performed on the state-of-the-art MARS Ex-
tremity 5X120 scanner, which can simultaneously measure up to eight
energy windows/bins at spatial resolution 50µm-200µm. It enables
identification and quantification of various components of soft tissues,
bones, cartilage, and exogenously administered contrast agents and
pharmaceuticals in a single scan. The system includes CdZnTe/CdTe-
Medipix3RX detectors with 110µm pixel pitch, a 350µA X-ray
source (up to 120kV p), a rotating gantry for helical scanning, and
a visualization workstation and MARS software for spectral and
material analysis. It provides 90µm voxel size with reduced metal
artefacts for evaluation of bone surrounding metalware. The bore size
is 125mm for scanning extremities with a scanning length of 35cm.
Compared to conventional CT systems, it has lower radiation dose
with improved image quality and material discrimination.

B. Reconstruction with Structural Prior

Each element of the MARS PCD counts with 5 effective energy
thresholds simultaneously, resulting in quasi-monochromatic projec-
tions in 5 energy bins: i.e., 7− 40keV , 40− 50keV , 50− 60keV ,
60− 70keV , and 70keV above. Patient scans are performed in low
dose mode, and the recorded count of total incoming photons is
around 1,500 per detector element for open beam measurements,
resulting in only hundreds of photons in one channel. Given such
low counts, direct reconstruction from the photons in each energy
bin inevitably suffers from major quantum noise. Instead, we notice
that the structural information between different energy bins are
closely correlated with only slight attenuation value difference. Based
on this fact, we propose the following steps to obtain the spectral
reconstructions in 5 energy bins with minimized quantum noise: (1)
We sum the counts from all channels to form a virtual ‘integrating’
bin with minimized quantum uncertainty; (2) We reconstruct from
the virtual bin to obtain an image with minimized noise and use it
as the structural prior for all other bins; (3) Leveraging the inter-bin
similarity, we initialize our iterative deep reconstruction method with
the structural prior, and feed in the real bin data to reconstruct the
spectral image in each energy bin.

In this way, the compromised structural information in one energy
bin can be effectively recovered from data in other bins. The correct
attenuation information is restored from bin-specific measurements,
under the image sparsity constraint on the manifold defined by the
deep learning prior. A multi-scale iterative reconstruction strategy is
used to significantly accelerate the convergence for the large volume
reconstruction.

C. Deep Iterative Refinement (DIR)

To address the challenge of lacking proper training data, we
propose to use synthetic data for network training and use several
strategies to minimize the effects of domain gap issues. First, we
limit the function of network to low-level feature denoising which is
more robust to domain gaps compared to generative tasks of high-
level structure synthesis due to the low-level structural similarities in
images. Second, a patch-based training strategy is employed to help
minimize domain gap leveraging the low-level similarity. Last, we use
model-based iterative refinement to further correct the gap errors in
the loop, guided by physical knowledge. The patch-based volumetric
denoising and model-based iterative refinement are integrated in the
optimization framework of alternating direction method of multipliers
.

1) Alternating Direction Method of Multipliers (ADMM) Opti-
mization: The solution space under data constraint is often high-
dimensional for a few-view or low-dose CT reconstruction problem.
Although the true solution is unique, many images containing artifacts
could satisfy the data constraint, requiring us to incorporate prior
knowledge to select a desirable image that is the closest to the truth.
Mathematically, this is formulated as an optimization problem:

x∗ = argmin
x

1

2
∥Ax− y∥2 + λR(x), (1)

where A ∈ RM×N and y ∈ RM are a system matrix and a
projection vector respectively, x ∈ RN denotes an image volume to
be reconstructed, and R(·) is the regularization term to incorporate
the prior knowledge.

To solve Eq. (1) with deep prior, an auxiliary variable z is
introduced to decouple the prior term from the loss function as
follows:

x∗ = argmin
x

1

2
∥Ax− y∥2 + λR(z), s.t. z = x. (2)



Fig. 1. Overview of the deep few-view PCCT reconstruction workflow. (a) A less noisy structural prior is reconstructed from a virtual bin data, obtained
by summing counts from all channels of few-view projections, with a multi-scale iterative reconstruction (MS-IR) technique. (b) For image reconstruction
in each channel, the structural prior is iteratively refined with a Volumetric Sparse Representation Network (VSR-Net) and model-based guidance from the
projection measurements in an Alternating Direction Method of Multipliers (ADMM) optimization framework. The network is trained with synthetic data and
special techniques are used to address the domain gap issues. (c) The texture and appearance of the multi-channel images are further touched with a Residual
Fourier Channel Attention Network (RFCAN) for feature enhancement and value alignment with MARS proprietary reconstructions, and followed by mixing
with the result of further iterations with Simultaneous Iterative Reconstruction Technique (SIRT) for image sharpness and noise characteristics preferred by
radiologists.

The augmented Lagrangian of Eq. (2) is [28]

Lµ(x,z,v) =
1

2
∥Ax− y∥2+λR(z)+vT (x−z)+

µ

2
∥x− z∥2 ,

(3)
which becomes a saddle point problem and can be solved using the
alternating direction method of multipliers (ADMM) [29], [30] as
follows:


xk+1 = argminx

1
2
∥Ax− y∥2 + µ

2

∥∥∥x− zk + vk

µ

∥∥∥2

zk+1 = argminz λR(z) + µ
2

∥∥∥xk+1 − z + vk

µ

∥∥∥2

vk+1 = vk + µ(xk+1 − zk+1)

(4)

where µ is a hyper-parameter and v is the augmented Lagrange
multiplier.

