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Abstract: Percutaneous ablation is an accepted treatment modality for primary hepatocellular carci-
noma (HCC) and liver metastases. The goal of curative ablation is to cause the necrosis of all tumour
cells with an adequate margin, akin to surgical resection, while minimising local damage to non-target
tissue. Aside from the ablative modality, the proceduralist must decide the most appropriate imaging
modality for visualising the tumour and monitoring the ablation zone. The proceduralist may also
employ protective measures to minimise injury to non-target organs. This review article discusses the
important considerations an interventionalist needs to consider when performing the percutaneous
ablation of liver tumours. It covers the different ablative modalities, image guidance, and protective
techniques, with an emphasis on new and advanced ablative modalities and adjunctive techniques
to optimise results and achieve satisfactory ablation margins.
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1. Introduction

Percutaneous ablation is an accepted treatment modality for primary hepatocellular
carcinoma (HCC) and liver metastases [1]. The widely adopted Barcelona clinic liver cancer
(BCLC) guidelines for HCC recommend percutaneous ablation as an alternative to surgery
for patients with stage 0 (very early stage, single lesion <2 cm) and stage A (early stage,
single lesion >2 cm or multifocal disease <3 lesions each <3 cm) disease [2,3]. Percutaneous
ablation is safe and nearly as efficacious as surgery, usually requiring a lower cost and
shorter hospital stay for single HCC <2 cm [4-7]. Percutaneous ablation has also been
proven to achieve a survival benefit in patients with oligometastatic liver disease, with up
to nine hepatic metastases [8-12].

Today, percutaneous ablation modalities include radiofrequency ablation (RFA), mi-
crowave ablation (MWA), cryoablation, irreversible electroporation (IRE), laser, and high
intensity focused ultrasound (HIFU) to name a few. In addition to ablation modality, the
proceduralist has to decide the most appropriate imaging modality for guidance, based
on tumour visibility and location. The proceduralist must also decide whether to employ
various protective techniques to avoid damage to surrounding structures and organs.
Percutaneous ablation can be used alone or in combination with other modalities. For ex-
ample, combination therapy with thermal ablation and trans-arterial chemoembolization is
recommended for HCCs larger than 3 cm [13].

The goal of curative ablation is to cause the necrosis of all tumour cells with an adequate
margin, akin to surgical resection, while minimising local damage to non-target tissue.
Failure to obtain an adequate margin increases the risk of local tumour progression (LTP), a
known predictor of poor outcome [14]. A safety margin of 5 mm for HCC is recommended,
largely based upon the accepted surgical margin for HCC; this has been shown to be an
independent predictor of LTP [15,16]. All hepatic metastases require a 360 degree 1 cm cuff
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of tumour-free margin, although a 1 cm margin has also been recommended for larger HCC
because larger HCCs are more likely to be biologically aggressive and have microsatellites
and microvascular invasion not visible on imaging [17-20].

This review article discusses the important factors which an interventionalist needs
to consider when performing the percutaneous ablation of liver tumours. It covers the
different ablative modalities, image guidance, and protective techniques with an emphasis
on new and advanced ablative modalities and adjunctive techniques to optimise results
and achieve satisfactory ablation margins. This article does not discuss (i) the management
of antiplatelet/anticoagulation drug therapy; (ii) pain control; or (iii) imaging follow-up.

2. Ablative Modalities

Ablative modalities are divided into non-energy ablation (i.e., chemical ablation)
and energy-based ablation. Energy-based ablative modalities can further be divided
into thermal and non-thermal ablative modalities [21]. This article uses the terminology
advocated by Ahmed et al. for image-guided tumour ablation [21]. For instance, the term
“applicator” is used when speaking in general about a “needle” device, while specific terms
are used when describing a particular ablative modality; for example, “electrodes” are
used for RF and IRE applicators and “cryoprobes” are used for cryoablation [21].

Alcohol ablation (AA) is a non-energy, chemical ablative modality which induces
coagulative necrosis by causing cellular dehydration and protein denaturation. Ethanol is
injected directly into the tumour under image guidance, while the surrounding cirrhotic
liver limits the diffusion into and around the surrounding liver. AA is commonly used for
HCC and is not recommended for hepatic metastasis due to the presence of surrounding
normal liver parenchyma, which causes the ethanol distribution to be unpredictable.
AA has a high rate of LTP, requiring repeated treatment due to residual tumour cells, and
as such, has largely been replaced by energy-based ablation for most lesions [22-26]. AA is
reserved for difficult-to-treat tumour locations as monotherapy or in combination, where
the use of energy-based modalities alone risks injury to vulnerable structures such as the
gallbladder [27,28].

