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Abstract

Wright’s inbreeding coefficient, FST, is a fundamental measure in population genetics.

Assuming a predefined population subdivision, this statistic is classically used to evaluate

population structure at a given genomic locus. With large numbers of loci, unsupervised

approaches such as principal component analysis (PCA) have, however, become promi-

nent in recent analyses of population structure. In this study, we describe the relationships

between Wright’s inbreeding coefficients and PCA for a model of K discrete populations.

Our theory provides an equivalent definition of FST based on the decomposition of the geno-

type matrix into between and within-population matrices. The average value of Wright’s FST

over all loci included in the genotype matrix can be obtained from the PCA of the between-

population matrix. Assuming that a separation condition is fulfilled and for reasonably large

data sets, this value of FST approximates the proportion of genetic variation explained by the

first (K − 1) principal components accurately. The new definition of FST is useful for comput-

ing inbreeding coefficients from surrogate genotypes, for example, obtained after correction

of experimental artifacts or after removing adaptive genetic variation associated with envi-

ronmental variables. The relationships between inbreeding coefficients and the spectrum of

the genotype matrix not only allow interpretations of PCA results in terms of population

genetic concepts but extend those concepts to population genetic analyses accounting for

temporal, geographical and environmental contexts.

Author summary

Principal component analysis (PCA) is the most-frequently used approach to describe

population genetic structure from large population genomic data sets. In this study, we

show that PCA not only estimates ancestries of sampled individuals, but also computes

the average value of Wright’s inbreeding coefficient over the loci included in the genotype

matrix. Our result shows that inbreeding coefficients and PCA eigenvalues provide equiv-

alent descriptions of population structure. As a consequence, PCA extends the definition

of those coefficients beyond the framework of allelic frequencies. We give examples on

how FST can be computed from ancient DNA samples for which genotypes are corrected

for coverage, and in an ecological genomic example where a proportion of genetic varia-

tion is explained by environmental variables.
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Introduction

Defined by Sewall Wright and Gustave Malécot, the fixation index or inbreeding coefficient,

FST, measures the amount of genetic diversity found between populations relative to the

amount within populations [1, 2]. Used as a measure of population differentiation, FST is

among the most widely used descriptive statistics in population and evolutionary genetics [3–

7]. Inbreeding coefficients were originally defined for the analysis of allelic frequencies at a sin-

gle genetic locus. With the amount of data available to present-day or ancient population geno-

mic studies, principal component analysis (PCA) and model-based estimation algorithms,

such as STRUCTURE, have emerged as alternative ways to describe population structure from

multilocus genotype matrices [8–12].

Assuming that the columns of the genotype matrix are either centered or scaled, PCA

computes the eigenvalues and eigenvectors of the sample covariance matrix. The first eigen-

vectors—or axes—summarize the directions which account for most of the genetic variation,

and the eigenvalues represent the variances of projected samples along the axes. Eigenvalues

and eigenvectors can be computed efficiently by using the singular value decomposition

(SVD) of the column-centered data matrix [13]. PCA has been considered very early in

human biology, and has become a popular method to study the genetic structure of popula-

tions [14, 15]. Inference from PCA is justified from the fact that, similar to STRUCTURE, the

projections of individuals on principal axes reveal their degree of admixture with source popu-

lations when these sources are represented in the sample [10, 16–18].

Although the relationships between PCA projections and admixture estimates are well-

understood, difficulties of interpreting PCA eigenvalues still remain. The main contributions

in that direction were restricted to models of divergence between two populations. The argu-

ments were based on random matrix theory (RMT) [10, 19] and coalescent theory [16]. We

note that connections between FST and PCA are not only important for description of popula-

tion structure, but also in genome scans for selection where the distribution of PCA loadings

can be used to detect regions with signature of divergent selection [20–23]. Based on RMT,

Ref. [10] proposed a threshold value of FST for two populations with equal sample sizes. Below

the threshold, there should be essentially no evidence of population structure. The coalescent

approach relied on a relationship between FST and coalescent time for a pair of genes from a

single subpopulation and that of a pair of genes from the collection of subpopulations [6]. For a

model of divergence between two populations, theoretical results for coalescent times were

used to demonstrate a link between the leading eigenvalue of PCA and FST [16]. Results in

Ref. [16] might be extended to simple models of population structure with explicit formulas for

coalescent times [24], but the results are not straightforward. While coalescent theory and

RMT have provided relationships between FST and PCA in simple cases, the general conditions

under which they are valid and their extensions to more than two populations are unknown.

In this study, we develop a spectral theory of genotype matrices to investigate the relation-

ships between PCA and Wright’s coefficients in discrete population models. Our theoretical

framework assumes that the observed genotypes correspond to the sampling of K discrete pop-

ulations. Decomposing the genotype matrix as a sum of between and within-population matri-

ces, we extend the results obtained in [10, 16, 19, 25]. Our main result states that the mean

value of FST over loci is equal to the squared Hilbert-Schmidt norm of the between-population

matrix, which can be computed by a spectral analysis. Under a separation condition bearing

on the between and within-population matrices, the sum of the first (K − 1) eigenvalues of

scaled PCA approximates the mean value of FST over loci. To describe residual variation not

explained by the discrete population model, we rely on approximations of the eigenvalues of

the within-population matrix from RMT [10, 26].
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A corollary of the theory is an alternative definition of inbreeding coefficients that allows us

to extend FST to adjusted or surrogate genotypes, such as genotype likelihoods and other modi-

fications of allele counts [27]. To illustrate the new definition, we compute FST for ancient

human DNA samples after performing correction for genomic coverage and for distortions

due to difference in sample ages [28]. In a second application, we compute FST for Scandina-

vian samples of Arabidopsis thaliana after removing genetic variation associated with environ-

mental variables taken from a climate database [29, 30].

Results and discussion

Partitioning of genetic variation

Consider a sample of n unrelated individuals for which a large number of loci are genotyped,

resulting in a matrix, X = (xiℓ), with n rows and L columns. For haploids, we set xiℓ = 0, 1, and

for diploids xiℓ = 0, 1, 2 to count the number of derived alleles at locus ℓ for individual i. Deal-

ing with autosomes, we simplify our presentation by considering a sample of diploids as

being represented by a sample of haploids having twice the original sample size. For

unphased data, we take a random phase. Although not a necessary condition, the loci are

assumed to be unlinked, or obtained after a linkage disequilibrium (LD)-pruning algorithm

applied to the genotype matrix [20, 31]. We use the term locus as a shorthand for single-

nucleotide polymorphism (SNP), although most of our analyses could include non-polymor-

phic sites. Following Wright’s approach to the description of population structure, our main

assumption is that individuals are sampled from K predefined discrete populations. Examples

of discrete population models underlying our assumptions include Wright’s island models,

coalescent models of divergence and F-models [6, 32, 33]. Application to F-models will be

described afterwards.