As formulated in Eq. (4), the overall optimization problem is
decomposed into sub-problems that are easier to solve and can be
successively optimized to obtain the final solution. Clearly, other
constraints or priors can be included in this framework.

It is worth mentioning that for each sub-problem it is not nec-
essary to find the minimizer exactly in a single iteration. Instead,
decreasing the loss incrementally is enough, which is often helpful
for computational acceleration [29].

The optimization of x can be achieved by using the gradient
descent method for a number of steps with a step size β:

∇Lµ(x) = AT (Ax− y) + µ(x− zk + vk/µ),

xk,(t+1) = xk,(t) − β∇Lµ(x
k,(t)).

(5)

where (t) represents the step number of gradient descent method.
The optimization of z is actually a proximal operation:

zk+1 = prox λ
µ
R(x

k+1 + vk/µ). (6)

As shown in a previous analysis, the learned denoiser resembles a
projection of the noisy input onto a clean image manifold [31], and

this claim is supported by several recent applications using deep
networks as learned proximal operators [32], [33]. Following the
same idea, here we use our network to approximate the proximal
operation as a deep prior.

Note that the noise characteristics (type, distribution, and parame-
ters) could change through iterations. Especially, the noise at earlier
stages may majorly differ from that at later stages. However, the
network denoiser is often trained for mapping a final noisy CT
reconstruction to its corresponding clean label. To reduce the domain
gap of noise and accelerate the reconstruction, we initialize x with the
results obtained with the structural prior. Meanwhile, the magnitude
of noise in the reconstruction gradually diminishes to a small level
as the number of iterations grows large. Hence, we could reduce the
network contribution at later stages since the network is often not
trained to have a fixed point. As a result, Eq. (6) is reformulated
with a network denoiser as follows:

zk+1 = γfθ(x
k+1 + vk/µ) + (1− γ)(xk+1 + vk/µ), (7)

where γ controls the network contribution, which can be understood
as a parameter to control the amount of noise to be removed during
the iterative process.

2) Volumetric Sparse Representation Network (VSR-Net): Despite
the great success achieved with many deep reconstruction methods for
2D CT images, directly applying them to clinical HR PCCT imaging
is almost infeasible with the conventional GPUs. The GPU memory
cost for image volume, sinogram storage, and the corresponding
backward/forward projection operations becomes a very challenging
problem for HR volumetric imaging, invalidating direct methods like
AUTOMAP [34] and many other unrolling methods [14], [35]. Rather
than training a network that learns a global representation of a whole
volume, we train a network that learns a patch-based representation
to overcome the memory limit for volumetric image reconstruction.
The architecture of our proposed network is illustrated in Fig. 2. It is



a light-weight 3D network that combines U-Net [36] and ResNet [37]
structures with 3D grouped convolutions [38] and special 3D pixel
shuffle operations to promote application speed and performance.

In contrast to many generative networks using large reception fields
for realistic high-level feature synthesis, we intentionally force the
network to concentrate on low-level features by choosing a small
kernel size of 3 × 3 × 3 for all convolution layers, hoping to gain
more tolerance to domain gaps by leveraging low-level structural
similarities between images from different applications. Compared to
widely used 2D convolution, we use a 3D grouped convolution for all
convolution layers to fully utilize the information from neighboring
voxels. To facilitate training and boost performance, the grouped
convolution is used to enforce structural sparsity, encouraging the
differentiation between feature maps, and to construct a bigger
network with less trainable parameters. Different from conventional
downscale/upscale operation using convolutions with strides, we used
3D pixel unshuffle/shuffle operation for this purpose as shown in
Fig. 2(b). The unshuffle operation splits the input volume into 8 sub-
volumes and concatenates them in the channel dimension, while the
shuffle operation assembles the sub-volumes into a super volume.
The benefits of such operations are as follows: with unshuffle, we
can explicitly generate multiple repetitive LR measurements from
the HR volume to extract signals from the noisy background with the
subsequent convolution layers; then, the shuffle operation assembles
the denoised LR sub-volumes into a resolution-enhanced version.
Per the suggestion in [39], we omit batch normalization throughout
the network, and the first and the last convolution layers involve
no activation. To maintain the scaling invariance and promote the
network generalizability, no bias is used in all layers as suggested
in [33]. The cube size for network training can be adjusted according
to the available GPU memory. We set the cube size to 32 in
our experiments, and the network can be easily deployed on a
conventional commercial 1080Ti GPU with 11GB memory.

Fig. 2. Architecture of our volumetric sparse representation network (VSR-
Net). (a) This light weight network takes a small cubic patch as input
and outputs a denoised patch. 3D pixel shuffle operations and grouped
convolutions are used to promote speed and performance; and (b) The
downscaling and upscaling of feature maps are achieved through 3D pixel
unshuffle and shuffle operations (illustrated in (c)) combined with two 3D
grouped convolutional layers. Note that Conv, grouped convolutional layer;
ReLU, rectified linear unit; a color-coded number above each convolutional
operation denotes the number of groups used, while the number underneath
the feature map indicates the number of channels.

