
RESEARCH ARTICLE

Optimum strata boundaries and sample sizes

in health surveys using auxiliary variables

Karuna Garan Reddy1☯*, Mohammad G. M. Khan2☯, Sabiha Khan3☯

1 Research Office, Office of Deputy Vice Chancellor (Research, Innovation & International), The University of

the South Pacific, Suva, Fiji, 2 School of Computing, Information and Mathematical Sciences, The University

of the South Pacific, Suva, Fiji, 3 School of Public Health and Primary Care, Fiji National University, Suva, Fiji

☯ These authors contributed equally to this work.

* reddy_k@usp.ac.fj

Abstract

Using convenient stratification criteria such as geographical regions or other natural condi-

tions like age, gender, etc., is not beneficial in order to maximize the precision of the esti-

mates of variables of interest. Thus, one has to look for an efficient stratification design to

divide the whole population into homogeneous strata that achieves higher precision in the

estimation. In this paper, a procedure for determining Optimum Stratum Boundaries (OSB)

and Optimum Sample Sizes (OSS) for each stratum of a variable of interest in health sur-

veys is developed. The determination of OSB and OSS based on the study variable is not

feasible in practice since the study variable is not available prior to the survey. Since many

variables in health surveys are generally skewed, the proposed technique considers the

readily-available auxiliary variables to determine the OSB and OSS. This stratification prob-

lem is formulated into a Mathematical Programming Problem (MPP) that seeks minimization

of the variance of the estimated population parameter under Neyman allocation. It is then

solved for the OSB by using a dynamic programming (DP) technique. A numerical example

with a real data set of a population, aiming to estimate the Haemoglobin content in women in

a national Iron Deficiency Anaemia survey, is presented to illustrate the procedure devel-

oped in this paper. Upon comparisons with other methods available in literature, results

reveal that the proposed approach yields a substantial gain in efficiency over the other meth-

ods. A simulation study also reveals similar results.

Introduction

Stratified random sampling is an important sampling technique utilized in estimating the

prevalence of diseases such as diabetes, anaemia, obesity hypertension, and smoking. In strati-

fied sampling, the sampling-frame is divided into a number (say, L) of non-overlapping groups

or strata in such a way that the strata constructed are internally homogeneous with respect to

the variable (or main variable) under study, because that maximizes the precision of the esti-

mator of the parameter of interest concerning the study variable, e.g. its mean [1]. An advan-

tage of stratified sampling design is that when a stratum is homogeneous, the measurements of
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the study variable (y) vary little from each other and the precise estimate of y can be obtained

from a small sample in that stratum. Thus, combining these estimates from all L strata, the

design produces a gain in the precision of estimate of the variable in the whole population [1].

However, in most practical situations, especially in health surveys, it is difficult to construct

such optimum strata, and hence, more often the health surveyors stratify the population in

most convenient manners such as the use of geographical regions (e.g. North, Central, South,

etc.), administrative regions (e.g. provinces, districts, etc.) or other natural criteria (e.g. urban-

rural, sex, age etc.). Moreover, the stratification by convenience manner is not always a reason-

able criterion as the strata so obtained may not be internally homogeneous with respect to a

variable of interest. Thus, one has to look for the Optimum Stratum Boundaries (OSB) that

maximizes the precision of the estimators.

The problem of determining OSB for a variable, when its frequency distribution is known,

is well-known in the sampling literature. The basic consideration involved in determining

OSB is that the strata should be as internally homogenous as possible, that is, in order to

achieve maximum precision, the stratum variances should be as small as possible [1, 2]. When

a single variable is of interest and the stratification is made based on this study variable, then

an ideal situation is that the distribution of the study variable is known and the OSB can be

determined by cutting the range of its distribution at suitable points. This problem of deter-

mining the OSB, when both the estimation and stratification variables are the same, was first

discussed by Dalenius [3]. He presented a set of minimal equations which are usually difficult

to solve for OSB because of their implicit nature. Hence, subsequently the attempts for deter-

mining approximately optimum stratum boundaries have been made by several authors [4–9].

Many authors have also attempted to determine the global OSB. For example, Unnithan

[10] proposed an iterative method that requires a suitable initial solution. For a skewed popu-

lation where a certainty stratum (some specific units are included in the sample where

extremely large units are isolated so that they do not influence sampling variability) is neces-

sary. Lavallée [11] proposed an algorithm to construct stratum boundaries for a power allo-

cated (applying an exponential value q, where 0< q< 1, to the stratum population value

under Neyman Allocation to allow for a sufficient spread of the sample allocation) stratified

sample. Later on, Hidiroglou [12] presented a more general form of the algorithm. After

reviewing Lavallée and Hidiroglou’s algorithm, a modified algorithm that incorporated the dif-

ferent relationships between the stratification and study variables was proposed [13, 14].

There are several other algorithms available in the literature, for example, Niemiro [15] pro-

posed a random search method and the simplex method [16] was used to present a new

method of stratification [17]. Later on, Kozak [18] presented a modified random search algo-

rithm. Gunning [19] proposed an alternative method to approximate stratification based on a

geometric progression. This approach was compared with three other methods [8, 11, 20]

which confirmed that the geometric progression method is more efficient [21]. The usefulness

of Gunning and Horgan’s geometric progression method was studied and it revealed that the

geometric progression approach is less efficient than Lavallée and Hidiroglou’s algorithm

[22, 23].

Another kind of stratification method that has been proposed in the literature is due to

Khan et. al. [24–30]. When the distributions of the study variables were known, they formu-

lated the problems of determining OSB as optimization problems, which are solved by devel-

oping computational techniques Dynamic Programming (DP). The DP technique was first

proposed by Bühler & Deutler [31], which was also used for determining the OSB which

would divide the population domain of two stratification variables into distinct subsets such

that the precision of the variables of interest is maximized [11, 32].