To analyze population structure, PCA can be performed after centering and sometimes

after scaling the genotype matrix. The scaled matrix is denoted by Zsc and the unscaled cen-

tered matrix is denoted by Z. Scaled PCA computes the eigenvalues, r2
kðZ

scÞ, of the empirical

correlation matrix. Unscaled PCA computes the eigenvalues, s2
kðZÞ, of the empirical covari-

ance matrix [9, 26]. The eigenvalues are ranked in decreasing order, and r2
kðZ

scÞ=L is usually

interpreted as the proportion of variance explained by the kth axis of the PCA. PCA can be

performed via the SVD algorithm. In this case, the eigenvalues of scaled (or unscaled) PCA

correspond to the squared singular values of the scaled (or centered) matrix divided by
ffiffiffi
n
p

[9,

26].

To establish relationships between PCA and inbreeding coefficients, we decompose the

centered matrix into a sum of two matrices, Z = ZST + ZS, corresponding to between and

within-population components. The decomposition is performed as follows. Let i be an indi-

vidual sampled from population k. At a particular locus, ℓ, the genotype, xiℓ, is equal 0 or 1

(derived allele), and pkℓ denotes the derived allele frequency in population k at this locus.

The coefficient of the centered matrix, ziℓ, is equal to ziℓ = ∑j 6¼k cj(pkℓ − pjℓ) + (xiℓ − pkℓ),

where ck = nk/n represents the proportion of individuals sampled from population k. In this

formulation, the between-population matrix, ZST, has general term zsti‘ ¼
P

j6¼kcjðpk‘ � pj‘Þ,
repeated for all individuals in population k. By construction, the rank of ZST is equal to

(K − 1). The within-population matrix, ZS, has general term zsi‘ ¼ xi‘ � pk‘. A very similar

decomposition holds for the scaled matrix, defined as zsci‘ ¼ zi‘=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P‘ð1 � P‘Þ

p
, where

P‘ ¼
PK

k¼1
ckpk‘ is the derived allele frequency in the total sample at locus ℓ (see Box 1 for the

notations).
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Spectral analysis of inbreeding coefficients

Consider n samples from K discrete populations and define DST and FST according to Wright’s

[1] and Nei’s [4, 34] equations, allowing for unequal population sample sizes. At a particular

locus, setHS ¼ 2
PK

k¼1
ckpkð1 � pkÞ andHT = 2P(1 − P), then we have DST =HT −HS. Wright’s

inbreeding coefficient is defined as

FST ¼ DST=HT :

Our main result states that the mean value of FST across loci can be computed from the singu-

lar values of the between-population matrix, Zsc
ST. A similar relationship is also established for

DST and for the unscaled matrix, ZST. The singular values of the between and within-popula-

tion matrices can be evaluated from the SVD algorithm. The computational cost of those oper-

ations is equal to the computational cost of the PCA of the genotype matrix, of order O(n2 L).

This cost could be reduced by using various methods, for example by computing the first

K − 1 singular values only. All conclusions below are valid regardless of any population genetic

model. The results also remain valid when genotypes are conditioned on having minor allele

frequency greater than a given threshold, and when the loci are physically linked or when they

exhibit LD. We use the notation E½Q� ¼
PL

‘¼1
Q‘=L to denote the average value of the quantity

Qℓ across loci.

Box 1. Notations

nHaploid sample size

LNumber of genomic loci

FST Wright’s fixation index, computed from Nei’s formula with correction for unequal

sample sizes

HS Within-population genetic diversity

HT Genetic diversity in the total population

DST Among (or between) population genetic diversity

X Matrix of SNP genotypes for n individuals at L loci

P Vector of SNP frequency for the L loci

Z Matrix of centered genotypes, X − P

Zsc Matrix of scaled genotypes, Z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 � PÞ

p

ZST An n × Lmatrix describing between-population data repeated for individuals from a

same population

ZS An n × Lmatrix describing within-population data

s2
kðZÞ Eigenvalues of the empirical covariance matrix (unscaled PCA)

r2
kðZ

scÞ Eigenvalues of the empirical correlation matrix (scaled PCA), also equal to L
times the proportions of variance explained by the principal axes
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Theorem 1. Let K� 2. Let Z and Zsc be the unscaled and scaled genotype matrix respectively.
Define ZST and Zsc

ST as in the previous section. We have

E½FST� ¼
XK� 1

k¼1

r2

kðZ
sc
STÞ=L ; ð1Þ

and

E½DST�=2 ¼
XK� 1

k¼1

s2

kðZSTÞ=L : ð2Þ

The key arguments for those results involve matrix norms, and they can be found in S1

Text. By the Pythagorean theorem, we have kZk2 = kZSTk
2 + kZSk

2 (S1 Text). According to

this result, Theorem 1 can be reformulated using within-population matrices as follows.

Corollary. Let K� 2. Let Z and Zsc be the unscaled and scaled genotype matrix respectively.
Define ZS and Zsc

S as in the previous section. We have

E½FST� ¼ 1 �
Xn� K

j¼1

r2

j ðZ
sc
S Þ=L : ð3Þ

and

E½DST� ¼ E½HT� � 2
Xn� K

j¼1

s2

j ðZSÞ=L : ð4Þ

Inbreeding coefficients for surrogate genotypes

Besides an interest in connecting population genetic theory to the spectrum of the genotype

matrix, the results in Eqs (1) and (2) have important consequences for data analysis. First, the

results support the definition of FST for multilocus genotypes as an average of ratios rather

than a ratio of averages [35, 36]. More importantly, Theorem 1 leads to alternative definitions

of Nei’s DST and Wright’s FST from population genetic data. As will be demonstrated by appli-

cations to ancient DNA and to ecological genomics, the main interest in those new definitions

is their straightforward extension to adjusted genotypic matrices, providing statistics analo-

gous to FST for modified genotypic values. For example, adjusted genotypic matrices arise

when correcting for biases due to technical artifacts, including batch effects and genomic cov-

erage in population genomic data [37, 38]. In general, FST could be adjusted for any specific

effect by considering the residuals of latent factor regression models [39–41]. More specifically,

for Z (or Zsc) and for a set of measured covariates, Y, latent factor regression models estimate a

matrix of surrogate genotypes, W, by adjusting a regression model of the form

Z ¼ YBT þWþ � :

In this model, the B matrix contains effect sizes for each variable in Y, and � is a matrix that

represents centered errors. The latent matrix W has a specified rank, k, lower than nminus the

number of covariates. The rank k corresponds to the number of latent factors incorporated in

the model. The matrix Zadj = W + � leads to a definition of an adjusted inbreeding coefficient,

FadjST . The adjusted inbreeding coefficient can be computed as the squared norm of the between-

population matrix, Zadjþsc
ST , after scaling. Note that this definition considers quantitative values

observed at each locus, and is similar to a population genetic quantity called QST [42, 43].
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Alternatively, FadjST can be computed from the average coefficient of determination, R2, obtained

from the regression of each scaled surrogate genotype on the population labels. The definitions

are equivalent, and we have

E½FadjST � ¼
XK� 1

k¼1

r2ðZadjþsc
ST Þ=L ¼ E½R2� :

