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Abstract

Objectives

Low genetic diversity can lead to reduced average fitness in a population or even extinction.

Preserving genetic connectivity across fragmented landscapes is therefore vital to counter-

act the negative consequences of genetic drift and inbreeding. This study aimed to assess

the genetic composition and consequently the conservation status of a nationwide sample

of European hedgehogs (Erinaceus europaeus) in Denmark.

Methods

We applied an adaptation of the genotyping by sequencing (GBS) technique to 178 individu-

als from six geographically distinct populations. We used a Bayesian clustering method to

subdivide individuals into genetically distinct populations. We estimated individual observed

(iHO), observed (HO), and unbiased expected (uHE) heterozygosity, inbreeding coefficient

(FIS), percentage of polymorphic loci (P%) and tested for deviations from Hardy-Weinberg

equilibrium (HWE). We used linear models to test for potential anthropogenic effects on the

genetic variability of hedgehogs with iHO, uHE, P% and FIS as response variables, and

assessed the demographic history of the population.

Results

The Danish hedgehog population is composed of three genetic clusters. We found a mean

P% of 54.44–94.71, a mean uHE of 0.126–0.318 and a mean HO of 0.124–0.293 in the six

populations. The FIS was found to be significantly positive for three of the six populations.

We detected a large heterogeneity of iHO values within populations, which can be due to

inbreeding and/or fragmentation. FIS values decreased with increasing farmland density,

but there was no significant association with human population or road density.

Conclusions

We found a low level of genetic variability and evidence for genetic substructure and low

effective population size, which are all consequences of habitat fragmentation. We failed to
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detect signs of a recent population bottleneck or population increase or decline. However,

because the test only identifies recent changes in population size, we cannot reject the pos-

sibility of a longer-term decline in the Danish hedgehog population.

Introduction

The western European hedgehog (Erinaceus europaeus, hereafter referred to as “hedgehog”), is

a widely-distributed nocturnal generalist predator species found in a range of habitats in the

British Isles, New Zealand and continental Europe, from Iberia and Italy northwards into

Scandinavia [1, 2]. Despite their wide geographic distribution, the species is feared to be in

decline, based on research conducted at collected at national and local scale from several west-

ern European countries including the UK, Belgium, the Netherlands, Sweden and Germany

[3–12]. It is suggested that the decline is more severe in the rural than urban areas [5, 7].

Although we lack population trend data for Denmark, it is likely that the situation is similar

because of comparable habitat fragmentation, landscape structure, farm management practices

and climate across north-western European countries.

Potential drivers of this decline include habitat loss and fragmentation, which are a great

concern in terrestrial ecosystems in general [13, 14]. In Europe, intensified agricultural prac-

tices often include the removal of hedgerows to create large, homogenous, and intensively

managed fields [15]. These practices have particular relevance for hedgehogs because hedge-

rows and field margins are important habitats for rural hedgehogs [16, 17]. In addition, these

areas function as corridors connecting suitable habitats [18].

Habitat fragmentation by roads is famously a source of hedgehog mortality via roadkill [10,

19–21], but also has more subtle effects. Fragmentation reduces habitat connectivity, which is

important for movement and dispersal and therefore has a direct effect on gene flow with con-

sequences for fitness, adaptability and survival of local populations [22, 23]. Although habitat

fragmentation is considered most pronounced in cities [24], where the dwindling green spaces

can form crucial habitat networks [25], rural fragmentation remains a concern.

The small home range sizes and short nightly travel distances of hedgehogs mean that they

are likely to be vulnerable to even small amounts of fragmentation. Although they can travel

2–3 km a night, adult hedgehog home ranges are ~20–30 ha for males and ~10 ha for females,

expanding temporarily during the mating season [2]. Juveniles do not disperse far when reach-

ing independence and leaving their natal nests [26] and adults appear to remain in the same

area throughout their lives [1]. In addition, studies on relocated hedgehogs indicate that they

do not disperse far even when released into a foreign [27] and unfavourable habitat [28].

In addition to habitat fragmentation, poisons, pollution and competition can affect hedge-

hog populations. The widespread application of molluscicides, insecticides and rodenticides

can negatively influence hedgehog populations via secondary poisoning and elimination of

prey items [29–32] and predation by, and inter-specific competition with, badgers (Meles
meles) can be an important mortality source [9, 33–36]. Hedgehogs are increasingly associated

with residential areas, possibly due to greater food availability around humans (including nat-

ural prey and anthropogenic sources), more suitable nest sites and a lower risk of predation by

badgers [9, 28, 33–37].

Genetic diversity of hedgehogs

Maintaining gene flow across fragmented landscapes is necessary to prevent the negative con-

sequences of genetic drift, reduced genetic diversity, and inbreeding depression, which can
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result in less viable and less fertile offspring [38, 39]. The tools of conservation genetics, includ-

ing genetic rescues, are useful for evaluating, conserving and managing genetically vulnerable,

fragmented populations [40]. Research into the population genetics of hedgehogs is therefore

useful for assessing conservation status.

Of particular concern in this context are the degrees of heterozygosity and inbreeding.

Hedgehogs are promiscuous and have hetero-paternal superfecundation [41], which may

reduce inbreeding, since a litter can consist of several half-siblings instead of full siblings [41].

This could be beneficial if mating does takes place between siblings in isolated populations.