Radiofrequency ablation (RFA) is the first thermal ablation modality to be described
and achieves complete ablation in 90% of very early-stage lesions (<2 cm) with a local
recurrence rate of 1% [29]. Resistive tissue heating is caused around the RFA electrode as
an alternating current is conducted through it, acting as the cathode of a closed electrical
circuit, with grounding pads applied to the skin acting as the anode. This heat is conducted
through indirect heating of the adjacent tissue, forming the ablation zone via coagulative
necrosis. The main limitations of RFA are tissue charring, causing an increase in impedance
and peripheral tissue cooling, caused by the dissipation of heat by both large blood vessels
as well as capillary level micro-perfusion [30]. Although effective against small (<2 cm)
HCCs, achieving adequate margins for larger tumours requires multiple electrodes [22,31].
Due to this limitation, RFA suffers from a relatively high rate of LTP ranging from 10.0
to 39.1% at five years [16,22]. Factors associated with LTP are a larger tumour size >2
cm, tumour without encapsulation, poorly differentiated HCC, subcapsular location, and
suboptimal ablative margin adjacent to a nearby vessel, owing to the heat sink effect [32].

Microwave ablation (MWA) is a newer technology which uses electromagnetic energy
to create an ellipsoidal zone of tissue heating caused by dielectric hysteresis, a process
where water molecules are forced to align with an oscillating electric field, creating kinetic
energy that is converted to heat. Compared with RFA, MWA is more predictable and
produces higher temperatures and larger ablation zones with similar complication rates,
without the risk of skin burns from grounding pads [33,34]. By directly heating a zone of
tissue, MWA is less reliant on heat conduction, and therefore less susceptible to the heat
sink effect [35]. MWA achieves larger ablations and faster ablation times, requiring fewer
applicator insertions compared with RFA [36,37]. MWA overcomes the size limitations
of RFA and is able to treat hepatic lesions up to 8 cm in size [38]. Additionally, when
two or more applicators are used, RF electrodes cannot be “on” simultaneously due to
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technological limitations, while up to three MWA antennae can be used simultaneously.
Regarding the data comparing LTP rates of MWA and RFA, MWA has similar therapeutic
effects as RFA with a shorter ablation time for early stage HCC [33,39]. In their meta-
analysis, Glassberg et al. found that the use of MWA significantly reduced the LTP rate
by 30%, especially for larger tumours (>2.5 cm) [40]. On the other hand, Ding et al. found
RFA to have lower LTP rates compared with MWA (5.2% versus 10.9%, respectively)
but attributed this difference to the larger size of the tumours being ablated with MWA,
an independent predictor of LTP [41].

Laser ablation (LA) is a thermal ablation modality which uses laser optical fibres
to deliver high-energy laser radiation to the target tissue leading to coagulative necrosis.
The LA applicators are smaller compared with other modalities (22 G) and laser energy is
less tissue-sensitive compared with RF. The ablation zone produced is small due to light
scattering and reduced energy penetration due to tissue carbonisation; therefore, multiple
applicators are often needed to achieve complete ablation [42]. Two trials have shown LA
to be as effective and safe as RFA, but it has not been widely adopted, likely due to the
popularity of MWA and other ablative modalities [43,44].

Cryoablation (CA) uses a combination of rapid cooling followed by thawing leading
to coagulative necrosis and cell death by the formation of intracellular ice crystals which
interrupts cellular metabolism and causes ischemia via vascular thrombosis. The main
advantage of cryoablation over heat-based thermal ablation modalities is the visualisation
of the ice ball on computed tomography (CT) (and magnetic resonance imaging (MRI))
and, to a lesser extent, ultrasound (US) [45]. Cryoablation is also less painful compared
with RFA and MWA when the ablation zone is anticipated to involve the subcutaneous
tissues, pleura, and diaphragm [46]. Better visualisation of the ice ball increases the chance
of a complete ablation and reduces the risk of injury to critical structures [47,48]. However,
the main drawback and reason why liver cryoablation is not widely adopted is due to
an increased risk of bleeding and the added risk of cryoshock [49,50]. Cryoshock is a
rare, life-threatening condition that presents with multi-organ failure, severe coagulopathy,
and disseminated intravascular coagulation. The pathogenesis related to cryoshock stems
from the fact that the ablation zone is re-perfused after the ice ball melts, resulting in
the release of cellular debris into the systemic circulation. This life-threatening condition
was described to occur in 1% of patients who underwent open or laparoscopic hepatic
cryosurgery [51]. However, the exact rate of cryoshock in percutaneous cryoablation
remains unknown. Rong et al. did not encounter a single case of cryoshock in a case
series of 1401 cryoablations on 866 patients, although reported seven patients (0.6%) who
experienced cryoreaction during cryoablation, which manifests as chills, fever, tachycardia,
tachypnoea and/or transient creatinine elevations [52]. Several other studies have also
shown the percutaneous cryoablation of liver lesions to be safe and effective [53-55]. In a
multi-centre randomised controlled trial, Wang et al. showed CA to be equally as safe as
RFA, while achieving a significantly lower rate of LTP when compared to RFA [54].