Optimum strata boundaries and sample sizes
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Numerous research have also been undertaken whereby auxiliary variable(s), which can be

historical data, are used to improve the precision of the estimates of study variable y. When the

frequency distribution of the auxiliary variable, x, is known, several approximation methods of

determining OSB using the auxiliary variable(s) have been suggested and discussed by many

authors [1, 9, 33–43].

In this paper, a procedure for determining the OSB and sample size for each stratum of a

variable of interest in health surveys is developed. The determination of the OSB and sample

sizes, based directly on the survey variable (y), is not feasible in practice since the it is unavail-

able prior to conducting the survey. Hence, optimum stratification is made based on multiple

auxiliary variables (x1, x2, . . ., xp) that are readily available in health surveys. It shall be assumed

that the population values of the study variable y are available as realizations of a stochastic

background variable or at least can be realized as proxy values of y from previous or other

recent surveys and y holds a regression model with the auxiliary variable(s) [2, 14, 30, 44–46].

Moreover, often y is highly correlated with x such that the regression of y upon x has homosce-

dastic errors. In situations like this, stratification can be achieved using the auxiliary variable

(s). The application of the proposed methodology will be demonstrated with empirical investi-

gations using real and simulated datasets. This proposed research deals with the problem of

stratification for a study variable using the many auxiliary variables that are found in a multi-

variate survey. In health surveys, these auxiliary variables normally characterize positively

skewed distributions that are families of the Gaussian distribution such as Weibull, Gamma,

Log-normal, etc. Thus, this research investigates if the proposed parametric-based mathemati-

cal programming approach for determining the OSB yields a gain in efficiency over other

methods that are well-known in literature. This research also tries to find out if the proposed

method works for skewed distributions such as the Weibull or Gamma when both linear and

nonlinear regression models are used in the MPP formulation of the stratification problem.

The problem of determining OSB is redefined as the problem of determining Optimum

Strata Widths (OSW) and is formulated as a Mathematical Programming Problem (MPP) that

seeks minimization of the variance of the estimated population parameter. Since the formu-

lated MPP can be viewed as a multistage decision problem, it is solved using a DP technique.

These OSB are then used to compute the sample size for each stratum under Neyman alloca-

tion. A numerical example with a real data set of skewed population, where the auxiliary vari-

ables follow Weibull distributions, is presented to illustrate the proposed procedure. The

results are compared with the Dalenius & Hodges’ cum
ffiffiffi
f

p
method [20], Gunning & Horgan’s

geometric method [19] and Lavallée & Hidiroglou’s method [11].

The general formulation of the problem of OSB as an MPP

Let the population be stratified into a fixed L strata based on p auxiliary variables, x1, x2, . . ., xp,
and the estimation of the mean of study variable y is of interest. If a simple random sample of

size nh is to be drawn from hth stratum with sample mean �yh; ðh ¼ 1; 2; . . . ; LÞ, then an unbi-

ased stratified sample mean, �yst , is given by

�yst ¼
XL

h¼1

Wh�yh; ð1Þ

whereWh = Nh/N is the proportion of the population contained in the hth stratum for the

study variable y, where N is the total number of units in the population and is assumed to be

known while Nh is the total unknown number of units in each stratum. Then the variance of

Optimum strata boundaries and sample sizes
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�yst is given by

Vð�ystÞ ¼
XL

h¼1

1

nh
�

1

Nh

� �

W2

hs
2

h: ð2Þ

The finite population correction factors in (2) could be ignored [8, 9, 20, 36]. Thus, under

the Neyman allocation [47], that is,

nh ¼ n �
Whshy

PL
h¼1
Whshy

; ð3Þ

(2) is given by

Vð�ystÞ ¼
ð
PL

h¼1
WhshyÞ

2

n
; ð4Þ

where σhy is the stratum standard deviation of y in hth stratum; h = 1, 2, . . ., L and n is the pre-

assigned total sample size.

Consider that the study variable has the regression model of the form:

y ¼ lðx1; x2; . . . ; xpÞ þ �; ð5Þ

where λ(x1, x2, . . ., xp) is a linear (or nonlinear) function of xi;(i = 1, 2, . . ., p) and � is an error

term such that E(�|x1, x2, . . ., xp) = 0 and V(�|x1, x2, . . ., xp) = ψ(x1, x2, . . ., xp)> 0 for all xi. The

parameters in λ are assumed to be known from a recent survey.

Assuming that λ and � are uncorrelated [4], it follows that

s2
hy ¼ s2

hlðx1;x2 ;...;xpÞ
þ s2

h�; ð6Þ

where s2
hlðx1 ;x2;...;xpÞ

denotes the variance of λ(x1, x2, . . ., xp) in the hth stratum and s2
h� is the vari-

ance of � in the hth stratum. Eq (6) assumes homoscedasticity, i.e., homogeneity of the variance

of � over the distribution of the predictors xi(i = 1, 2, . . ., p), given the stratum h.

Let f(xi) be the estimated frequency functions of the auxiliary variables, xi(i = 1, 2, . . ., p),

that are used for the stratification of the main variable. If the population mean of the study var-

iable y is to be estimated over a range (a, b) under the allocation (3), then the problem of deter-

mining the strata boundaries of y is to cut up the range, (a, b) at (L − 1) intermediate points a
= y0� y1� y2�, . . .,� yL−1� yL = b such that (4) is minimum. Since the study variable is not

available at the design stage, the range (a, b) could either be the compromise range derived

from all the auxiliary variables or an estimated range that best explains the study variable, pos-

sibly chosen from previous surveys.