3) VSR-Net Training with Synthetic Data: Since it is rather
challenging to obtain the ground truths for HR patient scans, we
use synthesized data for network training. Specifically, we construct

our training dataset from the open dataset for the Low-dose CT
Grand Challenge [40]. We first resize the images to have isotropic
voxels of 1mm along each dimension, and convert the voxel values
in the Hounsfield unit to the linear attenuation coefficients. Then
we treat volumes as digital phantoms of 0.2mm voxel size and
generate noise-free projections using a MARS CT scanner geometry
despite with a flat PCD and in circular cone beam mode. Finally,
the projections with quantum noise are simulated assuming 16,000
incident photons per detector element. The Simultaneous Iterative
Reconstruction Technique (SIRT) is used to reconstruct images.

The isotropic volumes and corresponding noisy reconstructions are
the labels and noisy inputs for network training. Ten patient volumes
are partitioned into cubes of size 323 with a stride of 25 pixels along
each direction. Then, the cubes are sieved to remove empty ones
based on the standard deviation of pixel values. As a result, over
190,000 pairs of 3D patches are generated for training, and around
38,000 pairs for validation. The loss function consists of a L1 norm
term for the value difference and a mean square error term for the
relative value difference:∑

i

[
∥yi − fV SR(xi; θ)∥1 + β0

∥∥∥∥yi − fV SR(xi; θ)

yi + c

∥∥∥∥2

2

]
, (8)

where yi and xi are respectively the label patches and noisy inputs,
fV SR(xi; θ) corresponds the network output with trainable parame-
ters θ, and c is a constant to avoid zero denominator. The L1 norm,
instead of the L2 norm, is used in the first term to avoid blurring
details, and the relative error is measured with the L2 norm in the
second term to preserve tiny structures based on our experience [41].
During training, we set the balancing hyperparameter β0 to 1 and c
to 0.1.

4) Parallel Batch Processing & Geometric Self-ensemble: During
the inference, reconstruction volume is partitioned into overlapping
patches then fed into the VSR-Net. Geometric self-ensemble based
on flipping and rotation is also adapted to boost performance and
suppress check-board artifacts. To save computation, we randomly
choose 1 of 8 transforms to apply on the reconstruction volume for
each iteration which is similar to periodical geometric self-ensemble
idea [33]. For acceleration, parallel processing technique has been
used to distribute the workload onto multiple GPUs to deal with the
huge amount of patches.

D. Texture Appearance Tuning

We leverage the structural prior to reduce noise and accelerate
convergence, and use a channel-by-channel reconstruction strategy
for deep iterative refinement to reduce the memory burden for single
node reconstruction and allow parallel reconstruction with multiple
nodes. To match image spectral values with those from proprietary
reconstruction that radiologists are familiar with, we adopt a two-
step procedure to fine tune the texture and appearance. First, we use
a 2D convolutional network to exploit the inter-channel correlation
for texture enhancement and value alignment. Multi-channel images
extracted from the channel reconstructions at the same slice are
fed to network for the mapping, in a slice-by-slice manner for
memory efficiency and performance. Then, we further process the
reconstruction with SIRT for a few iterations to enhance image
sharpness and alter noise characteristic. By mixing the network
processed results before and after SIRT iterations at a preferred
ratio based on radiologists’ feedback, the final output with consistent
appearance with MARS reconstruction is obtained.

1) Residual Fourier Channel Attention Network (RFCAN): We
make our value alignment network by modifying the residual channel
attention network [42] to adopt a more advanced Fourier channel



attention mechanism [43] and learn a multi-channel mapping between
the input and output, as illustrated in Fig. 3. For the training
of RFCAN, we use the full-view MARS reconstruction slices as
the label for our half-view reconstruction results. However, due to
patient motions and the black box nature of propriety reconstructions,
there can be occasional non-rigid misalignment across a few slices
between our reconstruction and the MARS results, resulting from
differences in volume splitting and projection partitioning during
HR reconstruction, and number of projections. Hence, we select one
patient scan that is least affected by motions as our training data, and
then sieve out the misalignment-affected slices, resulting 584 pairs
of HR multi-channel images (1200×1200). A total of 206,000 pairs
of overlapping patches of size 128 × 128 are randomly extracted
from the images for network training, and around 52,000 pairs for
validation. Additional penalty on the Fourier spectrum is introduced
in the loss function to emphasize the texture similarity besides the
spatial intensity fidelity imposed by other terms:∑

i

[
∥yi − f(xi; θ)∥1 + β1

∥∥∥∥yi − f(xi; θ)

yi + c

∥∥∥∥2

2

+β2 ∥FFT (yi)−FFT (f(xi; θ))∥1
]
, (9)

where FFT (·) denotes the Fourier transform. yi, xi, and f(xi; θ)
are the label, input, and network output, respectively. The balancing
hyperparameters β1 and β2 are both set to 1 with c set to 0.1 during
training.

Fig. 3. Architecture of the residual Fourier channel attention network
(RFCAN), consisting of 15 Fourier channel attention residual blocks (FCA-
ResBlocks) built upon attention layers with FCA (FCA-Layer).