Irreversible electroporation (IRE) is a non-thermal energy-based ablation modality that
creates pores in the cellular membranes by delivering short bursts of high-voltage electrical
pulses. Due to extracellular tissue architecture being preserved, IRE has an advantage over
heat-based modalities near at-risk structures such as the biliary tree and vascular structures,
and because it is non-thermal in nature, IRE is also not susceptible to heat sink effects and
avoids incomplete ablation near major blood vessels [56-59]. IRE is shown to be safe and
effective against liver tumours and is generally recommended for tumours in complex
locations [60,61]. Due to its non-thermal nature, the preservation of vasculature allows the
perfusion of inflammatory cells within the ablation zone. A systemic anti-tumour immune
response known as the abscopal effect has been described, a phenomenon resulting in
the regression of non-target lesions [62]. The downside of IRE is that it is technically
challenging and time-consuming; it requires multiple (at least two) parallel electrode
placements, necessitating the use of CT guidance. IRE also causes muscle contractions and
has an increased risk of cardiac arrhythmia that require general anaesthesia for muscle
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paralysis and cardiac synchronization [63]. Another downside relates to the modality’s
inability to track the ablate, resulting in an increased risk of track seeding [59]. IRE remains
a promising ablation modality, although more clinical data are required to validate its
efficacy. Ongoing clinical trials are evaluating its role in malignancies of the hepatobiliary
tract [64,65]. Figure 1 illustrates a case of a centrally located tumour treated with IRE with
abscopal effects.

Figure 1. Ablation of a large, centrally located tumour using irreversible electroporation (IRE) with
documented abscopal effect in a 58-year-old male with known history of hepatitis B cirrhosis and
multiple prior treatments for multi-focal hepatocellular carcinoma (HCC) including trans-arterial
chemoembolization (TACE), Y-90 radioembolization (RE) and trial of oral Sorafenib. (A) Axial TIW
contrast image in the delayed phase shows a 3.8 cm HCC (red circle) in segment 5 of the liver
with viable tumour despite prior trans-arterial treatments. (B) A more superior axial image of the
same study reveals another 4.9 cm central HCC (yellow circle) with viable tumour, in segment
4 of the liver compressing the biliary confluence and causing distal biliary obstruction. With the
elevated bilirubin, patient was unable to continue with oral Sorafenib and with a palliative intent,
IRE was offered for this particular tumour. (C) Axial contrast CT image taken in the portovenous
phase on the day of the procedure demonstrating enhancing viable tumour (yellow star) within the
segment 4 HCC. Note the traces of lipiodol (black arrowhead) within the other tumour in segment 4,
distally treated previously with TACE. (D) 3D volume rendering technique (VRT) image of the 7 IRE
electrodes placed in order for satisfactory tumour ablation. (E) Photograph of the IRE electrodes over
the skin during the ablation procedure. (F) Post-contrast axial CT image immediate post-ablation
show a satisfactory ablation zone; note a tiny pocket of gas within the ablation zone, which can be
commonly seen post-IRE ablation. (G) Axial TIW post-contrast image in the delayed phase 6 weeks
after the procedure showed a complete response in the segment 4 HCC with significant reduction
in the size of the tumour. Unfortunately, the biliary dilatation persisted despite the ablation, and
patient’s bilirubin levels remained elevated. (H) Interestingly, the segment 5 tumour had also shown
a complete response with reduction in tumour size, demonstrating the abscopal effect which can be
seen in IRE cases.

High-intensity focused ultrasound (HIFU) is a heat-based ablation modality in the
liver and is a non-invasive ablation modality. HIFU uses focused ultrasound at high
intensities, allowing the deposition of sufficient energy to cause a well-demarcated volume
of coagulation necrosis, independent of soft tissue type, first described in 1994 [66]. It has
been shown to be safe and effective in the liver, either as monotherapy or in combination
with other modes of treatment such as trans-arterial chemoembolization (TACE) [67-74].
The main limitation of performing HIFU in the liver is the limited window and respiratory-
induced liver motion, making it time consuming and technically challenging relative to
other ablative modalities, impeding its widespread adoption. HIFU has a potential role in
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treating patients who are poor candidates for invasive therapies such as surgery or RFA,
but the exact role of HIFU in the management of liver tumours is yet to be established.