For a fixed sample size n, minimizing the expression of the right hand side of (4) is equiva-

lent to minimizing
PL

h¼1
Whshy. Thus, from (6), the following is minimized:

XL

h¼1

Whshy ¼
XL

h¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

hs
2
hlðx1 ;x2 ;...;xpÞ

þW2
hs

2
h�

q
ð7Þ

If f(xi) are known and integrable frequency functions of the auxiliary variables, then for the

given λ(x1, x2, . . ., xp), the first term inside the square root function in (7) can be expressed as

the functions of the boundary points (yh−1, yh) by finding the stratum weightWhxi, mean μhxi

Optimum strata boundaries and sample sizes
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and variance s2
hxi

of ith auxiliary variable xi using the following expressions:

Whxi
¼

Z yh

yh� 1

f ðxiÞdxi ð8Þ

mhxi ¼
1

Whxi

Z yh

yh� 1

xif ðxiÞdxi ð9Þ

s2
hxi
¼

1

Whxi

Z yh

yh� 1

x2

i f ðxiÞdxi � m2

hxi ð10Þ

where i = 1, 2, . . ., p.

The quantities computed by Eqs (8)–(10) may be different for different auxiliary variables

since it depends on their best-fit frequency distributions, for example, Weibull, Gamma, or

any other skewed distribution. If two or more auxiliary variables are characterized by the same

distribution, the quantities in (8)–(10) may still be different because their estimated parameters

would certainly be different.

Note that the second term in (7) are also obtained as a function of boundary points using

the frequency function of the regression error. Thus, the objective function (7) could be

expressed as a function of boundary points (yh−1, yh) only: �hðyh; yh� 1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

hs
2
hl þW2

hs
2
h�

p
.

Then, the problem of determination of OSB can be expressed as the following optimization

problem to determine y1, y2, . . ., yL.

Minimize
PL

h¼1
�hðyh; yh� 1Þ

subject to a ¼ y0 � y1 � y2 �; . . . ;� yL ¼ b
ð11Þ

We further define lh = yh − yh−1;h = 1, 2, . . ., L, where lh� 0 denotes the range or width of

the hth stratum. From this, the range of the distribution of y, d = b − a, can be expressed as a

function of the stratum width.

XL

h¼1

lh ¼
XL

h¼1

ðyh � yh� 1Þ ¼ b � a ¼ yL � y0 ¼ d ð12Þ

The hth stratification point yh; h = 1, 2, . . ., L is then expressed as

yh ¼ y0 þ
Xh

i¼1

li ¼ yh� 1 þ lh ð13Þ

Adding (12) as a constraint, the problem (11) can be treated as an equivalent problem of

determining optimum strata widths (OSW), l1, l2, . . ., lL, and is expressed as:

Minimize
XL

h¼1

�hðlh; yh� 1Þ;

subject to
XL

h¼1

lh ¼ d;

and lh � 0; h ¼ 1; 2; . . . ; L:

ð14Þ

Note that if y0 is known, the first term, ϕ1(l1, y0), in the objective function of the MPP (14)

is a function of l1 alone. Once l1 is known, the second term ϕ2(l2, y1) will become a function of

l2 alone and so on. Due to the special nature of functions, the MPP (14) may be treated as a

Optimum strata boundaries and sample sizes
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function of lh alone and is expressed as:

Minimize
XL

h¼1

�hðlhÞ;

subject to
XL

h¼1

lh ¼ d;

and lh � 0; h ¼ 1; 2; . . . ; L:

ð15Þ

In real-world situations, the study variable is unknown at the design stage, hence, readily-

available auxiliary variables can be used to create OSB. The proposed technique carries out

optimization through the MPP (15) on the compromise range (d) derived from all auxiliary

variables. The technique also assumes that the parameters of the regression model in (15) are

known from a recent survey. The best-fit distributions of the auxiliary variables, xi, are used in

the formulation of MPP (15).

The solution procedure using dynamic programming technique

The problem (15) is a multistage decision problem in which the objective function and the

constraint are separable functions of lh, which allows us to use a DP technique [28]. Dynamic

programming determines the optimum solution of a multi-variable problem by decomposing

it into stages, each stage compromising a single variable subproblem. A DP model is basically a

recursive equation based on Bellman’s principle of optimality [48]. This recursive equation

links the different stages of the problem in a manner which guarantees that each stage’s opti-

mal feasible solution is also optimal and feasible for the entire problem [49].

Consider the following subproblem of (15) for first k(<L) strata:

Minimize
Xk

h¼1

�hðlhÞ;

subject to
Xk

h¼1

lh ¼ dk;

and lh � 0; h ¼ 1; 2; . . . ; k:

ð16Þ

where dk< d is the total width available for division into k strata or the state value at stage k.

Note that dk = d for k = L and the transformation functions are given by

dk ¼ l1 þ l2 þ . . .þ lk; and

dk� 1 ¼ l1 þ l2 þ . . .þ lk� 1 ¼ dk � lk

Let Fk(dk) denote the minimum value of the objective function of (16), that is,

FkðdkÞ ¼ min
Xk

h¼1

�hðlhÞj
Xk

h¼1

lh ¼ dk; and lh � 0; h ¼ 1; 2; . . . ; k and 1 � k � L

" #

With the above definition of Fk(dk), the MPP (15) is equivalent to finding FL(d) recursively

by finding Fk(dk) for k = 1, 2, . . ., L and 0� dk� d. We can write:

FkðdkÞ ¼ min �kðlkÞ þ
Xk� 1

h¼1

�hðlhÞj
Xk� 1

h¼1

lh ¼ dk � lk; and lh � 0; h ¼ 1; 2; . . . ; k

" #
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For a fixed value of lk; 0� lk� dk,

FkðdkÞ ¼ �kðlkÞ þmin

"
Xk� 1

h¼1

�hðlhÞj
Xk� 1

h¼1

lh ¼ dk � lk;

and lh � 0; h ¼ 1; 2; . . . k � 1; 1 � k � L

#

Using the Bellman’s principle of optimality, we write a forward recursive equation of the

DP technique for k� 2 as:

FkðdkÞ ¼
min

0 � lk � dk
½�kðlkÞ þ Fk� 1ðdk � lkÞ� ð17Þ

For the first stage, that is, for k = 1:

F1ðd1Þ ¼ �1ðd1Þ ¼) l�
1
¼ d1; ð18Þ

where l�
1
¼ d1 is the optimum width of the first stratum. The relations (17) and (18) are solved

in a forward manner first for k = 1, 2, . . ., L to determine the optimum subproblem objective

and then solved in a backward manner second to determine the OSB.