However, it is currently unknown whether hedgehogs are able to actively differentiate between

kin and non-kin e.g. during the mating season. Nevertheless, it is clear that if a small, isolated

population is severely inbred, and there is no distinction between kin and non-kin when

choosing mates, the population will most likely become even more vulnerable due to the

increased degree of inbreeding.

Previous genetic research on hedgehogs has been conducted using microsatellites [23, 41–

53]. Bolfikova and Hulva (2012)[48] used population and landscape genetic approaches to

describe the population structure and patterns of gene flow of E. europaeus and E. roumanicus
in the central European contact zone between the two species. They found that a homogenous

population of E. europaeus, had been divided by two large rivers in the Czech Republic (Vla-

tava and Elbe), into a subpopulation in the western part, and two subpopulations with a mosaic

location pattern in the eastern part of the country. They found a significantly lower observed

heterozygosity (HO) than expected heterozygosity (HE) in five of the nine microsatellite loci

studied (n = 131), with a mean HO of 0.695 and a mean HE of 0.687, using the mitochondrial

control region and nuclear microsatellites. In the UK, a study of 42 individuals in an isolated

population of hedgehogs in the Regent’s Park, London (166 ha), showed a low genetic diver-

sity, with a mean HE of 0.197, and a mean HO of 0.198 (nloci = 6) [52]. Becher and Griffiths

(1998)[43] detected a restriction of gene flow between eight small populations of hedgehogs in

a 15 km2 fragmented landscape in Oxfordshire, UK and found a statistically significant genetic

differentiation among the studied populations (n = 160, nloci = 6) and a mean HO of 0.7.

According to the authors, these results indicated that the hedgehogs of Oxfordshire had a

restricted dispersal which may have been caused by human-mediated barriers such as roads

and train tracks in the landscape [43]. Braaker et al. (2017)[23] studied the habitat connectivity

and spatial genetic structure of 147 hedgehogs residing in Zurich, Switzerland, with an area of

88 km2 (nloci = 10). The population of hedgehogs in Zurich were divided into three genetic

clusters, separated by two rivers and the major transportation axes. Genetic diversity measures

were similar between the three clusters, and the F coefficients (FIS) were low. Mean HE ranged

between 0.569–0.627 for the three clusters, and the mean HO ranged between 0.523–0.631

[23]. In summary, previous genetic studies on hedgehogs in Europe based on microsatellite

techniques, have found a mean HE ranging between 0.197 and 0.687.

The Danish context

Hedgehogs have a long history in Denmark. Archaeological evidence from Mesolithic sites

(Maglemosian cultures) confirms their presence in 7500 BC and other evidence suggests that

they immigrated in the early Preboreal around 9550 BC [54]. Research into the glacial refugia

and interglacial expansion of the European hedgehog showed three monophyletic clades [46].

The first from Italy northwards through Austria, Switzerland, Germany, the Netherlands,

Scandinavia and Estonia. The second was only found in western Europe, from Spain north-

wards through France, the Netherlands and into the UK and Ireland. The third clade was

restricted to Sicily. A single clade dominated in the Scandinavian hedgehogs [46].
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Denmark consists of the large peninsula Jutland and several islands of varying sizes. The

larger islands are connected by long bridges (0.75–17 km), which hedgehogs are unlikely to

cross, isolating the local hedgehog populations in the different areas of Denmark. The total

area of Denmark is 43,000 km2 [55], and 62% of this is arable land [56]. Altogether, Denmark

has 74,728 km of roads and 1,737,000 cars for 5,800,000 people [57–59]. The number of cars in

Denmark has increased with 22% since 2008 [58], and an increase in road traffic could likely

influence the number of hedgehogs being killed by cars [60].

For this study we adapted and optimised the use of a second-generation genotyping tech-

nique, genotyping by sequencing (GBS) for the genetic analysis of European hedgehogs.

The main aims of this study were: i) To develop and test a set of SNPs which can be used for

investigating the genetic structure and variability of the European hedgehog on a broader scale

ii) to evaluate the patterns of the genetic diversity distribution in the Danish hedgehog popula-

tions, iii) to investigate potential anthropogenic effects on the genetic variability of the hedge-

hogs and iiii) to estimate the historical changes in their effective population size (Ne) through

genetic signatures.

Materials and methods

The genetic samples were obtained as part of a nationwide citizen science project with the gen-

eral aim of describing hedgehog ecology in Denmark. By use of local and national media and a

project website, volunteers were encouraged to collect dead hedgehogs from May to December

2016. A total of 697 dead hedgehogs originating from all parts of Denmark were collected. The

volunteers were instructed to record the date and location of the find and deliver the dead

hedgehog to the nearest of 26 collection stations, distributed nationally. The hedgehog car-

casses were stored locally at -20˚C. Members of the research staff regularly transported the col-

lected, dead hedgehogs to university laboratories, where they were thawed and necropsied

from August 2016 to May 2018. During the necropsies, tissue samples from skin and muscle

were obtained for the genetical analyses. The DNA samples were stored at -20˚C.

Genetic samples from 178 individuals dispersed throughout Denmark were used in the

study (Table 1, Supporting Information S1 Table and S2 Table [61]). The selection of samples

was based on the quality of the extracted DNA from approximately 330 samples originating

from all parts of Denmark. We chose 214 samples for further analyses. The later filtering of

samples, described in the section “Filtering Raw Sequence Data, Mapping and SNP Calling”,

reduced the sample size to 178 individuals.