Inbreeding coefficients and PCA eigenvalues

Having established that the mean value of FST across loci can be computed from the leading

eigenvalues of the between-population matrix, Zsc
ST, the next question is to ask whether similar

results hold for the leading eigenvalues of the PCA of the scaled matrix,

E½FST� �
XK� 1

k¼1

r2

kðZ
scÞ=L ; ð5Þ

and for the PCA of the centered matrix,

E½DST� � 2
XK� 1

k¼1

s2

kðZÞ=L : ð6Þ

Those results require that the ranked eigenvalues of Z=
ffiffiffi
n
p

sort into approximate eigenval-

ues of ZST=
ffiffiffi
n
p

followed by approximate eigenvalues of ZS=
ffiffiffi
n
p

. Said differently, the (K − 1)th

singular value of ZST=
ffiffiffi
n
p

must separate from the leading singular value of ZS=
ffiffiffi
n
p

s2
K� 1
ðZSTÞ > s2

1
ðZSÞ : ð7Þ

We suppose that the ratio L/n is constant for large L and n, and make the following assump-

tions: 1) The separation condition Eq (7) is verified, 2) The leading eigenvalue of ZS=
ffiffiffi
n
p

is of

order ð1=
ffiffiffi
n
p
þ 1=

ffiffiffi
L
p
Þ

2
(RMT hypothesis). Then, under those conditions, the accuracy of the

approximation in Eqs (5) and (6) is of order O(K/L). More precisely, for any singular value,

σk(ZST), of ZST=
ffiffiffi
n
p

, there exists a singular value, σk(Z), of Z=
ffiffiffi
n
p

such that we have

js2

kðZÞ=L � s
2

kðZSTÞ=Lj ¼ Oð1=LÞ ; k ¼ 1; . . . ;K � 1 :

A similar result holds for the first K − 1 eigenvalues of scaled matrices, r2
kðZ

scÞ and r2
kðZ

sc
STÞ. In

other words, the mean value of FST across loci can be approximated from the sum of the

(K − 1) leading eigenvalues of the PCA with an accuracy proportional to the number of popu-

lations and to the inverse of the number of unlinked loci in the genotype matrix. Mathematical

arguments for those results are detailed in S1 Text.

Poor approximations may be caused by insufficient sample size, incorrect definition of pop-

ulations, inclusion of individuals with mixed ancestry, spatial structure, etc. Poor approxima-

tions may also be accompanied by failure to verify the separation condition Eq (7), as our

simulations will illustrate afterwards. In addition, the results show that FST and PCA exhibit

similar biases, for example, when the sampling design is uneven or when loci are filtered out of

the genotype matrix [16, 31, 44]. We note that the RMT hypothesis for the residual matrix, ZS,

is difficult to prove for population genetic models. Like [10], we will rely on simulations to

show that RMT describes residual variation in population genetic models accurately. In empir-

ical data analyses, checking the residual matrix for agreement with RMT will also provide an

informal test for the number of components in PCA similar to Cattel’s elbow rule [45].
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Brief example

To illustrate the approximation of E½FST� by the leading eigenvalues of the PCA, we present a

short simulation example, in which a genotype matrix was generated according to a three-

population F-model. Simulation studies of F-models and additional examples based on real

data will be developed more extensively later on. In this first simulation example, the average

ancestral frequency was equal to 20%, and the drift parameters for the three populations

were equal to F1 = 5%, F2 = 10% and F3 = 30%. Populations 1 and 2 were genetically closer to

each other than to population 3, which was the most diverged population. Three hundred

samples (nk = 100, for k = 1, 2, 3) were genotyped at 10,000 loci. PCA was conducted on

L = 9740 SNP loci after monomorphic loci were removed. The average value of FST across

loci was equal to 9.52%, and approximated the sum of the leading eigenvalues of the PCA

(9.54%) accurately. The first axes of the PCA explained 6.78%, 2.76%, and 0.47% of the total

variation respectively (Fig 1). The non-null eigenvalues of Zsc
ST=

ffiffiffi
n
p

, 6.77% and 2.75%, were

close to the values obtained for the first two PCs. As stated in Theorem 1, their sum was

Fig 1. Spectral analysis of a three-population model. PCA scree plots and PC plots for the scaled matrix, Zsc, for the between-population matrix, Zsc
ST, and for the

residual matrix, Zsc
S of simulated data. The simulation was performed for n = 300 individuals and an F-model (F1 = 5%, F2 = 10%, F3 = 30%) with ancestral

frequency drawn from a beta(1,4) distribution.

https://doi.org/10.1371/journal.pgen.1009665.g001
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equal to E½FST�. Clearly, the smallest eigenvalue of Zsc
ST=

ffiffiffi
n
p

separated from the leading value

of Zsc
S =

ffiffiffi
n
p

(0.47%), which was close to the eigenvalue for the third PC and to its prediction

from RMT (0.31%, Fig 1).

To show the effect of having incorrectly labelled population samples, we considered the

same genotype matrix, and replicated the analyses after grouping the “paraphyletic” samples

from populations 2 and 3 against the least diverged sample from population 1 (Fig 2, n1 = 200

and n2 = 100, K = 2). The average FST value was equal to 3.46%, and failed to approximate the

first eigenvalue of the PCA (6.78%). The leading value of Zsc
S =

ffiffiffi
n
p

(6.06%) did not verify the

separation condition, and it differed from its RMT prediction (0.32%). The PC plot for Zsc
S

provided evidence of residual population structure within the paraphyletic population sam-

ple. Like for a regression analysis, those results outlined the usefulness of visualizing the

residual matrix in order to evaluate the number of populations from the genotype matrix

(Figs 1 and 2).

Fig 2. Spectral analysis with incorrectly labelled population samples (K = 2). For the same genotype matrix as in Fig 1, samples from populations 2 and 3 (blue)

were grouped against population 1 (green). PCA scree plots and PC plots for the scaled matrix, Zsc, for the between-population matrix, Zsc
ST, and for the residual

matrix, Zsc
S of simulated data. FST was lower than the leading eigenvalue of the residual matrix, and it differed from the first PC eigenvalue.

https://doi.org/10.1371/journal.pgen.1009665.g002
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Single population models

In a first series of simulations without population structure, we investigated whether RMT pre-

dictions were valid for F-models. For single population F-models, the results supported that

the leading eigenvalues of PCA were accurately predicted by the Marchenko-Pastur distribu-

tion (S1 Fig). Then we investigated whether condition Eq (7) could be verified when there was

no structure in the data, and two population samples were wrongly defined from a preliminary

structure analysis. We ran two-hundred simulations of single population models (n = 100 and

L� 10, 000), and, for each data set, we partitioned the samples in two groups according to the

sign of their first principal component. This procedure maximized the likelihood of detecting

artificial groups, leading to an average FST� 1.1%. For those artificial groups, we computed

the non-null singular value of the between-population matrix, Zsc
ST=

ffiffiffiffiffiffiffiffiffiffiffi
n � 1
p

, and the leading

singular value of the within-population matrix, Zsc
S =

ffiffiffiffiffiffiffiffiffiffiffi
n � 1
p

. For the simulations, the separa-

tion condition was never verified, rejecting population structure in all cases (S2(A) Fig). For

smaller sample sizes (n = 10 and L� 1, 000), the separation condition was erroneously checked

in 21% simulations, indicating that we had less power to discriminate among artificial groups

with small sample sizes (S2(B) Fig). Those results were also consistent with difficulties reported

for between-group PCA [46].