Histotripsy is a new and developing non-invasive non-heat ablation modality. While
HIFU uses thermal energy to cause coagulative necrosis, histotripsy fractionates tissue
using acoustic cavitation to rapidly expand and collapse bubble clouds, emulsifying the
tumour tissue. Like IRE, it is inherently immune to heat-sink effects, while the risk of
injury to large vessels is low due to its inherent higher mechanical strength. This new
technology is still in the animal testing phase, but it has the potential to be an important
ablative modality in the future [75,76].

3. Image Guidance

An accurate placement of the ablation applicator is crucial for adequate tumour
ablation. Ideally, the image guidance for percutaneous liver ablation needs to detect the
target lesion, enable precise applicator placement, and enable real-time or intermittent
monitoring of the ablation zone.

Conventional B-mode US provides good soft tissue contrast and allows real-time
targeting of the target lesion and monitoring of the ablation zone. In experienced hands,
US guidance is the ideal targeting modality because it is fast, inexpensive, and does not
use ionising radiation. However, US is limited by inconspicuous tumours and the limited
sonographic window. As much as 45% of planned US-guided ablations are not feasible
due to these factors [77]. Approximately 20-25% of small HCCs are not visible on planning
preprocedural US after being detected on cross sectional imaging [78,79]. Small sizes,
subphrenic locations, and the presence of liver cirrhosis are independent predictors of
invisibility [78,80]. The presence of intralesional fat detected on pre-procedural MRI may
predict visibility for small HCCs on US [79].

When the tumour is not well seen on the conventional B-mode, advanced US tech-
niques can be employed to improve tumour visibility, these are contrast-enhanced US and
CT/MR-US fusion imaging (discussed later). Contrast-enhanced US (CEUS) increases
lesion conspicuousness and has been shown to improve needle placement and safety
margins [81-83]. CEUS involves the administration of intravenous (IV) contrast agents
consisting of microbubbles of gas, and has been shown to be safe and useful, even in
patients with compromised renal function, unlike iodine-based contrast media [84,85].
Kupffer-phase imaging can be achieved with the IV administration of Sonazoid (GE Health-
care) due to its hydrogenated egg phosphatidylserine sodium coating, leading to persistent
enhancement of the normal liver parenchyma in the post-vascular phase (which starts
approximately 10 min after administration). The use of Sonazoid further increases the
conspicuousness of the liver lesions and allows a longer time window for applicator place-
ment compared with purely intravascular US contrast agents [86]. However, as of 2020,
Sonazoid is only approved for clinical use in a few countries [87]. Even with intravascular
contrast, US is still limited by the sonographic window, obscuration with intrapulmonary
gas, and impediment by gas formation at the ablation zone.

Computed tomography (CT) guidance with CT fluoroscopy is another imaging modal-
ity that is often used for applicator placement planning and monitoring of the ablation
zone. CT enables a 3D view of the tumour and surrounding structures and is better than US
at monitoring the ablation zone. CT-guided ablation is useful for dome tumours which are
inherently difficult to visualise on US, and may be necessary when adopting a trans-pleural
approach [88]. The disadvantages include radiation exposure and a limited angle for
applicator placement. Without IV contrast, soft tissue contrast is inferior to US, resulting
in poor tumour visibility and suboptimal visualisation of intrahepatic vessels. With IV
contrast administration, the short time-window for proper localisation and ablation of the
tumour is further hampered by the non-real-time nature of the modality.

Advanced CT techniques can be employed to mitigate the drawbacks of unenhanced
CT. Intra-arterial injection of iodised oil (Lipiodol, Guerbet, Paris, France) prior to nee-
dle placement can be used to “stain” the tumour and improve visibility on unenhanced
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CT, Takaki et al. used this technique to perform CT-guided RFA in 150 US-invisible
HCCs [89,90]. Another technique to improve tumour visibility is the use of CT arterial por-
tography (CTAP) for hyper-vascular lesions such as HCC or hepatic arteriography (CTHA)
for hypo-vascular lesions such as colorectal liver metastases. This technique improves
lesion conspicuousness for applicator placement and is also useful for detecting a viable
tumour seen as the incomplete-ring sign [91]. The downside of this technique is the need
for an arterial puncture, which has its complications and logistically requires the procedure
to be performed in a hybrid CT/angiography system. The use of stereotactic CT guidance
for precise needle placement has also been used. The stereotactic image-guided navigation
system consists of an optical position measurement system, retroreflective markers (placed
on the patient’s skin), and an aiming device. After CT acquisition, the navigation system
is used to plan the angle of the applicator trajectory as well as the depth to which the
applicator is advanced. The proceduralist then positions the aiming device at the planned
insertion point and aligns it with the planned trajectory, after which the applicator is
inserted through the needle insert to the necessary depth. This allows accurate applicator
placement that can be performed out of plane, which may improve ablation efficacy [92].
However, this requires the patient to be temporarily apnoeic during the scanning and
applicator placement phases, and hence necessitates general anaesthesia (GA). Engstrand
et al. described the use of high-frequency jet ventilation to limit respiratory-related liver
movement to 2-3 mm, although this too requires GA and carries a higher risk of barotrau-
matic pneumothorax [93]. Robotic navigation systems have also been developed, which
are similar to the stereotactic guidance system but use a robotic arm for targeting. The pro-
ceduralist then manually inserts the applicator through the needle guide at the end of the
robotic arm to the point target [94,95].