Sample preparation

DNA was extracted from muscle and skin tissues (1–2 mg) using the DNeasy Blood and Tissue

kit (QIAGEN, Germany) and subsequently digested with Sau96I (NEB) and ligated to adapters

Table 1. Distribution of genetic samples in the study.

Location Abbreviation Area in km2 Number of individuals

Jutland north of the Limfjord JNL 5340 9

Jutland south of the Limfjord JSL 23873 71

Funen FN 3479 15

Zealand Z 7031 51

Lolland and Falster LFA 1797 18

Bornholm BH 588 14

Total: 178

An overview of the distribution of the genetic samples in the study.

https://doi.org/10.1371/journal.pone.0227205.t001
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[62]. The ligated samples (50μL containing approximately 50 ng DNA pooled from 4 separate

samples) were purified with AMPure XP beads (Beckman Coulter, USA) and amplified using

the Phusion High-Fidelity PCR kit (Thermo Scientific, USA). The following PCR conditions

were applied: 72˚C in 5 min, 98˚C in 30 sec, followed by 20 cycles of 98˚C in 10 sec, 66˚C in 30

sec and 72˚C in 30 sec, with a final extension at 72˚C for 5 min. Finally, the amplified barcoded

DNA was purified with AMPure XP beads (Beckman Coulter, USA) and the DNA concentra-

tions were determined by Qubit (Thermo Scientific, USA) and visualized on the TapeStation

2200 using a D1000 ScreenTape (Agilent, USA). Paired-end (2x151 bp) sequencing was per-

formed on an Illumina HiSeq X platform by Admera Health (USA). The described method

was previously tested in a pilot study using a few individuals from South Jutland by Rasmussen

et al. (2019)[63].

Barcoding analysis

The i7 barcodes of the dual-barcoded sequenced reads were demultiplexed using bcl2fastq2

version 1.0.0 (Illumina, USA) allowing zero mismatch. The i5 barcodes were demultiplexed

using Fastq-multx version 1.02.772 (https://github.com/brwnj/fastq-multx) allowing one mis-

match in order to remove the barcode sequences from the sequenced reads.

Filtering raw sequence data, mapping and SNP calling

Adaptor quality trimming were accomplished by Trim Galore using default parameters

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore). Burrows-Wheeler Aligner

(BWA) was used to align the reads against the hedgehog (Erinaceus europaeus) using the

EriEur2.26 reference genome. Only reads with a mapping quality of at least 30 were used for

the further analysis. Variants were called using The Genome Analysis Tool Kit’s HaplotypeCal-

ler, and joint genotyping was performed using GenotypeGVCFs. Initial filtering was per-

formed using SelectVariants and filtered for SNPs, bi-allelic sites, and mapping quality > 30

[64]. Minor allele frequency (MAF) was estimated from the read coverage, and SNPs were fil-

tered using a minimum of 1% MAF (average variant allele frequency < 0.99 and> 0.01).

Finally, SNPs were filtered with a read coverage between 20 and 100 and a maximum number

of missing data of 25%. Individuals with more than 25% missing data were not included in the

analysis.

Genetic variability and population structure

We assessed genetic diversity using four quantities: The percentage of polymorphic loci (P%),

the FIS coefficient (FIS), unbiased expected (uHE) and observed (HO) heterozygosity. These

were all estimated using GENALEX v. 6.5 [65]. In addition, the individual level of heterozygos-

ity (iHO) was calculated for every individual, plotted in a box plot, and tested for significant

differences among locations with a one-way ANOVA. The pairwise comparisons among loca-

tions were conducted with a Tukey’s HSD test. The mean iHO´s within every population were

ranked from the lowest to the highest value and plotted together in order to show the popula-

tions with the lowest and the highest levels of iHO.

Furthermore, the degree of genetic differentiation among the six populations was quanti-

fied with fixation index (FST), and, for each population, a test for departure from Hardy-Wein-

berg equilibrium (HWE) was performed using GENALEX v. 6.5.

In addition to measuring genetic differentiation and variability, population genetic struc-

ture of the sampled individuals (n = 178) was assessed using a Bayesian clustering method,

implemented with STRUCTURE v. 2.3, which clusters individuals into genetically distinct

populations/groups (K) based on their allelic frequency at multiple loci and minimise
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deviations from HWE within groups [66]. To illustrate the population genetic structure of

hedgehogs, 10 independent runs of K = 1–5 were carried out on the individuals with 106 Mar-

kov chain Monte Carlo (MCMC) iterations and 105 burn-in period on the basis of indepen-

dent allele frequencies and admixture ancestry model. Additionally, we ran STRUCTURE of

K = 1–7 separately for every population to test if further substructuring could be detected

within the particular populations. The accurate number of populations (K) was determined

according to the ΔK formula [66] using the program STRUCTURE HARVESTER [67]. In

addition to this Bayesian clustering approach, a multivariate ordination of individual geno-

types was obtained by principal component analysis (PCA) using the software GENODIVE

[68] and plotted with the software PAST version 1.90 [69].

Assessment of the demographic history

Tests for recent population declines or expansions in the population size were performed for

every population with the program BOTTLENECK v. 1.2, after 15,000 iterations assuming an

infinite allele model (IAM) according to a deficiency of the rare alleles and an excess of the het-

erozygosity. The model assumes that a population (large size) is in mutation-drift equilibrium

and that as a consequence of a severe restriction in size the loss of alleles (especially the rare

ones) occurs at a higher pace that the loss of the genic heterozygosity. Consequently, a defi-

ciency in the total number of alleles is detected when compared to the number of expected

alleles in a large population with the same observed heterozygosity. The deficiency in allele

number will only be apparent until the population reaches the mutation-drift equilibrium

again [70, 71].