E. Interleaved Updating for Large Volume Reconstruction

The size of projection data from a patient scan can be huge, e.g.,
1536 columns×128 rows×3392 views×5 channels., overwhelming
the GPU memory for direct reconstruction. Besides the channel-
by-channel reconstruction technique described earlier, to alleviate
memory burden we further use a interleaved updating technique to
divide large volume reconstruction job into a batch of mini-jobs of
smaller size by partitioning the projection data and reconstruction
volume into different segments as illustrated in Fig. 4. The volume
as well as the projection data is partitioned into N segments, and
each volume segment and corresponding projection data segment
are carefully aligned in geometry. To ensure the data completeness
everywhere, sub-volumes at the seams are also extracted with their
corresponding projection data (about 1.5 to 2 rotations from the
helical scan). The volume segments and seams form 2 ∗N − 1 mini-
reconstruction tasks, which are assigned to multiple GPUs for parallel
computing with multi-threads or can be processed sequentially with
a single GPU if on a budget server. The resultant sub-volumes are
combined together in an interleaved pattern, with a few slices at one
or both ends trimmed off to ensure data completeness of the resting

volume and avoid overlapping, forming a complete large volume
reconstruction update as shown in Fig. 4 (b).

Fig. 4. Interleaved updating for large volume reconstruction: (a) partitioning
the projections and reconstruction volume to form a batch of reconstruction
tasks on sub-volumes; and (b) combining the results in an interleaved pattern
with slices at one or both ends trimmed off to ensure data completeness and
avoid overlapping.

III. EXPERIMENTS AND RESULTS

A. Implementation and Experimental Setup

Training Details. Our VSR-Net and FRCAN are implemented on
PyTorch and trained with Adam optimizer on a single NVIDIA V100
GPU. The learning rate for VSR-Net is initially 2×10−4 and decayed
by 0.95 every epoch. The total number of epochs is 60 with a batch
size of 32. The learning rate for FRCAN is initially 1 × 10−4 and
decayed by 0.6 every epoch, with a total of 10 epochs and a batch
size of 32. The VSR-Net is trained on synthetic dataset described in
Sec. II-C3, while FRCAN is trained on real patient data as described
in Sec. II-D1.

Reconstruction Details. We use the ASTRA Toolbox [44] for
GPU-based forward and backword projection operations. The patient
data are reconstructed on a cluster node with eight NVIDIA V100
GPUs for parallel computation (parallel sub-volume reconstruction
and patch processing), and other data are reconstructed on a server
with a single RTX A5000 GPU.

Experimental Setup. First, we demonstrate the in-domain ca-
pability of our DIR method on synthetic single channel CT data.
The testing volume is generated from AAPM dataset following a
similar simulation protocol but from non-overlapping patients. Then,
we demonstrate the enhanced generalization on out-of-domain data
with our DIR compared to the conventional post-processing way of
applying VSR-Net. We use phantom data, with disparate structures
from training data, scanned from a micro-PCCT system for out-of-
domain testing. Finally, we validate our whole PCCT reconstruction
workflow (DIR followed by texture appearance tuning) on real
patient data acquired on the MARS Extremity scanner. Ratings from
radiologists on diagnostic value are used to assess the effectiveness
of our method.

B. In-domain Simulation Study

We first evaluate our deep iterative refinement method on simulated
in-domain cone-beam CT data. Specifically, a numerical flat panel
detector consists of 1536×128 pixels of 0.11mm pitch. The source-
to-detector distance and the source-to-isocenter distance are 949mm
and 625mm, respectively. Over a full scan, 373 projections are evenly
collected, and the number of incident photons per detector element
is set to 16,000 in an empty scan. The reconstruction volume is set
to 420 × 420 × 60 of 0.23mm3 voxels. The SIRT reconstruction



from clean projection data with 500 iterations serves as the ground
truth. The standard FDK (ramp filter) reconstruction from noisy
projection data reveals the severity of image noise. It is underlined
that most existing CT image deep denoising methods are based on
post-processing FBP/FDK reconstructions, and will not deliver the
optimal imaging performance.

Our proposed method is compared against the anisotropic total
variation (TV) [45] regularized SIRT reconstruction (SIRT-TV) in
both full-view and half-view scenarios [46]. SIRT-TV is a represen-
tative compressed sensing method to minimize the cost function in
the following form:

x∗ = argmin
x

1

2
∥Ax− y∥2 + λTV (x). (10)

The proximal gradient descent method is used to solve the problem,
and λ is an empirical parameter. The regularization parameter λ for
SIRT-TV is respectively set as 9.0×10−4 and 1.5×10−4 for full-view
and half-view reconstructions for their best results. In our method
applying DIR to half-finished SIRT reconstruction, the settings µ =
0.01, β = 0.5, γ = 0.8 and µ = 0.015, β = 0.5, γ = 0.8 are used
for full-view and half-view cases respectively, and the number of
gradient descent steps per iteration was set to 10 in both cases.

Representative full-view and half-view reconstructions are shown
in Fig. 5. The fine details indicated by the red arrows are successfully
restored with our methods for both full-view and half-view cases
while missing structures or distortions are observed with the SIRT-
TV particularly in the half-view scenario. Additionally, unnatural
waxiness is also observed in the zoom-in regions of SIRT-TV results.
Moreover, our half-view reconstruction scores are even better than
the full-view reconstruction with the conventional method in terms
of structural similarity index metric (SSIM) and peak signal-to-noise
ratio (PSNR) metric, demonstrating the superiority of our method.
More importantly, our method demonstrates impressive stable per-
formance despite significant acquisition condition change from full-
view to half-view (< 1.0% loss in SSIM and < 4.0% loss in PSNR),
which is even more robust than the classic SIRT-TV.