Two-population models

To check whether the expected values of FST and DST were approximated from the first eigen-

values of PCA, we performed simulations of F-models with two populations. For these simula-

tions, the separation condition was verified in all data sets. There was an almost perfect fit of

the leading eigenvalue for centered PCA, s2
1
ðZÞ, with the average value of DST/2 across loci and

with its theoretical value in F-models (Fig 3A and S3 Fig, and S1 Text). There was also an

almost perfect fit of the leading eigenvalue of scaled PCA, r2
1
ðZscÞ, with the average value of FST

across loci (Fig 3C). The second largest eigenvalues were accurately predicted by RMT both

for unscaled and for scaled PCA (Fig 3B–3D). To detail those results for particular values of

drift coefficients, we performed additional simulations for F1 = F2 = 7%, also investigating the

distribution of eigenvalues of the residual matrix (Fig 4). In a sample of n = 200 individuals

and L� 85, 500 SNPs, the first PC axis explained 3.11% of total genetic variation, correspond-

ing to the average of FST across loci (3.11%, Fig 4A). The separation of between and within-

population components was verified, and the second eigenvalue (0.536%) was very close to its

prediction from RMT, given by ð1 � r2
1
ðZscÞÞ � ð1=

ffiffiffi
L
p
þ 1=

ffiffiffiffiffiffiffiffiffiffiffi
n � 2
p

Þ
2
¼ 0:537% (Fig 4A).

The distribution of residual eigenvalues, corresponding to within-population variation, was

accurately modelled by the Marchenko-Pastur probability density function (Fig 4B). With a

smaller sample of n = 20 individuals and L� 12, 500 SNPs, the leading axis explained 5.24% of

the total genetic variation, still matching the value of FST across loci (5.23%, Fig 4C). The

Marchenko-Pastur density remained an accurate approximation to the bulk spectrum of resid-

ual eigenvalues (Fig 4D).

In another series of simulations with F1 = F2 = 2%, we evaluated whether the sum of the

leading eigenvalues for scaled PCA was close to the average of FST across loci when the separa-

tion condition was verified (S4 Fig). For small sample sizes (n = 20 and L = 100), the separation

condition was not verified and the approximation was poor. For intermediate sample sizes

(n = 60 and L = 1000), the approximation was more accurate when the separation condition

was verified than when it was not. For large sample sizes (n = 100 and L = 10000), the separa-

tion condition was always verified and the approximation was accurate. Although the L/n ratio
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was not kept to a constant value, the accuracy of the approximation agreed with a predicted

order of O(1/L) (S5 Fig).

Next, we studied the relationship between leading eigenvalues and sample size, for L = 100

loci and L = 100, 000 loci (S6 Fig). For smaller number of loci (L = 100) and smaller samples

(n� 80), the data failed to verify the separation condition in some simulations. In those cases,

population structure was not correctly evaluated by E½FST�. The separation condition was veri-

fied in about 35% cases for n = 10 and in about 95% cases for n� 80. For the larger number of

loci (L� 100000) or for larger sample sizes (n� 100), the separation condition was verified in

all cases, and the leading eigenvalue converged to the theoretical value of E½FST� for infinitely

large sample sizes. As for between-group PCA, the results suggest exaggerated differences

among groups when sample sizes are very small relative to the number of loci [47].

Fig 3. Comparison of DST and FST estimates with the leading PCA eigenvalues in two-population models. (A) Leading eigenvalues of

centered PCA as a function of the mean of DST/2 across loci. (B) Second eigenvalue of centered PCA as a function of its approximation from

RMT. (C) Leading eigenvalues of scaled PCA as a function of the mean of FST across loci. (D) Second eigenvalue of scaled PCA as a function

of its approximation from RMT, which is given by ð1 � r2
1
Þ � ð1=

ffiffiffi
L
p
þ 1=

ffiffiffiffiffiffiffiffiffiffiffi
n � 2
p

Þ
2

(approximation of the largest eigenvalue of the residual

matrix). The dashed lines correspond to the diagonal y = x. Simulations of F-models were performed for n = 100 individuals (inbreeding

coefficients between 1% and 75%, first population sample proportion between 10% and 50%, ancestral frequency was drawn from a beta(1,4)

distribution).

https://doi.org/10.1371/journal.pgen.1009665.g003
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More than three-population models

For F-models, the eigenvalues of the theoretical covariance matrix were analysed formally for

small numbers of populations (S1 Text). To achieve this goal, we considered the covariance

matrix of the random vector z defined by zk ¼
ffiffiffiffick
p
ðpk � PÞ, for all k = 1 to K. The K × K

covariance matrix of the random vector z could be obtained from the drift statistics F 2 and F 3

defined in [48, 49]. The coefficients of this matrix are

Fig 4. Scree plots and RMT approximations in two-population models. (A) Proportion of variance (eigenvalues) explained by PC axes, with a circle

symbol representing the mean of FST across loci for n = 200 individuals and L = 85, 540 SNPs. (B) Histogram of eigenvalues of the residual matrix,

ZS=
ffiffiffiffiffiffiffiffiffiffiffi
n � 2
p

, for the data simulated in A. (C) Proportion of variance for n = 40 individuals and L = 12, 650 SNPs. (D) Histogram of eigenvalues of the

residual matrix for the data simulated in C. The dashed lines in PCA scree-plots represent the RMT approximation of the leading eigenvalue of the

residual matrix. The blue curve represents the Marchenko-Pastur probability density. Simulations of F-models were performed with panc drawn from a

beta(1,9) distribution and F1 = F2 = 7%.

https://doi.org/10.1371/journal.pgen.1009665.g004

PLOS GENETICS Spectral theory of Wright’s inbreeding coefficients

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009665 July 19, 2021 11 / 24

https://doi.org/10.1371/journal.pgen.1009665.g004
https://doi.org/10.1371/journal.pgen.1009665


Λj;k ¼
ffiffiffiffiffiffifficjck
p E½ðpj � PÞðpk � PÞ� ¼

ffiffiffiffiffiffifficjck
p F 3ðP; pj; pkÞ, for j 6¼ k, and Λk;k ¼ ckE½ðpk � PÞ

2
� ¼

ckF 2ðP; pkÞ otherwise. For K = 3, the eigenvalues of the Λ matrix were computed exactly (S1

Text).

We performed simulations of three-population F-models to check whether the data agreed

with theoretical predictions for the leading eigenvalues, λ1, and for DST and FST. With random

drift coefficients (n = 100, L = 20000), the separation condition was verified in all simulated

data sets. An almost perfect agreement between λ1 + λ2 and the mean value of DST/2 (unscaled

PCA) or FST (scaled PCA) was observed (S7(A)–S7(C) Fig). The leading eigenvalue of unscaled

PCA exhibited a small but visible bias with respect to the value predicted for λ1 (S7(B) Fig).

The third eigenvalue of scaled PCA was close to the approximation provided by RMT (S7(D)

Fig). To study cases in which the separation condition was not verified, we considered smaller

number of genotypes (L� 1000) and lower values of drift coefficients (Fk� 10%). For small

values of n and L, a significant proportion of simulated data sets did not verify the separation

condition (S8 Fig), although models were correctly specified. Those results provided additional

evidence of biases in analyses of population structure with small data sets. Extending our simu-

lation study to larger number of populations, we checked that the accuracy of the approxima-

tion of E½FST� by the sum of the first (K − 1) PCA eigenvalues was proportional to K/L when

the separation condition was verified (S9 Fig). Poorer accuracy was observed when the data

failed to verify the separation condition.