Estimation of potential anthropogenic effects on genetic variability of

hedgehogs

To investigate whether the differences in genetic variability found between the hedgehog pop-

ulations were associated with human population density in their area, road density and farm-

land density of the areas from which the studied hedgehogs derived, we fitted linear models in

R [72]. The response variables were iHO, uHE, FIS and % polymorphic loci (%P) and the

explanatory variables were human population density per km2 [73, 74], farmland per km2

[75], and kilometres of roads per km2 [58] (The dataset used is available in Supporting Infor-

mation S3 Table [61]).

For each of the four response variables (iHO, uHE, FIS and %P) we first fitted models with a

single explanatory variable at a time (i.e. three models for each of the three response variables),

followed by linear models with two explanatory variables at a time. Then we fitted models that

included all three explanatory variables as main effects. Lastly, we prepared models that

included two explanatory variables at a time (e.g. road density and farmland density) and the

interactions between them. We tested the significance of the interaction term by comparing

models that included the interaction term to those that did not include the interaction term,

using an ANOVA test.

Research ethics

Ethical approval was not required for this research, because the hedgehogs used in the study

had already died of natural causes either in the wild or in care at a hedgehog rehabilitation cen-

tre. Additionally, the volunteers deciding to assist in the collection of dead hedgehogs did so of

their own free will and were instructed on how to keep a high hygienic standard and prioritise

traffic safety when collecting the dead hedgehogs through our project website.
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Results

Genotypes

Using the Sau96I restriction enzyme we were able to recover a total of 2.4 million high-quality

SNPs. Filtering for MAF > 1% estimated from the read coverage, a maximum of 25% missing

data and a read coverage ranging from 20 to 100, resulted in 2902 applicable SNPs. Individuals

containing less than 75% of the selected SNPs were not included in the analysis and this

resulted in 178 individuals used for studying the genetic variability (the GENEPOP dataset is

available in Supporting Information S2 Table [61]).

The geographical sampling locations reported by the volunteers are shown in Fig 1, repre-

senting Jutland north of the Limfjord (JNL), Jutland south of the Limfjord (JSL), Funen (FN),

Zealand (Z), Lolland and Falster (LFA) and Bornholm (BH). The location data may have vary-

ing levels of accuracy, because volunteers provided this data without verification.

Genetic variability and structure

We found that the unbiased expected heterozygosity (uHE), mean individual heterozygosity

iHO and the F coefficient (FIS), varied with location (Fig 2). uHE and iHO showed marked vari-

ation among regions, with the lowest value reported on Bornholm (BH) and the highest in Jut-

land south of the Limfjord (JSL). The measure of uHE was very similar in Funen (FN) and

Jutland north of the Limfjord (JNL). Mean iHO values from Lolland and Falster (LFA), Jutland

north of the Limfjord (JNL) and Zealand (Z) were almost identical. Of the three statistically

significant and positive FIS values (FN, JSL, Z) the levels were similar between Jutland south of

the Limfjord (JSL) and Zealand (Z), but markedly lower on Funen (Fig 2, Table 2).

The genetic polymorphism increased according to the size of the regions, ranging from

54.44% in BH to 94.79% in JSL (Table 2).

The uHE ranged from uHE = 0.126 in BH to uHE = 0.318 in JSL whereas, the HO ranged

from HO = 0.124 in BH to HO = 0.293 in JSL (see Table 2).

We detected a significant deviation for HWE in JSL, FN and Z and in all cases the devia-

tions were due to a deficiency of heterozygotes which is also reflected by the positive FIS values

which ranged from -0.075 in LFA to 0.17 in JNL (Table 2).

A box plot of the individual heterozygosity iHO for every individual is presented in the Sup-

porting Information S1 Fig [61]. The one-way ANOVA conducted for testing significance of

the mean iHO among the six populations investigated was highly significant: F 5,172 = 31.92,

p< 0.0001). The Tukey’s test found several significant differences of the mean iHO between

populations (Supporting Information S4 Table [61]). The JSL population had significantly

higher iHO compared to all the remaining populations with the exception of FN population. In

addition, BH had a significantly lower mean iHo than all the other populations. Lastly, FN has

significantly higher iHO than Z. The plots of the iHO ranked in ascending order is showing

that the populations with the lowest iHO are BH, followed by JSL which is however quickly

increase in iHO (indicating that few individuals have low values), followed by Z, JNL, LFA and

finally FN which showed the highest starting levels of iHO (Supporting Information S1 Fig and

S2 Fig [61]).

We found that all the pairwise fixation index (FST) values between populations were highly

significant (p< 0.001) with a FST range from 0.034 between JNL and JSL and FST = 0.321

between JNL and BH (see Table 3), indicating that the six populations of hedgehogs tested are

genetically different.

The Bayesian clustering of the genotyped data assigned the highest posterior probability:

Estimated Ln Prob of Data = -144614.8, Variance of ln likelihood = 1958.7 for K = 3 (the plot
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of the Ln Prob of Data versus K is available in the Supporting Information S3 Fig [61]). We

found that the three clusters included: 1) Jutland north of the Limfjord (JNL) and Jutland

south of the Limfjord (JSL); 2) Funen (FN), Zealand (Z), Lolland and Falster (LFA); 3) Born-

holm (BH). We did not observe further evidence of subtructuring within populations when

testing for K = 4 and K = 5. These findings were also confirmed by the lack of further substruc-

turing, when testing for K = 1–7 for each population analysed separately (Supporting Informa-

tion S4 Fig [61]).