Magnetic resonance imaging (MRI) offers superior tumour and ablation zone visibility
and has the added benefit of being able to monitor ablation temperatures (thermome-
try) [96]. Clasen et al. found MR-guided RFA to be more effective than CT-guided RFA in a
clinical trial, citing better visibility of the tumour and ablation zone as the cause [97]. MRI
also offers near-real-time imaging, a higher sensitivity of small lesions, and free selection
of imaging planes without the use of ionising radiation [98]. However, limited availability
of MR scanners suitable for procedures, high costs, and long procedural times limit the
acceptance of MRI as a mainstay guidance modality for liver ablation.

Fusion imaging (FI), combining US with cross-sectional imaging, can be used to tackle
the inherent limitations of each single imaging modality. CT/MR-US fusion imaging
systems fuse real-time US images with CT/MR reconstruction images through an electro-
magnetic positioning system and 3D reconstruction data. This allows the proceduralist
to target tumours only seen on cross-sectional imaging in real-time using the ultrasound
probe and has been shown to be useful [99,100]. The latest guidelines of the European
Association for the Study of the Liver recognise the value of CT/MR-US fusion imaging
in the percutaneous ablation of liver tumours [1]. Positron emission tomography images
can also be fused with US to target lesions with tracer uptake [101]. The main limitation of
Fl is the possibility of misregistration due to respiration and patient positioning. Figure 2
illustrates the use of MR-US FI and CEUS to aid lesion targeting.
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Figure 2. Magnetic resonance-ultrasound (MR-US)-guided fusion and contrast-enhanced ultrasound
for targeting of a hepatic tumour in a 65-year-old male with known chronic hepatitis B. (A) Axial TIW
contrast image in the arterial phase reveals a 1.4 cm, ovoid, arterially enhancing lesion compatible
with HCC, in segment 8 of the liver. The lesion was radiologically occult on grey-scale ultrasound.
(B) MR-US guided fusion performed with the patient in a slightly left lateral oblique position to
improve the ultrasound acoustic window. The faint dotted oval marks the expected location of
the lesion. (C) The lesion was not seen on grey-scale US; therefore, contrast-enhanced US was
performed after administering a 2.4 mL IV bolus of Sonovue (GE Healthcare) contrast. This CEUS
image captured in the arterial phase (1545 s) reveals the enhancing lesion (white arrow) in close
vicinity of the “fused” image as indicated by the faint dotted oval, thus confirming utility of the
MR-US guided fusion software. (D,E) A 15 cm Emprint (Covidien) microwave antenna was placed
through the expected location of the tumour (yellow arrowhead) with the tip approximately 0.5-1 cm
beyond (white arrowhead). Ablation was performed in this location for 10 min at 100 W. (F) Axial
TIW contrast image in the portovenous phase, 6 weeks later, shows a satisfactory ablation zone with
no evidence of residual tumour.

4. Tumour Location and Protective/Adjunctive Measures

The location of the hepatic tumour is crucial and determines the imaging guidance
used and whether protective measures are employed. Aside from bleeding and infection,
many percutaneous liver ablation complications are a result of non-target injury; these
include liver failure and injury to the biliary tract, hepatic vasculature, lung, gallbladder,
gastrointestinal tract, and heart [102-104]. Adjunctive techniques can be employed after
patient positioning has been optimised.

In general, peripheral (subcapsular) tumours can be safety ablated with similar results
compared with intra-parenchymal tumours [105]. If the liver capsule appears to be involved
by tumour, the capsule should be ablated as well [105]. For exophytic tumours which
deform the liver border, the “no-touch” wedge ablation technique can be employed to
minimise the risk of tumour seeding and bleeding [106]. Figure 3 illustrates the use of the
“no-touch” wedge technique.
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1.54 cm

Figure 3. Microwave ablation of a subcapsular tumour using the “no-touch” technique in a 71-year-old male with a known

history of chronic hepatitis B. (A) Subtracted axial TIW contrast image in the arterial phase reveals a 1.5 cm, rounded,

arterially enhancing lesion in an anterior subcapsular location in segment 3, compatible with HCC. (B) Transverse ultrasound

image at the time of ablation shows a 14 cm Soler (AngioDynamics) microwave antenna placed in a lateral-to-medial fashion

posterior and slightly away from the tumour (red star), with the tip just touching the falciform ligament (yellow arrow).