Human data

To provide evidence that the relationships between PCA eigenvalues and FST are verified for

real genotypes, we computed FST, their approximation by PCA, and the leading eigenvalues of

the residual matrix for pairs and triplets of human population samples from The 1000

Genomes Project [50] (Table 1 and S1 Table). In pairwise analyses excluding admixed samples,

the separation condition was verified in all analyses at the exception of the pair CEU-IBS,

formed of two closely related European samples. The leading eigenvalue of scaled PCA was

accurately approximated by E½FST�, and the leading eigenvalue of the residual matrix was accu-

rately predicted by RMT. For triplet analyses without admixed samples, the separation condi-

tion was also verified and the sum of the first two eigenvalues of scaled PCA was accurately

approximated by E½FST�. RMT still predicted the leading eigenvalue of the residual matrix

accurately. In pair and triplet analyses including admixed samples, the separation condition

Table 1. FST estimates for populations from The 1,000 Genomes Project.

Lead. eigen. of PCA� FST across loci Lead. eigen. res. matrix�� RMT approximation���

CHB-CEU 5.65% 5.65% 0.42% 0.48%

CHB-YRI 8.35% 8.35% 0.36% 0.37%

CEU-YRI 7.21% 7.21% 0.35% 0.37%

CEU-IBS 0.41% 0.38% 0.37% 0.41%

CEU-YRI-CHB 9.99% 9.98% 0.24% 0.26%

CEU-ASW 4.87% 4.55% 0.75% 0.52%

CEU-YRI-ASW 6.12% 5.82% 0.44% 0.29%

� Sum of the leading eigenvalues of the PCA

�� Sum of the leading eigenvalues of the within-population (residual) matrix

��� RMT approximation for the leading eigenvalue of the within-population matrix

IBS: Iberian (n = 147), CHB: Han Chinese in Beijing (n = 100), YRI: Yoruba (n = 158), CEU: Utah residents with European ancestry (n = 104). ASW: Americans of

African Ancestry in SW USA (n = 97).

https://doi.org/10.1371/journal.pgen.1009665.t001
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was fulfilled in all analyses at the exception of the pair ACB-ASW (S1 Table). The approxima-

tion of E½FST� by the leading eigenvalues of scaled PCA was less accurate than in analyses with-

out admixed samples. In the CEU-ASW analysis for example, E½FST� (= 4.55%) was lower than

the leading eigenvalue of PCA (= 4.87%). An explanation for these discrepancies may be that

FST is informative about the admixture proportion between admixed populations and their

parental source populations [51]. With admixed samples, mismatches were also observed

between the leading eigenvalue of the residual matrix and its prediction from RMT. The results

suggest that the data do not agree with models of K discrete populations, and modified defini-

tions of FST could be more appropriate for describing population structure in the presence of

admixed individuals [52, 53].

Ancient DNA data

We illustrated how spectral estimates can be used to evaluate inbreeding coefficients from

genotypes obtained after correction for experimental effects. We studied ancient DNA samples

from early farmers from Anatolia (EFA, n = 23), steppe pastoralists from the Yamnaya culture

(Steppe, n = 15), Western hunter-gatherers from Serbia (WHG, n = 31), and included

Bell-Beaker samples from England and Germany (BKK, n = 38) [17, 54–56]. To estimate FST

from those samples, we performed adjustment of pseudo-haploid genotypes for genomic cov-

erage and for temporal distortions created by genetic drift. Temporal distortions were not

expected to modify the average value of FST across loci. After genotypes were adjusted for cov-

erage and corrected for distortions due to differences in sample ages, the resulting values could

no longer be interpreted as allelic frequencies. The adjusted estimates for FST were equal to

4.7% for the EFA—Steppe data set, 5.8% for EFA—WHG, 5.1% for Steppe—WHG (Table 2).

The separation condition was verified in all comparisons, and there was evidence of popula-

tion structure in all pairwise analyses. Although individual PCA scores were impacted by cov-

erage and temporal distortions (Fig 5), those unwanted effects did not generate substantial bias

for PCA eigenvalues, leaving us with FST estimates that were similar with or without adjust-

ment. For a three-population model including the EFA, WHG, and Steppe samples, the

adjusted estimate for FST was equal to 7.0%, slightly lower than the uncorrected estimate

(7.2%, Table 2) and than the sum of the leading values of PCA (equal to 7.3%). The smallest

eigenvalue of the between-population matrix was larger (2.6%) than the leading eigenvalue of

the residual matrix (1.8%). This was no longer the case when the Bell Beakers from England

and Germany were included in the data set. With Bell Beaker samples, the smallest eigenvalue

of the between-population matrix was lower (1.0%) than the leading eigenvalue of the residual

Table 2. FST estimates for ancient Eurasian samples with correction for genomic coverage.

FST without correction FST with correction Lead. eigen. res. matrix� RMT threshold��

EFA-Steppe 4.8% 4.7% 3.1% 2.8%

EFA-WHG 5.9% 5.8% 3.3% 2.0%

Steppe-WHG 5.2% 5.1% 3.8% 2.3%

EFA-Steppe-WHG 7.2% 7.0% 1.8% (2.6%) 1.5%

EFA-Steppe-WHG-BBK 5.9% 5.8% 1.8% (1.0%) 1.0%

EFA: Early Farmers from Anatolia, WHG: Western Hunter-Gatherers, Steppe: Yamnaya pastoralists, BBK: Bell Beakers from England and Germany.

� Leading eigenvalue of the within-population residual matrix (smallest eigenvalue of the between-population matrix)

�� RMT threshold for evidence of population structure in pairs: ð1=
ffiffiffi
L
p
þ 1=

ffiffiffiffiffiffiffiffiffiffiffi
n � 1
p

Þ
2
, RMT approximation in triplet and quadruplet:

ð1 � E½FST�Þð1=
ffiffiffi
L
p
þ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
n � K
p

Þ
2
. L: number of loci, n: sample size.

https://doi.org/10.1371/journal.pgen.1009665.t002

PLOS GENETICS Spectral theory of Wright’s inbreeding coefficients

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009665 July 19, 2021 13 / 24

https://doi.org/10.1371/journal.pgen.1009665.t002
https://doi.org/10.1371/journal.pgen.1009665


matrix (1.0%, Table 2). An explanation for this result is that the shared ancestry of Bell Beaker

individuals [56] made PCA results inconsistent with a four-population model.

Genetic differentiation explained by bioclimatic factors

To provide a second illustration of the use of spectral estimates of inbreeding coefficients, we

studied the role of bioclimatic factors in shaping population genetic structure in plants [29].

Here, the objective was to evaluate the proportion of differentiation explained by temperature

and precipitation, which may influence adaptive genetic variation in those taxa. For 241 Swed-

ish accessions of Arabidopsis thaliana taken from The 1,001 Genomes database [30], popula-

tion structure was first evaluated by using a spatially explicit Bayesian algorithm. The

individuals were clustered in two groups located in southern and northern Sweden (Fig 6A).