C. Out-of-domain Phantom Studies

To demonstrate the enhanced generalizability on out-of-domain
data, we further test our DIR method on phantom data with totally
different structures as shown in Fig. 6. The single-channel helical scan
data were acquired on our custom-built micro-CT system equipped
with a PCD (ADVACAM WidePIX1x5, Prague, Czech Republic)
at 80kV p. We collected the data at five different dose levels by
adjusting the exposure time per projection (0.15, 0.5, 1.0, 1.5, 2.0,
and 5.0 seconds). The volumes were reconstructed using 250 SIRT
iterations at size 979× 979× 610 with a 35µm voxel size, serving
as noisy inputs and the clean reference. Post-processing with the
latest BM3D [12] and with VSR-Net are the baselines for our DIR
method. The standard deviation parameters for BM3D method were
found by measuring the standard deviation of values in a water region
after normalized with its mean. For the DIR method, we used the
half-finished reconstruction as the structure prior (60 and 40 SIRT
iterations at the scale of 0.637 and 1 respectively), and refined it with
36 DIR iterations (3 gradient descent steps per iteration, µ = 0.03,
β = 0.5, γ = 0.8).

Figs. 6 (a) and (b) compare the results with 0.5 and 0.15 seconds
exposure from the axial view and sagittal view, respectively. Fig. 6
(c) illustrates the zoomed view of a surgical tape, and (d) displays the
PSNR and SSIM distributions of the axial slices and sagittal slices
of the reconstructed volumes against the reference through a violin
plot. Though the phantom structures and textures are different from
that in training data, our method still demonstrates great performance

in improving the image quality, showing good generalizability on
out-of-domain structures. In contrast, the adverse effect of such
a domain gap is clearly presented in VSR-Net results under low
noise in Fig. 6 (c). Although the structures are enhanced with better
visibility, the appearance and the intensity do not necessarily agree
with the reference shown in Fig. 6 (a), e.g., the tape structure and
dots pointed by the red and green arrows. Additionally, our DIR
framework also improves resistance to noise in terms of structure
fidelity, particularly in high-noise scenarios, as illustrated by the
suppression of those abnormal white dots appeared in VSR-Net
results. For example, those on the tape structure in Fig. 6 (a) and
those on the background in Fig. 6 (b) are generated when the network
mistakes the noise as real structures. BM3D method is structure-
agnostic and intrinsically has better generalization compared to deep
learning methods. These are reflected in the quantitative comparison
results shown in Fig. 6 (d) where BM3D often scores the best
in PSNR and SSIM metrics particularly in high-noise situations.
However, although BM3D poses the best SSIM and PSNR scores,
its image quality is not necessarily the best. It suffers from some
resolution loss as demonstrated by the over smoothed tape structures
in the zoomed region in Figs. 6 (a) and (c), and this suggests
the importance of task-relevant metrics and underlines the need for
radiologists’ evaluation in the medical imaging field. Please note that
we aim to demonstrate the generalization improvement with DIR over
VSR-Net in this experiment rather than to compete with BM3D as
the phantom is intentionally selected to be distinctly different from
the VSR-Net training data. Though we already achieve tied scores
with BM3D in less noisy cases, superior results can be expected if
we retrain the model and narrow the domain gap.

D. Retrospective Patient Studies

Patients aged 21 years and above referred from the frac-
ture clinic were recruited for the clinical trial (Ethics ap-
proval:18/STH/221/AM01, Health and Disability Ethics Committee,
New Zealand). The patient wrist images were acquired using our
MARS Extremity PCCT scanner. The Medipix3RX PCD consists of
12 chips arranged in a non-flat arc shape. The data was acquired
at 118kV p in a helical scan mode, using a tube current of 28µA
and an exposure time of 160ms. The images were reconstructed
at 90µm using a customised polychromatic iterative reconstruction
algorithm [47]. The iterative technique reconstructs a set of attenua-
tion volumes as functions of energy from these projections, in non-
overlapped energy bins. For instance, non-overlapping attenuation
volumes are reconstructed in the 7−40keV , 40−50keV , 50−60keV ,
60− 70keV , 70− 118keV bins, respectively.

1) Experiment Setup: The images of 8 patients who provided
written consents were reconstructed using the clinical proprietary
algorithm from a full-view dataset and our proposed deep learning
method (illustrated as Fig. 1) from a half-view dataset respectively,
and then evaluated by three independent double-blinded radiologists
(SG, AB, AL) on the rating scale defined in Table I based on
their confidence in whether diagnostic image quality is achieved or
not [48]. In our method, DIR has been applied to the structure prior
(Sec. II-B, obtained with 80 and 80 SIRT iterations at the scale of
0.5 and 1 respectively) for 30 iterations (3 gradient descent steps
per iteration, µ = 0.03, β = 0.5, γ = 0.8) for the reconstruction of
each bin data, then the combined multi-channel volume (12003 × 5)
are processed with RFCAN in a slice-by-slice manner for value
alignment and texture enhancement (Sec. II-D), and the number of
SIRT iterations is 30 and the mixing ratio is 0.5: 0.5 to accommodate
radiologists’ preference on image sharpness and noise characteristic.