The aim of this no-touch technique is to create a “wedge” ablation without the antenna traversing through tumorous tissue.

(C) Ultrasound image taken during the ablation cycle shows the echogenic storm cloud representing the ablation zone

covering the lesion (yellow star). (D) Post-contrast axial CT image immediately post-ablation shows a satisfactory ablation

zone with good margins and no residual tumour enhancement.

Hepatic dome ablations are particularly challenging. Being inherently adjacent to the
diaphragm anatomically, ablations close to or abutting the diaphragm can induce significant
pain due to diaphragmatic irritation and increase the risk of diaphragmatic injury [107-109].
The creation of artificial ascites or hydro-dissection is an effective technique in minimising
diaphragmatic injury. It involves the injection of fluid (usually 5% dextrose water) into
the peritoneal space around the liver to separate the diaphragm from the hepatic dome,
by at least 5 mm. This is often performed with a Chiba needle (14-20 G) at the level of the
left subphrenic space [107]. Continued infusion of fluids may be necessary to maintain
separation of the ablation zone from the diaphragm. In a retrospective review of dome
lesions treated with MWA, no cases of diaphragmatic perforation or hernia were detected
in both the artificial ascites and the non-artificial ascites groups [110]. However, the authors
did report using lower power for the dome lesions compared with the intra-parenchymal
(control) group. Another study using MWA adjacent to the diaphragm showed effective
ablations with no occurrence of diaphragmatic injury when temperatures at the dome were
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kept at 50-60 degrees Celsius (temperature monitoring was performed using a temperature
probe at the marginal tissue) [111]. In a large retrospective study of 1030 ablations, Ding
et al. reported only two cases of diaphragmatic hernia (0.2%), both of which occurred
with MWA, and none with RFA [34]. When access to a dome lesion using artificial ascites
is not possible, the trans-pleural approach can be employed. This involves the creation
of an iatrogenic pneumothorax using an 18 G epidural needle inserted into the pleural
space at the anterior axillary line, separating the lung from the pleura when gas is infused.
The applicator enters the diaphragm and traverses the pleural cavity (and two layers of
parietal pleura) without puncturing visceral pleura or lung parenchyma [112]. After the
ablation, all artificially induced pneumothoraces were aspirated fully and confirmed on a
CT scan; patients were monitored with chest radiographs overnight and discharged the
following day if no re-accumulation of the iatrogenic pneumothorax was detected [112].
Figure 4 illustrates the use of iatrogenic pneumothorax to access a dome lesion.

Figure 4. Creation of iatrogenic pneumothorax for microwave ablation of hepatic dome lesion in a
76-year-old female with known cryptogenic liver cirrhosis, and previous ablation and TACE therapies
for tumours elsewhere in the liver. (A) Axial TIW contrast image in the arterial phase reveals a
2.1 cm, oblong, arterially enhancing lesion (orange arrow) compatible with HCC, near the hepatic
dome in segment 8 of the liver. The lesion is also medially abutting the right atrial appendage of
the heart. (B) Contrast enhanced CT image taken in the arterial phase during the time of ablation
under general anaesthesia, demonstrating the tumour. (C) Artificial pneumothorax (yellow star)
created using an 18 G cannula under CT fluoroscopy followed by subsequent insertion of an 8 F
pigtail drainage catheter into the pleural space using the Seldinger technique (black arrow). A 19 cm
Solero (AngioDynamics) microwave antenna was advanced intermittently under CT fluoroscopy
with the tip (white arrowhead) just penetrating the diaphragmatic margin. (D) Further advancement
of the microwave antenna with the tip seen (black arrowhead) at the posterior margin of the tumour,
using the right atrial appendage as a landmark. (E,F) Post-contrast axial and coronal reconstructed
CT images immediately post-ablation show a satisfactory ablation zone with adequate margins.
(G) After the ablation, the pneumothorax is aspirated via the chest drain (black arrow) with full
re-expansion of the right lung. (H) Axial contrast CT image taken 6 months post-ablation show
involution of the ablation zone with no enhancing recurrent tumour seen.

A subset of dome tumours near the heart, known as juxta-cardiac liver tumours,
defined as a tumour margin within 10 mm from the cardiac border, pose a risk of thermal
injury to the heart and cardiac arrhythmias. Kwan et al. found that with precise probe
placement, the thermal ablation of juxta-cardiac liver tumours can be performed safely and
as effective as intraparenchymal tumours in a retrospective case series [113]. Concerning
patients with implanted cardiac devices, there is a concern of interference of implanted car-
diac devices when ablating close to the heart, especially because RFA uses electromagnetic
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currents. However, Skonieczki et al. found that there was no cardiac device interference
in most RFA and all MWA cases when the device was changed to automatic pacing and
the defibrillator mode was turned off [114]. Figure 5 shows a case of juxta-cardiac tumour
ablation.