The application of the above solution procedure is summarized in Appendix A in order to

determine the OSB for MPP (15).

Determination of optimum sample size

When OSB (yh, yh−1) are determined as discussed in Sections 2-3, the optimum sample size nh;
h = 1, 2, . . ., L that minimizes the variance of the estimate can easily be computed.

If the study variable holds the regression model (5) with the auxiliary variables across the

strata, using (2) and (7), the sample size nh are obtained for a fixed total sample of size n under

Neyman allocation [47] for h = 1, 2, . . ., L and given as follows:

nh ¼ n
Wh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
hlðx1 ;x2 ;...;xpÞ

þ s2
h�

q

PL
h¼1
Wh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
hlðx1;x2 ;...;xpÞ

þ s2
h�

q ð19Þ

whereWh, s2
hlðx1 ;x2 ;...;xpÞ

and s2
h� are derived in terms of the optimum boundary points (yh, yh−1).

It is also worth noting that the OSB (yh, yh−1) through the MPP (15) are so obtained that nh
must satisfy the restrictions:

1 � nh � Nh; ð20Þ

where Nh = NWh. The restriction 1� nh is added to the formulation so that the hth stratum

must form with at least a unit and the restriction nh� Nh is added to avoid the over sampling.

Determination of optimum number of strata

This is one of the first issues that need to be considered in an optimal stratification design,

however, it can be dependent on the OSB and the allocation of sample units among the strata.

The goal of stratification is to make all strata as homogenous as possible, which implies that

the more the number of strata, the more the homogeneity within a stratum. This results in a

reduction in the total variance of �yst , that is, Var ð�ystÞ. However, an increase in the number of

strata may involve extra cost and resources in planning and drawing the samples.

Optimum strata boundaries and sample sizes
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Problem of determining optimum number of strata was first discussed by Dalenius [3] who

postulated that uniformly distributed variable, Var ð�ystÞ is inversely proportional to L2. Later,

Cochran [50] investigated the effect of the number of strata on Var ð�ystÞ for some skewed dis-

tributed populations with Neyman allocation. He confirmed that this relationship holds for

skewed distribution and the rate of reduction in Var ð�ystÞ is independent of skewness of the

population. The results indicated that only a little reduction in variance is to be expected

beyond L = 6 unless the correlation between the auxiliary information and the survey popula-

tion is greater than 0.95.

To apply the above idea to the current situation of the optimal number of strata, assume

that fpc is negligible and consider the distribution of the data to be approximately uniform, as

done by Cochran [1]. Then the range of the distribution of values of y [a, b] is d = b − a, and

hence the variance of the distribution is S2 = d2/12. The variance of the sample mean for a sim-

ple random sample of size n can therefore be calculated as:

Vð�yÞ ¼
S2

n
¼
S2

12n
ð21Þ

Thus, if a simple case of creating L strata of equal size is considered, stratum variance would

then be calculated as S2 = d2/12L2. It follows fromWh = 1/L and Eq (4),

Vð�ystÞ ¼
1

n

XL

h¼1

1

L
d
ffiffiffiffiffi
12
p

L

� �2

¼
1

n
d
ffiffiffiffiffi
12
p

L

� �2

¼
d2

12nL2
¼
Vð�yÞ
L2

ð22Þ

This reveals that variance of the sample mean is inversely proportional to the square of the

number of strata, L. This however, does not consider the relationship between the auxiliary

variables and the study population. It can be extended by considering a linear relationship

given in Eq (5). As suggested by Cochran [50], in this case, using (5), it can be shown that

Vð�ystÞ ¼
1

n
s2

l

L2
þ s2

�

� �

ð23Þ

This again shows that the variance is inversely related to the square of the number of strata.

Applying (23), one can empirically study the effect of increasing the number of strata. To com-

plete this analysis, a cost function that shows the relation of cost with L, for planning and exe-

cuting a survey, is required. However, whatever the form of cost function, [1] showed that the

increase in L beyond 6 will seldom be profitable. Thus, if the extra cost involved in planning

and executing the survey, which is incurred due to an increase in the number of strata is not of

much importance, a reasonable approach to determining the optimum number of strata may

be discussed as follows:

Compute Vð�ystÞ for L = 1, 2, ‥, k, where k is a possible value of the candidate L. Now Vð�ystÞ
decreases as L increases and Vð�ystÞ is minimum when L = k. Therefore, a surveyor may choose

the optimum number of strata at the point where an increase in L is not useful as it gives only

a small decrease in Vð�ystÞ. The approach is illustrated in Fig 1, which is a hypothetical plot of

Vð�ystÞ against L. One can choose the desired number of strata as the point at which the

“elbow” in the curve becomes apparent. Clearly, this requires judgment on the part of the

surveyors.
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Construction of OSB with Weibull auxiliary variables

The Weibull distribution is a two or three-parameter family of continuous probability distri-

butions. Because of its versatility in the fitting of a variety of distributions, it is one of the most

widely used distributions in applied statistics, especially in survival analysis, mortality or fail-

ure analysis, reliability, engineering to model manufacturing and delivery times, in extreme

value theory and weather forecasting. Due to its moderately skewed profile, it also character-

izes well a wide range of health data, including health monitoring data, epidemiological data

such as episode durations of depression and gene expressions data [51–54].