The PCA (Supporting Information S5 Fig [61]) was concordant with the clustering of

STRUCTURE (Fig 3), the PC1 (Eigenvalues 19.54; variance explained; 79.24%) and PC2

Fig 1. Geographical overview of the samples. Map of Denmark indicating the locations of the 178 hedgehogs used in the study.

https://doi.org/10.1371/journal.pone.0227205.g001
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(Eigenvalues 5.12; variance explained; 20.76%) and the convex hulls kept the three clusters well

separated (Supporting Information S5 Fig [61]).

Demographic changes

We found no signs of recent increase or decline in the population in the six populations tested

by use of the infinite allele model (IAM).

Estimation of potential anthropogenic effects on genetic variability of

hedgehogs

Testing for effects of farmland density, population density and road density in the particular

areas from where the hedgehogs derived on the genetic variability observed in the study, we

found no statistically significant associations between iHO, uHE and % polymorphic loci (%P)

for each of the six populations and farmland density, road density or population density, fitted

as single main effects (Table 4, the dataset used is available in Supporting Information S3

Table [61]). Models representing two or three explanatory variables at a time as main effects,

with iHO, uHE or %P as response variables, showed no significant associations. We further-

more tested for a significant interactive effect between the different explanatory variables by

comparing models with and without the interactions, but again found no significant relation-

ship. Additionally, the explanatory variables road density and population density had no statis-

tically significant effect on FIS. However, we found a statistically significant association

between FIS and farmland density (Table 4). FIS decreases with increased farmland density

(with a factor 1.0315). Models fitted with farmland density and road density, as well as all three

Fig 2. Plots of genetic heterozygosity and location. Measures of (A) unbiased expected heterozygosity (uHE) and (B)

F coefficient (FIS) and (C) individual observed heterozygosity (iHO), vary with location. Height of the bars indicate the

estimated value and error bars represent the 95% confidence intervals of these estimates. Locations are as follows:

BH = Bornholm, FN = Funen, JNL = Jutland north of the Limfjord, JSL = Jutland south of the Limfjord, LFA = Lolland

and Falster and Z = Zealand.

https://doi.org/10.1371/journal.pone.0227205.g002

Table 2. Table of genetic heterozygosity.

Locations Abbreviations Area km2 uHE FIS HO iHO %P HWE test

Jutland north of the Limfjord JNL 5340 Mean 0.277 0.169 0.212 0.206 72.72 NS

SE 0.004 0.008 0.004 0.016

Jutland south of the Limfjord JSL 23873 Mean 0.318 0.097 0.293 0.288 94.79 ���

SE 0.003 0.004 0.004 0.008

Funen FN 3479 Mean 0.261 0.017 0.253 0.253 79.08 ���

SE 0.004 0.006 0.004 0.013

Zealand Z 7031 Mean 0.215 0.096 0.206 0.204 87.08 ���

SE 0.004 0.006 0.004 0.006

Lolland and Falster LFA 1797 Mean 0.185 -0.075 0.208 0.208 67.73 NS

SE 0.004 0.006 0.005 0.010

Bornholm BH 588 Mean 0.126 0.02 0.124 0.122 54.44 NS

SE 0.003 0.006 0.004 0.011

Table presenting the percent of polymorphic loci (P%), F coefficient (FIS), unbiased expected (uHE), observed (HO) and individual observed (iHO) heterozygosity and a

test for Hardy-Weinberg equilibrium (HWE) for the six hedgehog populations studied.

��� = p < 0.0001. Supporting Information S3 Table [61]contains further information on regional differences.

https://doi.org/10.1371/journal.pone.0227205.t002
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explanatory variables at a time, as main effects, also showed significant associations between

farmland density and FIS.

Discussion

Genetic variability and structure

Previous studies have compared the applicability of microsatellite and SNP as linkage mapping

markers [76, 77], mentioning that the advantage of microsatellite markers are their highly

polymorphic characteristics compared to the biallelic SNPs. However, the high polymorphism

Table 3. Pairwise FST values matrix.

JNL JSL FN Z LFA BH

JNL

0.034 JSL

0.146 0.108 FN

0.201 0.159 0.046 Z

0.237 0.191 0.063 0.030 LFA

0.321 0.268 0.192 0.182 0.204 BH

Pairwise FST values matrix. All the FST values were highly significant (p< 0.001). Locations: JNL = Jutland north of the Limfjord, JSL = Jutland south of the Limfjord,

FN = Funen, Z = Zealand, LFA = Lolland and Falster and BH = Bornholm.

https://doi.org/10.1371/journal.pone.0227205.t003

Fig 3. STRUCTURE analysis plots. Plots of the STRUCTURE analysis for K = 2–5 for all the six detected populations: Jutland north of the Limfjord (JNL), Jutland

south of the Limfjord (JSL), Funen (FN), Zealand (Z), Lolland and Falster (LFA) and Bornholm (BH).

https://doi.org/10.1371/journal.pone.0227205.g003
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in the microsatellite markers may cause relatively high genotyping errors. The advantage of

SNPs is their greater density in the sample, providing a higher information content, even

though they provide less information per locus. Hence, their lower variability causes a need for

an increased number of markers compared to the microsatellite approach [76, 77].