Figure 5. Microwave ablation of a juxta-cardiac tumour in an 80-year-old female with a known
history of hepatitis B cirrhosis, Childs-Pugh A5, ECOG 0. (A) Post-contrast delayed coronal TIW
image shows a 1.7 cm hepatocellular carcinoma (HCC) in segment 2 of the liver in a juxta-cardiac
location. (B) Transverse-oblique ultrasound image at the time of ablation demonstrates the tumour
to be well-visible, echogenic, and well-circumscribed in appearance (black arrowhead and white “+').
Immediately posterior to the tumour is the heart. RV, right ventricle; LV, left ventricle. (C) 20 cm
Emprint (Covidien) microwave antenna placed under ultrasound in a sagittal orientation, with
the tip guided to the centre of the tumour (yellow arrow). Antenna placement via this orientation
is beneficial for 2 reasons; firstly, the heart is always visible (red star) during antenna placement
to avoid inadvertent iatrogenic injury, and secondly, the ablation beyond the tip of the antenna
is usually the “weakest” portion of the ablation zone, thus preventing inadvertent thermal injury
to the myocardium. (D) Ultrasound image taken during the ablation cycle shows the echogenic
storm cloud representing the ablation zone covering the lesion. (EF) Post-contrast coronal and
sagittal reconstructed CT images immediately post-ablation show a satisfactory ablation zone with
no adjacent myocardial wall thickening or inadvertent iatrogenic cardiac injury.

Ablation of non-dome peripheral lesions increases the risk of thermally induced
injuries when the tumour margin is less than 10 mm from at-risk structures such as the
bowel, stomach, gallbladder, or kidney. Several protective techniques can be employed
to “push” these at-risk structures away from the planned ablation zone. Hydro-dissection
(as described above) separates the at-risk structures from the ablation zone by infusing
fluid in the plane between them. Pneumo-dissection uses the infusion of CO; into the
peritoneum, although large volumes of CO, must be used because gas tends to diffuse
from the site of infusion, when compared with artificial ascites. To maintain the ablation—
nontarget organ gap, a steady flow of CO; is infused, and intraperitoneal pressure of 10 mm
Hg is kept for the duration of the procedure; a total of 6-8 L of CO; is usually used, although
less is needed for confined spaces such as the retroperitoneum [115]. The main advantage
of CO, over fluid is the lower thermal conductivity of CO,. The main disadvantage of CO,
is the loss of the sonographic window and the need for CT guidance.

If hydro-dissection and/or pneumo-dissection fails, the balloon interposition tech-
nique can be deployed. A 10 mm or 12 mm angioplasty balloon is placed between the
planned ablation zone and non-target visceral organ over a 0.035 inch diameter stiff wire,
typically Amplatz (Boston Scientific) or Rosen wire (Cook medical) after intraperitoneal
access is achieved with an 18 gauge Trocar needle and secured using a 7 Fr introducer
sheath. Balloon insufflation is conducted with either room air or very dilute iodine con-



Diagnostics 2021, 11, 585

110f18

trast [116]. Balloons offer displacement of the non-target organ by a fixed distance if well
placed, although heat-induced balloon rupture can theoretically occur.

When the planned ablation zone is 5 mm away from the stomach (tumour margin
10-15 mm away from the stomach), gastric lavage can be used to protect the stomach from
thermal injury. This is done by infusing chilled D5W through a nasogastric tube [117].
The same can be done for ablations close to the gallbladder. Gallbladder lavage may be
performed percutaneously using a 21 gauge Chiba needle via the trans-hepatic approach,
and chilled D5W is hand injected and infused after initial decompression. Lastly, applicator
“torquing” is an additional technique that can be employed to displace the ablation zone
away from the nontarget organ by a few more millimetres [118]. Figure 6 demonstrates the
use of the torque technique.