For the groups estimated by spatial population structure analysis, the mean value of FST across

loci was equal to 7.9%. This value was larger than the leading eigenvalue of the within-popula-

tion matrix, equal to 4.9%. The proportion of variance explained by the first PCA axis was

equal to 8.5%, greater than FST (Fig 6). An explanation for this discrepancy is that a two-popu-

lation model may not fit the data accurately, as PCA axes can capture spatial genetic variation

unseen by the discrete population model. Population structure was further evaluated by using

K = 3 ancestral populations. Southern individuals were split into two groups along a East-West

Fig 5. Correction for coverage in PC plots for pairs of ancient population samples. (A) PCA of unadjusted genotypes. (B) PCA of non-binary

genotypic data adjusted for coverage. Population samples: Early Farmers (salmon color, n1 = 23), Steppe pastoralists (blue color, n2 = 15), (Western

Hunter Gatherers, green color, n3 = 31).

https://doi.org/10.1371/journal.pgen.1009665.g005
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axis, exhibiting mixed ancestry from those groups (S10 Fig). With three groups, the leading

eigenvalues of the between-population matrix were equal to 7.8% and 2.5%. The second eigen-

value was lower than the leading eigenvalue of the within-population matrix, equal to 3.7%.

According to those results, we decided to focus on information carried by a two-population

model.

After adjusting for bioclimatic variation, the leading eigenvalue of the PCA was equal to

6.5% (Fig 6C). The eigenvalue of the between-population matrix—which defines the average

value of FST for the adjusted genotypes, was equal to E½FadjST � ¼ 5:3%. The second and subse-

quent PCA eigenvalues were equal to 4.9%, 3.2%, 2.3%, and those values were unaffected by

Fig 6. Neutral FST for Arabidopsis thaliana in Scandinavia. (A) Geographic locations of 241 samples and inference of population structure from a

spatial method (Blue color: Southern cluster, Orange color: Northern cluster). The map was generated by using the open source R package maps

(CC-BY license), which loads data from www.naturalearthdata.com. (B) Proportion of variance explained by PC axes before adjustment of genotypes

for bioclimatic variables (blue color) and after adjustment (orange color). (C) Proportion of variance explained by the first axis of the between-

population matrix, and by the first axes of the residual matrix (five components) before adjustment for bioclimatic variables (blue color) and after

adjustment (orange color). Wright’s coefficients are represented by the values for the first axis.

https://doi.org/10.1371/journal.pgen.1009665.g006
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the bioclimatic variables (Fig 6B). In addition, those eigenvalues agreed with the largest eigen-

values of the residual matrix, Zadj
S , which were equal to 5.1%, 3.3%, 2.6% (Fig 6B). Comparing

E½FadjST � to E½FST� [42], these results showed that the relative proportion of variation explained

by climate along the first axis was around 33%. The results provide evidence that climate had

an impact on the differentiation of populations along the south-north axis, but had less influ-

ence on other axes of genetic variation. In summary, those numbers suggest that bioclimatic

conditions played a major role in driving genetic divergence between northern and southern

populations of Scandinavian A. thaliana.

Conclusions

Assuming a model with K discrete populations, our study established a relationship between

Wright’s inbreeding coefficient, FST, and the (K − 1) leading eigenvalues of the between-pop-

ulation matrix and of scaled PCA. A similar relationship was established between Nei’s

among-population diversity, DST, and the leading eigenvalues of unscaled PCA. Those rela-

tionships justify the use of PCA to describe population genetic structure from large genotype

matrices. They extend results obtained from coalescent theory for two divergent populations

in Ref. [16] to any discrete population model. Assuming that RMT holds for residual matri-

ces, they increase the accuracy of previous results, clarifying for which sample sizes and num-

ber of loci they could be valid. Computing the eigenvalues of the between-population matrix

and of the residual matrix can be done numerically with a computing cost similar to PCA

(Fig 1). In our simulations, we found that the leading eigenvalue of the residual matrix was

well predicted by RMT. RMT also provided a threshold value of FST, equal to y ¼

ð1=
ffiffiffi
L
p
þ 1=

ffiffiffiffiffiffiffiffiffiffiffi
n � 1
p

Þ
2

below which there is no evidence of population structure for two or

more populations. This threshold differs from the threshold value of 1=
ffiffiffiffiffiffi
nL
p

proposed in

Ref. [10], and it was supported by simulations of single population models. In addition to

connecting the PCA of a genotype matrix to inbreeding coefficients and related quantities,

our results have several implications for the analysis of adjusted genotypes, providing statis-

tics analogous to FST and QST for those data. Adjusted genotypes arise in many applications,

such as ancient DNA, to correct for biases due to technical or sampling artifacts, or in eco-

logical genomics where it allows evaluating the part of population differentiation explained

by environmental variation. The proposed estimates of inbreeding coefficients are thus of

great importance to the understanding of the demographic history of populations and their

adaptation to environmental variation.

Methods

PCA and SVD

For a genotype matrix X with L loci, centered PCA computes the eigenvalues, s2
i ðZÞ, of the

empirical covariance matrix, ZZT/n, where Z = Zc is the centered matrix, for which the mean

value of each column has been substracted from X [9, 26]. Scaled PCA computes the eigenval-

ues, r2
i ðZ

scÞ, of the empirical correlation matrix, Zsc(Zsc)T/n, obtained for Zsc, the matrix in

which each column of Z is divided by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 � PÞ

p
. In order to obtain unbiased estimates,

empirical covariance and correlation matrices are usually divided by (n − 1) instead of n. To

avoid this complication, we kept n in all theoretical analyses (assuming that n is large). Unbi-

ased estimates were used in empirical and simulated data analyses. Using the equivalence

between PCA and SVD, the eigenvalues of PCA were computed as the squared non-null singu-

lar values of the matrix Z=
ffiffiffi
n
p

.
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Spectral analysis

To make arguments easier to follow, we developed the analysis of eigenvalues for unscaled

PCA. Extension to scaled PCA does not create mathematical complications but has heavier

notations. This paragraph sketches the key arguments for the main result. More details are

provided in S1 Text. We found that the squared Hilbert-Schmidt norm of the between-popula-

tion matrix ZST is equal to

kZSTk
2
¼ nLE

XK

k¼1

ck
XK

j¼1

cjðpj � pkÞ

 !2" #

¼ nL� E½DST�=2 ;

where the mathematical symbol E½Q� denotes the mean value of a quantitative or discrete

quantity Q over the L loci. For scaled PCA, the squared norm is equal to nL� E½FST�. The

matrices ZST and ZS satisfy orthogonality conditions. In particular, the matrices are related by

the Pythagorean formula kZk2 = kZSTk
2 + kZSk

2. The Pythagorean formula is the main argu-

ment for the alternative form of Theorem 1. In addition, stronger orthogonality conditions

hold and enable showing that the accuracy of approximation of eigenvalues is of order 1/L.