Preceding genetic studies on hedgehogs in Europe based on microsatellite techniques, have

found a mean HE ranging between 0.197 and 0.6872. A calculated mean HE of 0.197 and a

mean HO of 0.198 (n = 42) was reported in an isolated population of hedgehogs in Regent’s

Park, London [52], while a mean HO of 0.7 (n = 160) was determined in a study from Oxford-

shire, UK [43]. A mean HE of 0.6872, a mean HO of 0.695 and a mean FIS of 0.0686 was deter-

mined in hedgehogs from the Czech and Slovak Republics (n = 131) [48]. Mean HE ranged

between 0.569–0.627 (n = 147) and the mean FIS ranged between -0.006–0.070 for three

genetic clusters in Zurich, Switzerland [23]. In our research based on the GBS technique, we

found a mean uHE varying between 0.126–0.318 and a mean HO varying between 0.124–0.293

for the Danish hedgehogs studied (Table 2). As Denmark is a relatively small area compared to

e.g. continental Europe, with an isolated island structure, and thereby has a reduced gene flow,

a lower heterozygosity would be expected for the Danish hedgehogs. The peninsula of Jutland

south of the Limfjord is connected to Germany, which could potentially have caused a higher

gene flow, but we still found a positive FIS coefficient and low heterozygosity in this population

(HO = 0.293, uHE = 0.318, FIS = 0.097). However, individuals from Jutland south of the Limf-

jord did in fact have the highest measures of heterozygosity (HO and uHE) of all the areas

tested in the present study (Fig 2, Table 2). Furthermore, in comparison to using SNPs with

only two possible alleles, the microsatellite approach in the previous studies may also overesti-

mate heterozygosity due to the polymorphic nature of the microsatellites, causing a direct

comparison between the results of the two approaches to be scientifically unsound [78].

Table 4. Statistical results from the estimation of potential anthropogenic effects on genetic variability of hedgehogs.

Explanatory variables iHO uHE FIS %P

Road density F[1,4] = 0.5045, p = 0.517 F[1,4] = 0.935, p = 0.388 F[1,4] = 0.019, p = 0.898 F[1,4] = 0.004, p = 0.95

Farmland density F[1,4] = 0.00006, p = 0.994 F[1,4] = 0.405, p = 0.559 F[1,4] = 9.603, p = 0.036� F[1,4] = 0.456, p = 0.537

Population density F[1,4] = 0.011, p = 0.921 F[1,4] = 0.003, p = 0.958 F[1,4] = 0.356, p = 0.583 F[1,4] = 1.184, p = 0.338

Road density + Farmland

density

F = 0.381, p = 0.581 F = 0.019,

p = 0.898

F = 0.89, p = 0.415 F = 0.81,

p = 0.434

F = 0.063, p = 0.394 F = 10.491,

p = 0.048�
F = 0.006, p = 0.944 F = 0.342,

p = 0.600

Population density + Road

density

F = 0.014, p = 0.913 F = 2.161,

p = 0.238

F = 0.006, p = 0.943 F = 4.808,

p = 0.116

F = 0.375, p = 0.584 F = 1.212,

p = 0.351

F = 11.700, p = 0.283 F = 2.746,

p = 0.196

Farmland density

+ Population density

F = 0.001, p = 0.972 F = 0.008,

p = 0.933

F = 0.321, p = 0.610 F = 0.003,

p = 0.963

F = 6.375, p = 0.086 F = 0.835,

p = 0.4283

F = 0.414, p = 0.566 F = 0.633,

p = 0.484

Road density + Farmland

density + Population density

F = 0.389, p = 0.597 F = 0.020,

p = 0.901 F = 1.063, p = 0.411

F = 1.209, p = 0.386 F = 1.100,

p = 0.404 F = 2.073, p = 0.287

F = 0.124, p = 0.758 F = 20.851,

p = 0.045� F = 3.962, p = 0.185

F = 1.922, p = 0.300 F = 0.100,

p = 0.782 F = 1.190, p = 0.389

Road density: Farmland

density

ANOVA, F = 0.305, p = 0.636 ANOVA, F = 0.348, p = 0.615 ANOVA, F = 0.030, p = 0.878 ANOVA, F = 0.106, p = 0.927

Road density: Population

density

ANOVA, F = 1.416, p = 0.356 ANOVA, F = 10.756, p = 0.082 ANOVA, F = 0.377, p = 0.602 ANOVA, F = 0.842, p = 0.456

Farmland density: Population

density

ANOVA, F = 1.187, p = 0.708 ANOVA, F = 0.151, p = 0.735 ANOVA, F = 0.018, p = 0.906 ANOVA, F = 0.017, p = 0.909

Results from the analyses of potential anthropogenic effects on the genetic variability of hedgehogs, based on linear models including one or more of the three

explanatory variables (road density, farmland density or population density) tested against the four response variables iHO, uHE, FIS and %P. The colon (:) indicates

models with an interaction term between the explanatory variables, which were then compared to models that did not include the interaction term, using an ANOVA

test. Significant p-values are marked with �.