Figure 6. Ultrasound-guided hydrodissection with “torque” technique in a 78-year-old male with a
known history of hepatitis B cirrhosis, Childs-Pugh B7. (A) 20 min delayed axial TIW images with
Primovist contrast show a 2.1 cm hepatocellular carcinoma (HCC) in segment 3 of the liver abutting
the anterior wall of the antrum of the stomach. (B) Slightly superior but immediately adjacent to
this is a separate 0.9 cm satellite nodule (yellow arrow), also compatible with HCC. (C) Sagittal
oblique ultrasound image at the time of ablation shows the tumours (yellow ‘+’) to be adjacent
to each other, well-circumscribed, and echogenic in appearance. S, stomach. (D) An 18 G Chiba
needle is inserted along the plane between the inferior edge of the liver and the superior margin
of the stomach (black arrow) until the tip is seen beyond the stomach wall (black arrow) under
real-time US guidance. D5 solution is infused through the needle, which can be seen accumulating
in this space (white arrow). As more fluid is instilled, gentle force is applied in a cranial fashion
on the Chiba needle externally, “torquing/levering” the stomach further inferiorly away from the
liver. (E) A 20 cm Neuwave (Johnson and Johnson) PR XT antenna is placed through the centre of
both the tumours, with the tip of the antenna (black arrow head) seen beyond the satellite nodule.
(F) More “levering” and fluid is instilled during the ablation cycle, which is seen by the echogenic
storm cloud encompassing the tumours. (G,H) Post-contrast coronal and sagittal reconstructed CT
images immediately post-ablation show a satisfactory ablation zone with no adjacent stomach wall
thickening, stranding or free intraperitoneal gas.

Central tumours, on the other hand, pose a different set of problems. Large vessels,
defined as vessels >3 mm, are known to cause heat sink cooling effects, increasing the risk
of LTP [119,120]. The proceduralist may choose to increase power or time when performing
thermal ablation close to large vessels. Placing the applicator as close as possible to large
vessels can overcome the heat-sink effect [121]. The “parallel” targeting method aims to
increase the contact surface between the ablation zone and the large vessel by placing the
applicator parallel to the vessel wall [122]. Balloon occlusion of hepatic vasculature with
peripherally inserted balloon catheters have been used to minimise the heat-sink effect
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posed by these large vessels [123]. Conversely, low flow in the portal vein predisposes
cirrhotic patients to portal vein thrombosis [104]. Flow velocities within the inferior vena
cava (IVC), hepatic arteries, and major hepatic veins are usually sufficient to prevent
significant vascular thrombosis in most cases [124]. Kim et al. found 15 cases of venous
thrombosis (1.1%; 12 portal and 3 hepatic veins) in a retrospective series of 1379 RFA in
1046 patients [125].

Thermal ablation within 1 cm of a central bile duct should be avoided to minimise
the risk of biliary injury. Biliary injuries are particularly debilitating, and biliary strictures,
hepatic abscess, biloma, bilioperitoneum, biliovenous fistula and biliocutaneous fistula
have been reported as complications of thermal ablation [102]. The risk of thermal injury
to bile ducts can be reduced by intraductal cooling measures [126]. Ogawa et al. described
using an endoscopic nasobiliary drainage tube to actively perform bile duct cooling in
an effort to prevent biliary injury without increasing the risk of LTP [127]. As mentioned
earlier, IRE is the ideal ablative modality near these at-risk structures, as demonstrated in
Figure 1 [56-58].

5. Follow-Up and Outcomes

Contrast-enhanced CT and MRI are the recommended modalities to assess for treat-
ment outcome. In general, the better post-ablation imaging modality (CT or MRI) would
be the modality that best evaluated the tumour on pre-ablation imaging. Both CT and MRI
are good at detecting local tumour progression, new liver lesions and extrahepatic disease.
MRI has superior soft tissue contrast and hence is more prone to artifacts, while CT is less
prone to artifacts and can screen for lung lesions in the same setting.

Although there is no consensus on the optimal interval or frequency of post-ablation
imaging, the first post-ablation imaging may be performed at 4-6 weeks after ablation to
confirm complete ablation, seen as a region without enhancement larger than the treated
lesion [21]. Later follow-up imaging is aimed at detecting LTP, which is much more
common in the first year after ablation. After the first post-ablation imaging at 4-6 weeks,
subsequent follow-up imaging can be performed at 3, 6, 9 and 12 months after treatment,
and then six month intervals thereafter for at least three years [21]. Close follow-up is
especially important for individuals at a high-risk of LTP, such as a poor prognostic score
or suboptimal ablative margins on post-ablation imaging [128,129]. Radiomics analysis of
pre-procedural imaging has been shown to aid prognostication after surgery and may play
a role in predicting LTP post-ablation [130-133].

6. Conclusions

Percutaneous ablation is an accepted treatment modality for primary hepatocellular
carcinoma (HCC) and liver metastases for non-operative candidates. The chosen ablative
modality should be capable of obtaining complete tumour ablation while minimising the
risk of injury to at-risk structures. Advanced techniques can be employed to improve
tumour visibility on image guidance. The location of the tumour determines feasibility of
ablation, the need to use adjunctive techniques to access the tumour, as well as the use of
protective manoeuvres.
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