The radiologists were presented with 500 images from each patient
(three energy bins 7−40keV , 50−60keV and 70−118keV ) in the



Fig. 5. Representative images reconstructed using competing methods on simulated data. (a) The full-view reconstructions with FDK, SIRT-TV, and our
method displayed against the ground truth, with exemplary axial, coronal, and sagittal views included from top to bottom; (b) the reconstructions from halved
views; and (c) magnified regions from the coronal and sagittal views as indicated by the green and orange boxes respectively and displayed in the descent
order of image sharpness and structural fidelity: ground truth (GT), our full-view and half-view reconstructions (FV-P, HV-P), and full-view and half-view
reconstructions with SIRT-TV (FV-TV, HV-TV) from top to bottom. The display window is W/L:400/50 HU. The red arrows indicate the structural details
are easy to recover for our methods but challenging for SIRT-TV.

TABLE I
GRADING SCALE USED FOR IMAGE QUALITY ASSESSMENT.

-2 Confident that the diagnostic criteria is not fulfilled;
-1 Somewhat confident that the criteria is not fulfilled;
0 Indecisive whether the criteria is fulfilled or not;
+1 Somewhat confident that the criteria is fulfilled;
+2 Confident that the criteria is fulfilled.

axial, coronal and sagittal formats. The sagittally reformatted images
reconstructed using both methods and 3D rendering image using the
standard method are shown in Fig. 7(a). The images were reviewed
using InteleViewer (Intelerad Medical Systems). The image metrics
assessed in the study were based on the “European guidelines on
quality criteria for CT” for bones and joints [49]. The images were
assessed on seven image quality criteria, including the visibility and
sharpness of the cortical and trabecular bone, adequacy in soft tissue
contrast for the visualisation of tendons, muscle and ligaments, as
well as the effect of image noise (quantum noise) and artifact on the
image quality.

Additionally, we also compare our result with that obtained
by applying the state-of-the-art unsupervised learning method
Noise2Sim [27] to the multi-channel reconstructions using 320
SIRT iterations for each channel. Despite significant enhancement
over SIRT reconstruction from half-view dataset, Noise2Sim results
demonstrate insufficient image quality (suffering from image blur and
loss of fine structures) as shown in Fig. 7(b), hence, they are excluded
from the reader study.

2) Data Analysis: For quantitative assessment, regions of interests
(ROIs), each with ∼ 250 voxels, were drawn in the flexor carpi
radialis tendon and adjacent subcutaneous fat regions in the patient

images. The mean and standard deviation of linear attenuation
coefficients in the ROIs were used to calculate the signal-to-noise
ratio (SNR) in soft tissue regions and contrast to noise ratio (CNR)
between soft tissue and fat in the ROIs. SNR and CNR values
associated with both methods were compared over all patients’
datasets. For subjective evaluation, overall radiologists’ assessment
grades for seven image quality measures from both methods were
converted into a frequency table. Then, all three radiologists’ overall
and combined ratings were compared with descriptive statistics. The
hypothesis of no significant difference between the two methods was
tested in the Wilcoxon signed-rank test.

Image grades from both methods in terms of each image quality
measures were also converted into visual grading characteristics
(VGC) points using the method described in [48]. Hence, with the
current 5 images grading criteria, 4 VGC points were obtained,
and 0 as the origin and 1 as the maximum value were added as
well [48]. The combined VGC points (using grades from all three
radiologists) of seven image quality measures were calculated, and
the empirical area under the curve (AUCV GC ) were compared. The
statistical significance of mean AUCV GC of each of the seven image
quality measures was analyzed through one-sample t-testing against a
hypothetical AUCV GC value of 0.5. VGC points were also obtained
by combining all seven image quality measures for both methods.
Full-view vs Half-view empirical AUCV GC values and its 95%
confidence intervals were obtained for each radiologist and combined
scores. The statistical significance of AUCV GC and its 95% confi-
dence interval for each radiologist (56 samples) and all radiologists
(168 samples) were interpreted according to the method described
in [51]. Finally, the inter-rater agreements between radiologists were



Fig. 6. Out-of-domain generalization on phantom study. Comparisons between noisy input, DIR, BM3D, and VSR-Net against the long-exposure reference in:
(a) axial slices from results with 0.5-second exposure; (b) sagittal slices from results with 0.15-second exposure; (c) the same magnified region as that in (a)
but from results with exposures of 0.15, 0.5, 0.1, and 2.0 seconds; and (d) distributions of PSNR and SSIM values of the axial slices and sagittal slices from
volumes visualized in violin plots. The display window is [0, 0.45] for axial view and [0, 1.05] for sagittal view, in unit of cm−1. The mean and standard
deviation values of a flat water region are listed for reference as well as the SSIM and PSNR values of the image.

Fig. 7. Sagittal reformat of a wrist joint reconstructed using standard and
proposed methods respectively. (a) From left to right are 3D rendering of
standard reconstruction, half-view and full-view images of channel 50-60keV.
The arrow points to scaphoid fracture. (b) Color visualization of our three-
channel reconstruction via linear blending [50] in reference to standard full-
view result and noise2sim half-view result. Our result demonstrates high
fidelity in both spectral values (same color tone and brightness as the full-view
reference) and spatial structures (sharp and accurate fine details as pointed by
the red arrow).
evaluated with kappa statistics. The statistical analysis was presented
using GraphPad Prism 9.2.0 at a level of significance of 95%.