https://doi.org/10.1371/journal.pone.0227205.t004
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Both the STRUCTURE analysis (Fig 3 and Supporting Information S4 Fig [61]) and PCA

plot (Supporting Information S5 Fig [61]) in the present study were concordant. It is quite evi-

dent that the population in Jutland (JNL, JSL) forms one single cluster whereas all the remain-

ing islands tested, apart from BH, form the second cluster. Lastly, the STRUCTURE analysis

plots (Fig 3) are clearly indicating an admixed structure on the island of FN, as also supported

by findings in the PCA plot (Supporting Information S5 Fig [61]). The plot of the iHO values

for each of the six populations ranked from the lowest to the highest values within each popu-

lation (Supporting Information S2 Fig [61]) are also showing that the iHO for FN has the stee-

pest cumulative curve, indicating a higher heterogeneity among individuals for the iHO values,

which can be due to further substructuring or the presence of inbreed individuals. Despite the

evidence for an admixed structure on the island of FN, the log-likelihood plot for K> 1 for the

island of FN failed to find significantly higher log-likelihood for K = 2 compared to the log-

likelihood of K = 1, rejecting the evidence for genetic substructuring. One reason could be the

small sample size of the hedgehogs analysed on the FN island. It is noteworthy that the iHO val-

ues for the other populations show heterogeneity among individuals both in terms of lowest

iHO values and in terms of slopes, which indicate the presence of further substructuring and/

or inbreeding (Supporting Information S2 Fig [61]).

Lastly, the island of BH is separated from the second cluster (FN, Z, LFA) even if partially

overlapping with it, and is clearly separated from the first cluster (JSL, JNL). The island of

Bornholm, which was previously connected to the continent around northern Germany,

became an island in late Preboreal approximately 8000 BC [79]. The rest of Denmark was part

of a large continent connected with current areas such as UK and southern Sweden [79], but

was transformed into islands and the peninsula of Jutland around 6000–6500 BC [54], when

the North American ice shield melted and made the oceans rise. At that point in time, Den-

mark was surrounded by the Littorina Sea, Lolland and Falster was still connected, and the

area south and north of the Limfjord and Djursland as well as northern Zealand consisted of

archipelagos [79]. It was not until around 6000 BC that the current geography of Denmark

was shaped. Previous research indicates that Lolland and Falster was divided by the sound

Guldborgsund around 4000 BC [80], but may have been periodically connected up until 1000

AD [81], which could explain the non-significant difference of FST found between the two

islands before we decided to merge them into one population. Jutland north and south of the

Limfjord have regularly been connected by different isthmuses closing off the western entrance

to the Limfjord from the North Sea from around 1200 AD. In 1863 it was decided to artificially

maintain an opening between the Limfjord and the North Sea [82]. The periodical connection

between Jutland north and south of the Limfjord could have influenced the genetic cluster

found between those two populations of hedgehogs.

The FST values were all highly significant, however, because several of the populations

investigated are not in HWE the FST values should be interpreted with caution, as one of the

assumptions for a correct estimate test is that the populations which are compared, are

panmictic.

JNL, LFA and BH had a low genetic variability (Table 2). However, these three populations

did have considerably smaller sample sizes than JSL and Z, which could have affected the

results (as the small sample size increase the possibility of committing an error type II; false

negative). As an example, JNL had an F coefficient (FIS) of 16.9%, but the HWE test was still

negative. This could be due to the small sample size or the large standard errors of uHE and

HO.

JSL, FN and Z showed a low genetic variability (Table 2), and as can be seen from the

STRUCTURE plot for K = 3 (Fig 3), there is evidence for further substructuring and/or non-

panmictic populations. The STRUCTURE analysis failed to find further substructuring. The
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significant deviation from HWE observed in three of the populations investigated could rein-

force the hypothesis of barriers to gene-flow such as habitat fragmentation, as the deviation

from HWE could be due to further substructuring of the populations investigated (Wahlund

effect) which produces a heterozygosity deficiency due to the lack of panmixia, as seen in

hedgehog populations, where competition for the favor of females often occur. Additionally,

female hedgehogs are selective of their mates, which often results in courtship without mating

[83].

An additional possible factor, which could have contributed to the deviations from HWE, is

the effect of humans relocating hedgehogs into foreign habitats. During the past 20–30 years,

the rehabilitation of sick, orphaned and injured wild hedgehogs has become an established

practice in many western European countries. Denmark has a number of working hedgehog

rehabilitation centres, where volunteers care for the hedgehogs with the purpose of releasing

the surviving individuals back into the wild. In 2013 the Danish Nature Agency prepared

guidelines for the care of wildlife, instructing rehabilitators to refrain from moving mammals

over water, and ensuring that rehabilitated wildlife would be released back into their original

habitat [84]. Injured wildlife from e.g. Jutland north of the Limfjord, should therefore only be

admitted to a wildlife rehabilitation centre north of the Limfjord and be released into the origi-

nal habitat. Only recently, in 2019, have the Danish authorities established legal frameworks

and monitoring programs for the practice of wildlife rehabilitation. The practice before 2013

was to transport wildlife in need of care to the nearest rehabilitation centre, which could be sit-

uated far away from the original habitat. Often the animals would be released near the rehabili-

tation centre. There are previous examples of hedgehogs from e.g. the small island of Ærø
being cared for in the northern part of Zealand 200 km away, crossing the seas of the South

Funen Archipelago and the Great Belt, most likely because people had brought the sick hedge-

hog with them when returning from vacation. Furthermore, Kristiansson (1981) [85] showed

that intentional introductions of hedgehogs could have influenced the distribution of hedge-

hogs in Sweden, Norway and Finland. The anthropogenic effects on hedgehog genetics in

Denmark could largely be explained by the translocation of hedgehogs between different parts

of Denmark.