F-models

F-models are models for K discrete populations diverging from an ancestral gene pool [33]. In

the ancestral gene pool, the derived allele is present with frequency panc. The K populations

diverged from each other and from the ancestral population with drift coefficient equal to Fk
relative to the ancestral pool. Conditional on panc, the allele frequency at a particular locus in

population k follows a beta distribution of shape parameters panc(1 − Fk)/Fk and (1 − panc)(1 −
Fk)/Fk. To create a distribution over the L loci, panc is drawn from a beta distribution with

shape parameters a and b, leading to E½panc� ¼ a=ðaþ bÞ. The expected ancestral heterozygoz-

ity,HA, is equal to E½HA� ¼ 2ab=ðaþ bÞðaþ bþ 1Þ. For F-models, the expected value of DST

can be formulated as E½DST� ¼ E½HA�
PK

k¼1
ckð1 � ckÞFk (S1 Text). Numerical values for E½FST�

are less explicit, but they can be obtained by using Monte-Carlo simulations.

Simulations of F-models were performed in the R programming language. We performed

simulations of single population models (K = 1) to check whether approximations derived from

RMT appropriately describe the leading eigenvalue of scaled PCA in the absence of population

structure. Simulations of F-models were performed with a value of the drift coefficient equal to

F = 15%. The ancestral frequency for the derived allele, panc, was drawn from a beta distribution

with shape parameters a = 1 and b = 9, so that E½panc� ¼ 10% (S1 Fig). Simulations of F-models

were performed with K = 2 to check whether the data could fit theoretical expectations for DST

and FST. Two hundred simulations of F-models were performed with equal values of the drift

coefficients randomly drawn between 1% and 75% (F1 = F2). The ancestral frequency for the

derived allele, panc, was drawn from a beta distribution with shape parameters a = 1 and b = 4,

so that E½panc� ¼ 20%. The total sample size was equal to n = 100 and the sample proportion c1
was drawn from a uniform distribution between 10% and 50%. Next, we considered three-pop-

ulation F-models with equal sample sizes and ancestral allele frequencies distributed according

to the uniform distribution, (a = 1 and b = 1). With the uniform distribution, we found that

E½HA� ¼ 1=3, and the non-null eigenvalues of the between-population covariance matrix could

be computed as li ¼ ðF1 þ F2 þ F3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

1
þ F2

2
þ F2

3
� F1F2 � F2F3 � F3F1

p
Þ=54, for i = 1, 2

(S1 Text). We had E½DST� ¼ 2ðl1 þ l2Þ. Two hundred simulations of three-population models

were performed with unequal drift coefficients drawn between 1% and 25%. The total sample

size was equal to n = 100 and the number of loci was equal to L = 20, 000. For values of n
between 30 and 300, and number of loci between 100 and 1000, we performed additional
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simulations with small drift coefficients (Fk� 10%) to evaluate the probability that the data ver-

ify the separation condition. We also performed simulations of F-models for K between 4 and

40, using nk = 20 individuals in each sample (L = 20, 000) and two models of drift: Fk = 0.1 and

Fk = 0.2/k for all k = 4, . . ., 40.

Approximation of the residual matrix from Random Matrix Theory (RMT)

For discrete population models, approximations of eigenvalues for the within-population

(residual) matrix were obtained from RMT [10, 57–60]. RMT considers large sample sizes,

and keeps the ratio of the number of loci to the sample size at a constant value, γ = L/n. For sin-

gle population models, we have Z = ZS, and the proportions of variance explained by each

principal axis were approximated by the Marchenko-Pastur probability density function

described by

pðxÞ ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxM � xÞðx � xmÞ

p

2xp
; xm ¼ ð1 �

ffiffiffi
g
p
Þ

2
=L � x � xM ¼ ð1þ

ffiffiffi
g
p
Þ

2
=L ;

and the proportion of variance explained by the first principal axis was approximated by

ð1=
ffiffiffi
L
p
þ 1=

ffiffiffiffiffiffiffiffiffiffiffi
n � 1
p

Þ
2
. For K> 1, the Marchenko-Pastur density modelled the bulk distribu-

tion of eigenvalues for the within-population (residual) matrix. Under the separation condi-

tion Eq (7), the proportion of variance explained by the Kth principal axis was approximated

by ð1 � E½FST�Þð1=
ffiffiffi
L
p
þ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
n � K
p

Þ
2
. Regarding unscaled PCA, the largest singular value of

the within-population matrix was approximated by 2s2
1
ðZSÞ=L � E½HS�ð1=

ffiffiffi
L
p
þ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
n � K
p

Þ
2
.

If there truly is a single population represented in the total sample, then FST for two equal size

samples should be of order ð1=
ffiffiffi
L
p
þ 1=

ffiffiffiffiffiffiffiffiffiffiffi
n � 1
p

Þ
2
.

Human DNA analyses

We computed PCA eigenvalues, the mean values of FST and the leading eigenvalues of the

residual matrix for pairs and triplets including human population samples from The 1000

Genomes Project [50]. In these comparisons, the number of SNPs was L� 1.3M, after filtering

out for minor allele frequency less than 5%. We considered samples from Han Chinese in Bei-

jing (CHB, n = 100), Yoruba (YRI, n = 158), Utah residents with European ancestry (CEU,

n = 104), Iberian (IBS, n = 147). We considered samples from populations with mixed ances-

try, Americans of African Ancestry in SW USA (ASW, n = 97), Colombians from Medellin

Colombia (CLM, n = 102), Puerto Ricans from Puerto Rico (PUR, n = 94), individuals of Mex-

ican Ancestry from Los Angeles USA (MXL, n = 100), and African Caribbeans in Barbados

(ACB, n = 98). Some pairs and triplets included individuals with mixed ancestry.

Ancient DNA analyses

We analyzed 143,081 pseudo-haploid SNP genotypes from ancient samples of early farmers

from Anatolia (n = 23), steppe pastoralists from the Yamnaya culture (n = 15), Western

hunter-gatherers from Serbia (n = 31), and Bell-Beakers from England and Germany (n = 38).

The data were extracted from a public data set available from David Reich lab’s repository

(reich.hms.harvard.edu) [17, 54–56]. The ancient samples had a minimum coverage of 0.25x, a

median coverage of 2.69x (mean of 2.98x) and a maximum coverage of 13.54x. Genotypes

were adjusted for coverage by fitting a latent factor regression model with the number of fac-

tors equal to the number of sample minus two. The matrix was then adjusted for distortions

due to differences in sample ages, resulting in surrogate genotypes encoded as continuous vari-

ables without any direct interpretation in terms of allelic frequency [28].
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Genomic and bioclimatic data analyses

We studied 241 swedish plant accessions from The 1,001 Genomes database for Arabidopsis
thaliana [30]. A matrix of SNP genotypes was obtained by considering variants with minor

allele frequency greater than 5% and a density of variants around one SNP every 1,000 bp

(167,475 SNPs). The individuals were clustered in groups based on analysis of population

structure accounting for geographic proximity [61]. Global climate and weather data corre-

sponding to individual geographic coordinates were downloaded from the WorldClim data-

base (https://worldclim.org). Eighteen bioclimatic variables, derived from the monthly

temperature and rainfall values, were considered as representing the current environmental

matrix. Correction of genotypes for locus-specific effects of the eighteen environmental vari-

ables was performed with a latent factor regression model implemented in the R package

lfmm [41]. For the matrix of centered genotypes, Z, and the matrix of eighteen bioclimatic

variables, Y, the program estimated a matrix of surrogate genotypes, W, by adjusting a regres-

sion model of the form Z = YBT + W + �. To keep the latent matrix estimate (W) as close as

possible to Z, we used k = n − 19 = 222 factors to compute W. The codes necessary to repro-

duce the data analyses presented in this study are available in an R package at https://github.

com/bcm-uga/spectralfst.