If all the auxiliary variables, xi;i = 1, 2, . . ., p, approximately follow Weibull distribution on

the interval [xi,0, xi, L], its three-parameter probability density function with a state space xi� 0

is given by:

f ðxi; ri; yi; giÞ ¼
ri
yi

xi � gi
yi

� �ri � 1

e
�

xi � gi
yi

� �ri

; xi � 0 ð24Þ

where ri> 0 is the shape parameter, θi> 0 is the scale parameter and γi is the location parame-

ter of the distribution of ith auxiliary variable.

The shape parameter gives the Weibull distribution its flexibility. By changing the value of

the shape parameter, the distribution can model a wide variety of data that follows the Expo-

nential distribution, the Rayleigh distribution, the Normal distribution or even the approxi-

mate Log-normal distribution.

Fig 1. Plot of Vð�ystÞ against L.

https://doi.org/10.1371/journal.pone.0194787.g001
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Scaling the auxiliary variables

While stratifying the study variable based on multiple auxiliary variables, the raw data in the

form of different auxiliary variables are generally of different scales (eg., kg, mg, dollar, etc.).

The values of one variable may be less or more spread out than other variables. With the auxil-

iary variables exhibiting different distributions, the range of data, minimum and maximum

values for these auxiliary variables will certainly be different from each other. Hence, this may

affect the convergence of the MPP (15) and hence its ability to determine the OSB accurately.

A way to encounter this problem is to standardize each variable by subtracting its mean and

dividing by its standard deviation.

Another method, which this paper uses, is a simple scaling procedure whereby every vari-

able is divided by its maximum value. While maintaining the original distribution of the auxil-

iary variables, this scaling procedure results in the auxiliary variables getting closer to each

other, which in turn, helps in reducing the overall range or the search space of the optimal

solution. One must note that the solution procedure of dynamic programming technique is

generally advisable and feasible for small sets of units (N� 20) [55], hence, scaling is a neces-

sary means for faster convergence of an optimal solution. The MPP (15), when solved, pro-

vides the OSB of the scaled study variable and the OSB for the original study variable can be

obtained by the usual re-scaling procedure.

Estimating the regression model

To illustrate the estimation of the regression model in formulating the problem of determining

OSB as an MPP for a population with more than one auxiliary variable, we use a health survey

data on Anameia, which was obtained from the 2004 Fiji National Nutritional Survey con-

ducted by the National Food and Nutrition Centre (Fiji) and funded by AusAID, UNICEF and

Government of Fiji. The data included a micronutrient survey where blood samples were

drawn from women of childbearing age and measurements were made to record levels of Hae-

moglobin, Iron and Folate amongst many other variables. Whilst only tabulations are publicly

available from http://ghdx.healthdata.org/record/fiji-national-nutrition-survey-2004, data

used for the purpose of applying the proposed method is accessible from http://repository.usp.

ac.fj/id/eprint/10439 where the main aim is to estimate the Haemoglobin content in Fijian

women. The whole data was fully anonymized before making them accessible. The data cannot

be de-anonymized because there is no public datasets available to cross-reference.

The data has the following three characteristics for each woman:

1. Level of Haemoglobin

2. Level of Iron

3. Level of Folate

Suppose that a survey on Iron Deficiency Anaemia is to be conducted in a country, where

Haemoglobin (y) is the variable of interest and is to be stratified. Then, the levels of Iron and

Folate collected in this study may be the reasonable choice for the auxiliary variables, x1 and

x2. In this example, Haemoglobin is available to us but in reality the main variable might not

be available prior to the survey. Thus, Haemoglobin will be used purely as an example for

numerical illustrations and comparison purposes.

To estimate the Haemoglobin content (y) in women, a multiple regression model (given by

Eq (4)) was fitted using scaled data for the survey mentioned above. It was observed that the

data significantly fitted a linear regression model with Iron and Folate levels (p< 0.001)—the

estimated parameters for these two predictors were also highly significant (p< 0.001).
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The coefficient of determination R2 = SSR/SST, with an Adjusted R-squared value of

12.54% was found to be one of the highest for the linear model when compared with the

model summary of all the other non-linear models available in standard statistical packages.

Thus, this model fits the data best and gives us no reason to consider an alternative model.

There is a small positive linear relationship between Haemoglobin and Iron (r = 0.350,

p< 2.2e − 16), and Haemoglobin and Folate (r = 0.161, p< 1.31e − 05). Therefore, the Haemo-

globin content (y), Iron level (x1) and Folate level (x2) are fairly assumed to follow a linear

regression model given in (5):

lðx1; x2Þ ¼ b0 þ b1x1 þ b2x2 ð25Þ

This idea can be applied in the ideal situation where the main variable is not available. The

beta weights of the regression model, initial and final values could be taken as guestimates

from prior surveys.

Estimating the distribution of the auxiliary variables

To determine the distributions of the auxiliary variables, f(x1) and f(x2), relative frequency his-

tograms for Iron and Folate are constructed. The two histograms presented in Figs 2 and 3

reveal that the distributions of both auxiliary variables are right-skewed and match 3P Weibull

distribution with different parameters.

Using the Kolmogorov-Smirnov test for each of the two variables, the maximum difference

(D) between the observed distribution and the Weibull distribution is found to be non-signifi-

cant (all p-values >0.05). This also supports the fact that all variables follow 3P Weibull distri-

butions, where parameters are obtained by the maximum likelihood estimate (MLE) method.