3) Statistical Results: Image SNR in soft tissue regions and CNR
between soft tissue and fat were compared in Fig. 8, where the

bar charts illustrate that for all the patients, SNR and CNR in the
images obtained with the proposed half-view reconstruction method
are higher than that in the clinical benchmark images reconstructed
using the standard proprietary method from the full dataset, except
for the second one whose images showed quite comparable CNRs.

More importantly, the overall confidence ratings of diagnostic
image quality with seven criteria are compared in Table II. The table
shows a significantly better mean and median image quality scores
with the proposed half-view reconstruction method than the current
clinically used reconstruction method (proprietary reconstruction
from the full-view dataset) for all radiologists despite their different
scores, indicating a preference for the proposed reconstructions. The
median value for the half-view reconstructions is 2 for the second
radiologist, which suggests higher confidence in image interpretation.
Despite the discrepancy in ratings, the combined median value is
greater than 0, indicating the overall diagnostic acceptability of
the images reconstructed using our method. The hypothesis was
further tested in the Wilcoxon signed rank test for all three raters
and combined ratings in Table III. It shows that the p-value for
the Wilcoxon signed rank test is not statistically significant for
the first and second radiologists, suggesting no difference in image
quality from both methods. However, p-values for the other two
scenarios (for the third radiologist and combined) are statistically
significant, indicating the image quality from the proposed method
was perceived significantly better than the proprietary method for
image reconstruction from the full dataset.

The proposed method also performed better when image quality



Fig. 8. Quantitative evaluation of image quality of our half-view reconstruc-
tion against proprietary reconstruction from the full-view dataset.

TABLE II
DESCRIPTIVE STATISTICS OF THE RADIOLOGISTS’ RATINGS.

Methods Raters Median ↑ Mean ↑ (Std.)

Full RD1 1 0.875 (0.740)
Full RD2 1 1.107 (0.966)
Full RD3 −1 −0.589 (1.247)
Full COM 1 0.464 (1.252)
Half RD1 1 1.054 (0.862)
Half RD2 2 1.179 (1.011)
Half RD3 0 −0.357 (1.354)
Half COM 1 0.625 (1.293)
Overall RD1 1 0.964 (0.804)
Overall RD2 1 1.143 (0.985)
Overall RD3 −1 −0.473 (1.301)
Overall COM 1 0.545 (1.273)

Full, Half: proprietary Full-view reconstruction and our Half-view
reconstruction; Overall: Ratings by combining two methods; RD1,
RD2, RD3, COM: Three radiologists’ and combined ratings.

measures were individually evaluated. The mean area under curve
for visual grading characteristics AUCV GC values of the proposed
method are consistently higher than 0.5 for each of the five image
quality measures evaluated, as shown in Fig. 9(b). Similar trends
are also reflected in the violin plots in Fig. 9(a) as indicated by
the better median scores and narrower tails in the low end (less
low scores). The mean AUCV GC from the standard method was
only slightly better than the proposed method for soft tissue contrast
differentiation, mainly related to the depiction of ligaments, tendons
and muscle. The statistical significance of the mean of AUCV GC

of the seven image quality measures is established using the one-
sample t-test in Table IV. The VGC points obtained for overall
image quality scores from the two competing methods are plotted in
Fig. 9(c). Fig. 9(c) shows that AUCV GC of the proposed method is
not significantly higher than 0.5 but the mean value is slightly better
than 0.5 for all radiologists and combined ratings, which explains
better image quality scores with the proposed reconstruction method.
As the clinical trials proceed, more datasets may help further establish
a statistical significance of this comparative study.

Although all the raters preferred images with the proposed recon-
struction method, they provided different ratings for the same images,
resulting in a lower inter-rater agreement. The agreements between

TABLE III
HYPOTHESIS TESTING (HALF-VIEW VS FULL VIEW) IN TERMS OF THE

WILCOXON SIGNED RANK.

Raters # of Pairs # of Ties p-Value

RD1 56 22 0.2734
RD2 56 44 0.3877
RD3 56 38 0.0355
COM 168 104 0.0166

RD1, RD2, RD3, COM: Three radiologists’ and combined ratings.

TABLE IV
HYPOTHESIS TESTING OF MEAN OF AUCV GC FROM SEVEN IMAGE

QUALITY CRITERIA (ONE-SAMPLE T-TEST).

# of samples Mean (Std.) 95% CI t p-Value

7 (df=6) 0.5479 (0.0503) [0.0014, 0.0944] 2.52 0.0454

Note that 95% confidence interval (CI) indicates confidence in
discrepant value from the hypothetical mean (0.5).

raters were evaluated with kappa statistics in Table V. The table
shows a fair agreement between radiologists’ scores. Also, the kappa
value is higher for radiologists 1 and 2, indicating a higher degree
of agreement between the first two radiologists.

TABLE V
AGREEMENT IN COMBINED SUBJECTIVE SCORES BETWEEN

RADIOLOGISTS (KAPPA).

Categories kappa Significance

RD1-RD2 0.219 < 0.001
RD1-RD3 0.075 0.005
RD2-RD3 0.118 < 0.001

RD1, RD2 and RD3 denote the three radiologists, respectively.