Supporting information

S1 Text. Mathematical details for the main results and for results on F-models.

(PDF)

S1 Table. FST estimates for populations from The 1,000 Genomes Project.

(PDF)

S1 Fig. Random matrix theory approximation of proportions of variance in single popula-

tion F-models. Two simulations of F-models were performed with panc drawn from a beta dis-

tribution with shape parameters a = 1 and b = 9, and F = 15%. Top row: n = 200 individuals

and L = 69, 248 SNPs. Bottom row: n = 50 individuals and L = 10, 331 SNPs. SFS: Site Fre-

quency Spectrum, MP approximation: Marchenko-Pastur approximation of the distribution

of scaled PCA eigenvalues (blue curve). Histograms of scaled PCA eigenvalues representing

the proportions of variance explained by the (n − 1) principal axes are displayed in grey color.

(PDF)

S2 Fig. Separation of variance components in artificial population samples built from sin-

gle population F-models. For each value of the drift coefficient, each couple of blue and

orange dots represent a simulated data set. FST (blue dots) corresponds to the non-null eigen-

value of the between-population matrix, ZST, and the “residual” value corresponds to the lead-

ing eigenvalue of ZS. Population structure is detected when the blue dot is above the orange

dot. Top row: 200 simulations with n = 100 individuals and L around 10,000 SNPs. Bottom

row: 200 simulations with n = 10 individuals and L around 1,000 SNPs. Simulations were per-

formed with ancestral frequencies, panc, drawn from a beta distribution with shape parameters

a = 1 and b = 9.

(PDF)

S3 Fig. Accuracy of DST estimates with respect to their theoretical values in two-population

F-models. Comparison of values of DST averaged over loci and their theoretical values in F-

models. Simulations of F-models were performed with equal drift coefficients (F1 = F2)

ranging between 1% and 75%, and sample proportions c1 between 10% and 50% (n = 100
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individuals). The ancestral frequencies, panc, were drawn from a beta distribution with shape

parameters a = 1 and b = 4.

(PDF)

S4 Fig. Accuracy of approximation of FST and separation condition in two-population F-

models. First column: Approximation error defined as the difference between FST and the

leading eigenvalue of scaled PCA, E½FST� � r2
1
ðZscÞ=L, as a function of the difference of eigen-

values, r2
1
ðZsc

STÞ=L � r
2
1
ðZsc

S Þ=L. Second column: Approximation errors according to whether

the separation condition is checked or not. Third column: Leading eigenvalue of scaled PCA

as a function of E½FST�. Simulations of F-models were performed for n individuals and L loci

with equal drift coefficients F1 = F2 = 0.02. Ancestral frequencies, panc, were drawn from a beta

distribution with shape parameters a = 1 and b = 4.

(PDF)

S5 Fig. Approximation errors decrease as 1/L in two-population F-models. Approximation

error defined as the absolute difference between FST and the leading eigenvalue of scaled PCA,

E½FST� � r2
1
ðZscÞ=L as a function of 1/L (L is the number of unlinked loci). The red line corre-

sponds to the linear regression Log(Approx) = a + b Log(L), and has slope equal to b = −1.001

(R2 = 0.997, P< 2e-16). Simulations of F-models were performed for n = 150 individuals with

drift coefficients equal to F1 = F2 = 0.02. The ancestral frequencies, panc, were drawn from a

beta distribution with shape parameters a = 1 and b = 4.

(PDF)

S6 Fig. First eigenvalue (FST estimate) as a function of sample size in two-population F-

models. (A) L = 100 loci: The separation condition was verified for sample sizes > 60. (B)

L = 100, 000 loci: The separation condition was verified for all sample sizes. FST: Leading eigen-

value of the PCA. RMT threshold: Approximation of the detection threshold from RMT,

equal to ð1=
ffiffiffi
L
p
þ 1=

ffiffiffiffiffiffiffiffiffiffiffi
n � 1
p

Þ
2
. Dashed line: Theoretical value for an infinite sample size,

E½FST� ¼ 3:97%. Simulations of F-models were performed with ancestral frequencies drawn

from a beta(1,4) distribution and with F1 = F2 = 10%.

(PDF)

S7 Fig. Leading eigenvalues in three-population F-models. (A) Sum of the first two

eigenvalues of centered PCA as a function of the mean of DST/2 across loci. (B) First

eigenvalue of centered PCA as a function of its expected value

l1 ¼ ðF1 þ F2 þ F3 þ
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3
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p
Þ=54. (C) Sum of the first two

eigenvalues of scaled PCA as a function of the mean of FST across loci. (D) Third eigenvalue of

scaled PCA as a function of its approximation from RMT. MP approximation: Marchenko-

Pastur approximation of the largest eigenvalue of the residual matrice, ZS=
ffiffiffiffiffiffiffiffiffiffiffi
n � 3
p

, equal to

ð1 � r2
1
� r2

2
Þ � ð1=
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L
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þ 1=

ffiffiffiffiffiffiffiffiffiffiffi
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. The dashed lines correspond to the diagonal y = x.

Simulations of F-models were performed for n = 100 individuals with drift coefficients F1, F2,

F3 between 1% and 25%, equally sampled populations, and ancestral frequencies drawn from

the uniform distribution (L = 20000 loci).

(PDF)

S8 Fig. Separation condition in three-population F-models. Probability that the separation

condition is verified for sample sizes ranging between n = 30 and n = 300 individuals, and

number of loci ranging between L = 100 and L = 1000. Simulations of F-models were per-

formed with equal sample sizes, random drift coefficients lower than 10%, and ancestral fre-

quencies drawn from the uniform distribution. Five hundred simulations were performed for
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each combination of n and L.

(PDF)

S9 Fig. Accuracy of approximation of FST by PCA for K-population F-models. A-B) Simu-

lations with equal drift coefficients Fk = 0.1. The accuracy of the approximation of E½FST� by

the sum of the K − 1 leading eigenvalues of the PCA is comparable to K/L (A) and the separa-

tion of eigenvalues from the residual matrix is verified (B). C-D) Simulations with unequal

drift coefficients Fk = 0.2/k. The accuracy of the approximation of E½FST� diverged from K/L
when the separation of eigenvalues did not hold. In all simulations, ancestral frequencies were

drawn from a beta distribution with shape parameters a = 1 and b = 4. Sub-population samples

had size equal to nk = 20, the total population size was n = 20 × K), and the number of SNP loci

was L� 19850.

(PDF)

S10 Fig. Estimates of ancestry coefficients for 241 Swedish accessions of A. thaliana. Ances-

try coefficients obtained from the spatially explicit ancestry estimation program tess3r with

K = 3 populations. The southern group exhibits substantial levels of mixed ancestry.

(PDF)
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