Fig 2. Histogram with density curve for iron.

https://doi.org/10.1371/journal.pone.0194787.g002
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Formulation of the MPP with Weibull distribution

Considering that y has a linear regression on xi; (i = 1, 2, . . ., p). Then, from (5), the function λ
(x1, x2, . . ., xp) is of the form:

lðx1; x2; . . . ; xpÞ ¼ aþ
Xp

i¼1

bixi ð26Þ

Assume that the model in (26) holds for all strata. Then,

s2
hlðx1;x2 ;...;xpÞ

¼
Xp

i¼1

b
2

i s
2

hxi
ð27Þ

Let all the auxiliary variables, xi, follow 3P Weibull distribution (i.e., xi *W(ri, θi), γi) with

density function given by (24). By using (8)–(10), the quantitiesWhxi, μhxi, and s2
hxi

can be

obtained as a function of boundary points (yh−1, yh). Using the substitution of yh = yh−1+lh,
they are presented as follows:

Whxi
¼ e

�
yh� 1 � gi

yi

� �ri

� e
�

yh� 1þlh � gi
yi

� �ri
ð28Þ

μhλ can be expressed as:

mhxi ¼
yi
Whxi

Z 1

yh� 1 � gi
yi

� �ri t
1

ri e� t dt �
Z 1

yh � gi
yi

� �ri t
1

ri e� t dt

2

4

3

5 ð29Þ

Fig 3. Histogram with density curve for folate.

https://doi.org/10.1371/journal.pone.0194787.g003
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Let Γ(r, x) and Q(r, s) denote the upper incomplete gamma function and the regularized

incomplete gamma function, respectively, given by

Gðr; xÞ ¼
Z 1

x
tr� 1e� t dt ð30Þ

Qðr; xÞ ¼
1

GðrÞ

Z 1

x
tr� 1e� t dt; r; x > 0; GðrÞ 6¼ 0 ð31Þ

Then, using Eqs (28)–(31), μhxi can be simplified to be

mhxi ¼
yiG 1þ 1

ri

� �

Whxi

Q 1þ
1

ri
;
yh� 1 � gi

yi

� �ri� �

� Q 1þ
1

ri
;
yh� 1 þ lh � gi

yi

� �ri� �� �� �
ð32Þ

Similarly, the quantity s2
hxi

is reduced to

s2
hxi
¼

y
2

i G 1þ 2

ri

� �

Whxi

Q 1þ
2

ri
;
yh� 1 � gi

yi

� �ri� �

� Q 1þ
2

ri
;
yh� 1 þ lh � gi

yi

� �ri� �� �

� m2

hxi
ð33Þ

whereWhxi and and m2
hxi

are given by Eqs (28) and (32) respectively.

Since the auxiliary variables follow Weibull distributions,Wh and s2
hl

in the first term of (7)

are given by (28) and (33) respectively. Thus, for the ith auxiliary variable,W2
hxi

s2
hxi

is

¼
y

2

i G 1þ 2

ri

� �

Whxi

Q 1þ
2

ri
;
yh� 1 � gi

yi

� �ri� �

� Q 1þ
2

ri
;
yh� 1 þ lh � gi

yi

� �ri� �� �

�
yiG 1þ 1

ri

� �

Whxi

Q 1þ
1

ri
;
yh� 1 � gi

yi

� �ri� �

� Q 1þ
1

ri
;
yh� 1 þ lh � gi

yi

� �ri� �� �
2

4

3

5

2 ð34Þ

Using (34), the formulated MPP given in (15) could be generalised and expressed as the fol-

lowing MPP in order to determine the OSB for the main variable:

Minimize
XL

h¼1

(

SQRT

(
Xp

i¼1

b
2

i

y
2

i G 1þ 2

ri

� �

Whxi

� Q 1þ
2

ri
;
yh� 1 � gi

yi

� �ri� �

� Q 1þ
2

ri
;
yh� 1 þ lh � gi

yi

� �ri� �� �

�

� yiG 1þ 1

ri

� �

Whxi

�

Q 1þ
1

ri
;
yh� 1 � gi

yi

� �ri� �

� Q 1þ
1

ri
;
yh� 1 þ lh � gi

yi

� �ri� ���2

þW2
hs

2
h�

))

;

Subject to
XL

h¼1

lh ¼ d;

and lh � 0; h ¼ 1; 2; . . . ; L

ð35Þ
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where d in Eq (35) is the estimated or hypothetical range of the main study variable, βi are the

regression coefficients, θi and ri are parameters of the 3P Weibull distributions of ith auxiliary

variable, Γ(�) is the upper incomplete gamma function and Q(�) is the upper regularized

incomplete gamma function. Whereas, the termW2
hs

2
h� can be computed when the distribution

of � is known. For the current model, since this error term is normally distributed, the distribu-

tion is given by:

f ð�Þ ¼
1
ffiffiffiffiffiffi
2p
p exp �

�2

2

� �

; � 1 < � < þ1 ð36Þ

Then, following from (8)–(10),Wh and σh� are obtained as:

Wh ¼
erf yh� 1þlhffiffi

2
p

� �
� erf yh� 1ffiffi

2
p

� �

2

ð37Þ

s2
h� ¼

(
ffiffiffiffiffiffi
2p
p
½yh� 1 exp �

y2
h� 1

2

� �

erf
yh� 1 þ lhffiffiffi

2
p

� �

� ðyh� 1 þ lhÞ exp �
ðyh� 1 þ lhÞ

2

2

� �

erf
yh� 1 þ lhffiffiffi

2
p

� �

� yh� 1 exp �
y2
h� 1

2

� �

erf
yh� 1ffiffiffi

2
p

� �

þðyh� 1 þ lhÞ exp �
ðyh� 1 þ lhÞ

2

2

� �

erf
yh� 1ffiffiffi

2
p

� �

�

þp erf
yh� 1 þ lhffiffiffi

2
p

� �

� erf
yh� 1ffiffiffi

2
p

� �� �2

� 2 exp �
y2
h� 1

2

� �

� exp �
ðyh� 1 þ lhÞ

2

2

� �� �2
)

�p erf
yh� 1 þ lhffiffiffi

2
p

� �

� erf
yh� 1ffiffiffi

2
p

� �� �2

ð38Þ

where erf ðyhÞ � erf ðyh� 1Þ ¼
2ffiffi
p
p

R yh
yh� 1

expð� u2Þ du and h = 1, 2, . . ., L.