IV. DISCUSSIONS AND CONCLUSIONS

This study targets on developing and characterizing a new method
for HR volumetric reconstruction of PCCT scans given insufficient
data for network training. Compared to traditional 2D methods [14],
direct volumetric reconstruction becomes necessary and advantageous
when rebinning to fan-beam [52] is challenging due to complexity in
detection and/or scanning trajectory, e.g., large gaps and bad pixels
in detectors, complex chip arrangement, and free-form scanning with
robotic arms [53], [54]. This particularly fits the need of PCCT as
stitching gaps and bad pixels are very common in PCDs due to man-
ufacturing challenges. On the other hand, HR volume reconstruction
brings GPU memory and computation challenges. We tackled them
with strategies of interleaved updating, patch based refinement, and
low-noise prior sharing. With parallel computing using 4 V100 GPUs,
we managed to complete the spectral reconstruction in 7 hours in
contrast to several days that the standard proprietary method takes.
Low level structural similarity has been leveraged in combination
with model-based iterative refinement to alleviate domain gap issues
and address the training data scarcity problem. Additionally, texture
appearance is later tuned to align the spectral values and enhance
structures towards the application domain and further weaken the
impacts of domain gaps. In comparison with the current commercial
method used in the New Zealand clinical trial. The major benefits
include halved radiation dose and doubled imaging speed, relative
to the standard reconstruction from the full dataset without compro-
mising image quality in terms of both quantitative and qualitative
metrics. The evaluation methods are classic and double blinded.
The involved patient datasets were randomly determined, covering
a range of pathological (diseased versus healthy) and technical (such
as with or without motion blurring) conditions. Therefore, our results
strongly suggest a great potential of our approach for PCCT image
reconstruction.

PCCT is a frontier of the CT field with many promising clinical
applications, and expected to be the future of CT systems. To realize
the full potential of PCCT, image noise and artifacts remain challeng-
ing due to lower photon statistics from higher resolution and narrower
energy windowing and incomplete image geometry such as the few-
view imaging mode. Our proposed image reconstruction method can
address these challenges successfully. Further improvements will be
surely possible, using more advanced network architectures such
as the emerging diffusion/score-matching models [55]. The current
barriers for adapting the diffusion approach for PCCT include the



Fig. 9. Subjective evaluation on seven image quality (IQ) criteria comparing our proposed half-view reconstruction and clinical full-view reconstruction. (a)
Violin plot of combined radiologists’ ratings on half-view results against full-view results; (b) Slightly better than 0.5 AUCV GC (the performance neutral
threshold) from the proposed method over the conventional method for most image quality metrics, and (c) half-view versus full-view VGC plots generated
from combining all the image quality metrics indicate most VGC points above the diagonal line (the performance neutral line) for all the three radiologists
and combined ratings. However, to show that the AUCV GC is significantly better than 0.5 in the 95% interval sense, more data would be needed.

memory requirement and the sampling overhead, and progresses are
being made to address the challenges [56].

The core component DIR method produces superior results with
impressive stability against different acquisition conditions in single
channel few-view reconstruction on simulated in-domain datasets,
compared to that with relevant traditional methods. Similarly for
out-of-domain real phantom datasets, significant improvement in
both image quality and stability is obtained with DIR over the
conventional single-pass post-processing method using the same
network. One interesting observation is that BM3D method scores
slightly better or comparable in PSNR and SSIM than DIR despite
the loss of some fine details, which could be caused by the noise
in the reference. This suggests the necessity of using task-relevant
metrics in clinical applications. In retrospective patient studies, our
spectral reconstruction results surpass that with the state-of-the-art
unsupervised learning method, Noise2Sim, in image quality. When
evaluated in reader study, the grading results from one radiologist and
the combined scores from all three radiologists have demonstrated
that the proposed method is significantly better than the proprietary
standard in statistics. Encouragingly, the median values of all image
quality scores are on the positive side, suggesting our reconstructions
are diagnostically acceptable, despite at only halved radiation dose.
Furthermore, our method has been evaluated using VGC points from
the radiologists’ scores against the existing method. By each of the
image quality measures our method has produced significantly better
results in almost all criteria, with the exception in soft tissue contrast
being slightly lower than the competing method using full radiation
dose, with no statistical significance. From the view of combined
scores from all image quality measure, the proposed method has
established competitively against the existing method though the
statistical significance cannot be claimed due to the limited number of
patients. Clearly, all three radiologists’ scores and combined rankings
follow similar trends, supporting the findings from individual metric
evaluation of image quality. Finally, a fair agreement has been
obtained among radiologists, despite no formal training on their visual
grading.

This study are subject to several limitations. First, the number
of patients included was smaller, since our clinical trial is still
in progress. Second, the radiologists were not trained for inter-
rater agreement regarding image quality evaluation, because at this
moment there is no protocol established in the context of PCCT, and
we worry that pre-evaluation training could introduce bias. Based

on this consideration, the images were randomised before being
provided to the radiologists in a routine clinical flow. It is also worth
mentioning that motion correction has been applied to five patients
with noticeable movements using method described in [57] prior
our reconstruction, which has significantly improved motion artifact
assessment as shown in Fig. 9(b).

In conclusion, we have developed a novel deep learning method for
few-view HR PCCT volumetric reconstruction in the New Zealand
clinical trial at halved radiation dose and doubled imaging speed.
Compared to the standard method used in the clinical trial for image
reconstruction, the proposed method with the reduced number of
projections produces equivalent or superior image quality. We plan
to translate the proposed method for few-view image reconstruction
into the PCCT system and keep improving the method as the clinical
trial proceeds.
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