One drawback to our citizen science sample collection methods was that we did not have

precise and reliable records of the geographical location of the samples. This had consequences

for the analyses we could carry out because analyses such as Isolation by Distance (IBD) and

the Mantel test are very sensitive to even small deviations from the precise location point. We

therefore refrain from interpreting the conducted Mantel and IBD tests. Future collection of

genetic samples should endeavor to collect precise locations for the samples.

Effective population size and population bottleneck and expansion

The low level of genetic variability can be explained by inbreeding, genetic substructure and

extremely low Ne or a combination between these factors which could be caused by habitat

fragmentation and/or the large amount of farmland in Denmark. As intensified agricultural

practises increase, arable land is gradually becoming a less suitable habitat for hedgehogs. The

decline in the hedgehog population of the UK has even been found to be more severe in rural

areas than urban [5]. Two-thirds of the area of Denmark is arable land [56]. In comparison,

the share of total area by type and land cover in percentage of the EU countries show that the

amount of cropland is particularly high in Denmark (50.2%) compared to e.g. Austria (15.3%),

United Kingdom (19.7%), Slovakia (26.6%) and the Czech Republic (32%) [86], where previ-

ous studies on hedgehog genetics found remarkably high genetic variability using microsatel-

lites [23, 43, 48]. However, as the approach to determine the genetic heterozygosity in the
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present study (the GBS technique using SNPs) differs from the previous research, the variation

of genetic variability between the studies should be interpreted with caution and the results

should not be compared directly.

We found an effect of farmland density on the F coefficients (FIS) in our study, but the effect

was surprisingly that FIS decreased with increasing farmland density. This may be due to the

tendency for a lower degree of road-associated fragmentation in farmland areas and less traffic

in general. Or perhaps because the hedgehogs, which are able to survive in this habitat type,

can move more freely in their search for mates, because the limitations of movement primarily

present in urban areas such as buildings, fences and traffic-laden roads, are less pronounced in

farmland areas. Further research is needed to understand this effect.

Habitat fragmentation can cause founder effects [87] and, because hedgehogs have rela-

tively small home ranges and are not dispersing far from their birthplace, they are vulnerable

to habitat fragmentation and barriers of movement in general. Consequently, a conservation

campaign has been established in the UK, where citizens are encouraged to make holes in their

fences to increase garden connectivity for the hedgehogs. Roads as barriers causing habitat

fragmentation are also a challenge for hedgehogs, as they are often killed in traffic when cross-

ing roads, especially during the mating season, where males increase their home ranges in

search for mates [83]. We tested the possible effects of road density, as a measure of habitat

fragmentation in the area from which the hedgehogs derived, on the genetic variability found.

We failed to find an association between road density and iHO, FIS, %P and uHE.

We also tested whether the human population density per area for each population of

hedgehogs studied, had an effect on iHO, FIS, %P and uHE. JSL, FN and Z, where we found

inbreeding and/or subpopulations, had the highest number of citizens per area. This measure

may indicate that hedgehogs in these areas are under stronger influence of anthropogenic

effects caused by factors such as more cars and traffic and more construction sites replacing

hedgehog habitats. However, we failed to find an association between population density and

iHO, FIS, %P and uHE in the hedgehogs studied. However, the tests for effects of population

density, farmland density and road density were based on a small sample size (n = 6 popula-

tions), which has likely influenced the statistical power of the tests.

The software BOTTLENECK 1.2. failed to detect signs of population bottlenecks or increase

in population size. However, the software only detects decreases or increases in population

size, which has occurred recently (within 0.2 Ne to 0.4 Ne generations). Therefore, we cannot

reject the possibility that the population is declining and or have declined drastically before the

scope of 0.2 to 0.4 Ne generations.

Conclusions

We adapted the GBS technique with the application of 2902 SNPs per individual to investigate

the genetic structure and variability of the European hedgehog on a broader scale. By applying

the technique to samples from 178 Danish hedgehogs, we found a low genetic variability (HO

= 0.124–0.293). We detected differences between the mean iHO in the populations, which indi-

cate some degree of inbreeding and fragmentation. The 178 Danish hedgehogs tested could be

divided into six geographically distinct populations based on the Danish island structure and

hence isolation by water. This division was furthermore confirmed by the pairwise fixation

index (FST). The STRUCTURE analysis determined that the six populations were distributed

inside three genetic clusters. Investigating the potential anthropogenic effects on the genetic

variability of the hedgehogs, we discovered that the inbreeding coefficient (FIS) decreased with

increasing farmland density, but we found no evidence for an effect of human population or

road density. We found evidence for genetic substructure and low effective population size for
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all populations, which are all consequences of habitat fragmentation. Furthermore, no signs of

a recent population bottleneck or population increase or decline were detected.

There is a valuable potential for further analyses such as individual-based landscape geno-

mic studies testing for the effect of landscape attributes on the genetic diversity and connectiv-

ity, if precise location data and environmental parameters are provided, enabling the

correlation of genetic parameters like uHE, HO, %P and FIS. Given the lack of knowledge on

the population status of Danish hedgehogs, we believe that future research on hedgehog genet-

ics should focus on the effects of low individual genetic heterozygosity to determine the impact

of inbreeding on individual fitness including indicators such as dental health, parasitic load,

microbiomes, toxicology and prevalence of cancer.
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