Numerical illustrations

In this section, numerical results are presented to illustrate the application of the proposed

technique to a real and a simulated population. The OSB for the main variable are obtained

and presented together with the values of the objective function ð�hðlhÞ ¼
PL

h¼1
WhshÞ for

L = 2, 3, . . ., 6 for different regression models.

Real data

The real data, as discussed earlier in Section 6.2, has Haemoglobin as the study variable while

Iron and Folate are auxiliary variables that follow Weibull distributions with their estimated

parameters. Haemoglobin is being used here purely for comparison purposes, in reality, the

main variable is not available. Using the recursive Eqs (17) and (18), the MPP (35) with

d = 10.9 (range of main variable) is solved by executing a C++ computer program developed

to implement the proposed DP technique. R codes were also developed for computing the
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quantities such as the initial value (x0) of the distribution, regression coefficients (βi), Weibull

parameters (α, β, γ), range (d) of the distribution, etc. required for determining the OSB using

the C++ program. Users can easily stratify a population by executing the C++ program for the

given value of L, x0, d, n, etc. in an open source IDE such as DEV C++. The C++ program and

R codes can be made available on request from the authors.

The results for the OSB (yh) along with optimum sample sizes (nh) and the values of the

objective function ð
PL

h¼1
WhshÞ are presented in Table 1 for the following regression models:

Model 1 : Haemoglobin ¼ b0 þ b1Iron

Model 2 : Haemoglobin ¼ b0 þ b1Folate

Model 3 : Haemoglobin ¼ b0 þ b1Iron þ b2Folate

ð39Þ

Simulated data

A skewed population with two auxiliary variables (x1 and x2) and the study variable (y), each of

size N = 5000, were randomly generated using the R software. This data had a relatively weak

linear relationship between y and x1 (r = 0.014, p = 0.34), and a weak linear relationship as well

between y and x2 (r = 0.023, p = 0.11). The simulated data was different from the real data in

the sense that it had a very low predictive power in its regression models (Adj. R2 = 0.03%).

The ANOVA results from multiple linear regression also indicated a non-statistically signifi-

cant model fit (p = 0.175).

Table 1. Results for real data using 3P Weibull distribution.

Model 1 Model 2 Model 3

L OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

2 11.04 107 0.094 11.15 116 0.024 11.05 107 0.089

393 384 393

3 8.86 20 9.30 22 9.16 20

12.84 310 0.063 12.93 319 0.017 12.84 310 0.060

170 159 170

4 8.34 9 8.47 11 8.34 9

10.93 93 0.048 11.07 102 0.013 10.93 93 0.045

13.8 334 13.88 321 13.8 335

64 66 64

5 7.87 7 7.98 7 7.87 7

9.85 35 9.99 40 9.85 35

12.04 162 0.038 12.16 170 0.010 12.04 162 0.036

14.4 252 14.46 242 14.4 253

44 41 44

6 7.56 5 7.66 6 7.57 5

9.16 17 9.30 22 9.16 17

10.92 80 0.032 11.06 83 0.009 10.92 80 0.030

12.81 206 12.91 206 12.81 206

14.8 169 14.85 163 14.8 168

23 21 23

https://doi.org/10.1371/journal.pone.0194787.t001
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For the simulated data, the OSB (yh) along with optimum sample sizes (nh) and ∑Wh σh val-

ues are presented in Table 2 for the following regression models:

Model 4 : y ¼ b0 þ b1x1

Model 5 : y ¼ b0 þ b1x2

Model 6 : y ¼ b0 þ b1x1 þ b2x2

Various other investigations related to OSB, sample size and the performance of the pro-

posed technique, in both real and simulated data, are carried out and discussed in the follow-

ing section and subsections.

Results and discussion

Primarily, this paper involves the usage of multiple auxiliary variables in determining the OSB

for the study variable. Investigations into the performance of the proposed method are also

carried out to investigate some of the very pertinent issues such as:

1. Comparison of results using single and multiple auxiliary variables;

2. Comparison with other established methods of stratification in literature;

3. Determination of the optimum number of strata;

4. Comparison of stratification using other skewed distribution such as 3P Gamma;

Table 2. Results for simulated data using 3P Weibull distribution.

Model 4 Model 5 Model 6

L OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

2 9.56 28 0.0061 9.56 28 0.012 9.56 28 0.0140

472 472 472

3 7.37 4 7.37 4 7.37 4

11.84 194 0.0041 11.84 194 0.008 11.83 194 0.0096

302 302 302

4 6.30 2 6.30 2 6.30 2

9.56 38 0.0031 9.56 38 0.006 9.56 38 0.0073

13.01 296 13.01 296 13.02 296

164 164 164

5 5.66 2 5.66 2 5.66 2

8.24 10 8.23 10 8.24 10

10.92 99 0.0025 10.91 99 0.005 10.91 99 0.0058

13.74 298 13.75 298 13.74 298

91 91 91

6 5.24 2 5.24 2 5.24 2

7.37 4 7.37 4 7.37 4

9.56 35 0.0021 9.56 35 0.004 9.56 35 0.0049

11.84 149 11.84 149 11.84 149

14.23 256 14.23 256 14.23 256

54 54 54

https://doi.org/10.1371/journal.pone.0194787.t002
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5. Sensitivity of the proposed method with linear regression against nonlinear regression;

6. Consistency of the results obtained for real data with a simulated data set.

Thus, in the following subsections, comparative results are presented for the three models

that are to create OSB for the main variable in real and simulated data. These are done to ascer-

tain the effects of using a single auxiliary variable and multiple auxiliary variables in terms of

the changes observed in the OSB, sample sizes and the ∑Wh σh values achieved for L = 2, . . ., 6.

Together with results on the performance of the proposed method against other methods,

results for 3P Gamma distribution and nonlinear regression are also presented.

Use of single and multiple auxiliary variables

Tables 1 and 2 present the OSB, sample sizes and ∑Wh σh values for real and simulated data

respectively. For real data in Model 2, which uses Folate, ∑Wh σh values are the lowest in the

three models while for simulated data, it is lowest in Model 4 which uses variable x1. The ∑Wh

σh values using the other models (i.e., models 1 & 3 in real data and 5 & 6 in simulated data)

are close to each other. It is seen from the results that the ∑Wh σh values of the main variables

in both real and simulated data appear to be declining exponentially as L increases in all the

models. It must also be noted that in Table 2, the OSB and OSS are equivalent in all three mod-

els. This is due to the fact that the simulated data set is quite large and it results in a very pre-

cise-fitting of the distribution, which leads to equivalent OSB in all three models.

The findings in both data are similar in the sense that a single auxiliary variable model per-

forms either better or worse than the model with multiple auxiliary variables. In real data,

Model 2 performs better than Models 1 and 3 while in simulated data, Model 4 performs better

than Models 5 and 6. This may be due to the fact that both Model 2 in real data and Model 4 in

simulated data have a much weaker correlation with the dependent variable (see Tables 3

and 4). The results in Tables 3 and 4 presents key statistics such as the correlations, measure of

regression error (RSE) and goodness of fit (AIC) for all the models in both data. It appears that

the model with the auxiliary variable(s) that has the lowest correlation and Adjusted R2 and

the highest RSE or AIC performs the best for the proposed method. Thus, the proposed

method of stratification works best with uncorrelated auxiliary variable(s).

Table 3. Measure of Error, GoF and AIC for real data.

Model Correlation RSE Adj R2 AIC

1 0.3498 1.566 12.11% 2707.66

2 0.1612 1.649 2.46% 2783.07

3 0.354 1.562 12.54% 2705.08

https://doi.org/10.1371/journal.pone.0194787.t003

Table 4. Measure of Error, GoF and AIC for simulated data.

Model Correlation RSE Adj R2 AIC

4 0.014 1.842 0.02% 20303.81

5 0.023 1.842 0.03% 20302.19

6 0.017 1.842 0.03% 20303.25

https://doi.org/10.1371/journal.pone.0194787.t004
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Comparison with other available methods

For the purpose of the comparison of the performance of the proposed method, the following

univariate methods available in the literature are considered:

1. Cum
ffiffiffi
f

p
method [20].

2. Geometric method of [19].

3. Lavallée and Hidiroglou (Kozak) method [11, 18]

The stratificationpackage developed by [56] in the R statistical software is used to

determine the OSB and sample sizes for the main study variable, Haemoglobin. The OSB are

then used to compute the variance of the estimated mean (i.e., the values of the objective func-

tion or ∑Wh σh) in each of the six models so that a comparative analysis could be carried out

between the established methods and the proposed method. Note that comparisons are only

possible here since the main variable is available to us in this example. The three methods

above need the main variable to work out the OSB, however, the proposed method can work

on auxiliary variable(s) to compute OSB for the main variables, with a few assumptions on the

main variable.

The results, based on Models 1, 2 and 3 for real data, are given in Table 5, which presents

the ∑Wh σh values of the estimate for Cum
ffiffiffi
f

p
method, Geometric method, Lavallée and

Hidiroglou’s method and the proposed method with a fixed total sample of size n = 500, for

L = 2, 3, . . ., 6. The efficiencies of the proposed DP method over the other three methods are

also presented in the table.

Upon examination of these results, it is noted that when a single auxiliary variable (Model

1) is used to determine OSB, the proposed method performs considerably well over the three

methods and the efficiency of these OSB increases by about 2% to 50% for L = 1, 2, . . ., 6.

Table 5. Comparison of
PL

h¼1
Whsh for different models in real data.

Model 1 Efficiency (%) of DP Over

L Cum
ffiffiffi
f

p
Geo L-H (Kozak) Prop. DP Cum

ffiffiffi
f

p
Geo L-H (Kozak)

2 0.096 0.098 0.097 0.094 101.9 104.9 103.2

3 0.071 0.067 0.078 0.063 112.6 105.1 123.1

4 0.057 0.050 0.071 0.048 120.4 105.4 148.2

5 0.049 0.040 0.047 0.038 128.2 105.5 124.2

6 0.042 0.034 0.048 0.038 130.5 105.5 149.6

Model 2 Efficiency (%) of DP Over

2 0.024 0.028 0.024 0.024 101.3 116.3 101.3

3 0.018 0.019 0.020 0.017 102.6 111.5 113.7

4 0.014 0.015 0.018 0.013 109.3 112.2 135.1

5 0.012 0.012 0.013 0.010 116.57 112.5 121.1

6 0.010 0.010 0.013 0.009 119.86 112.7 144.8

Model 3 Efficiency (%) of DP Over

2 0.091 0.094 0.092 0.089 101.8 104.9 103.1

3 0.068 0.064 0.074 0.060 112.4 105.2 122.9

4 0.055 0.048 0.067 0.045 120.2 105.5 147.9

5 0.047 0.038 0.045 0.036 128.0 105.6 124.2

6 0.040 0.032 0.045 0.030 130.4 105.6 149.5

https://doi.org/10.1371/journal.pone.0194787.t005
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Model 2 also produces much more efficient OSB over other methods and the efficiency

increases from about 1% to 49%, which is quite similar to Model 1. Model 3 also increases the

efficiencies from about 2% to 50%, being almost exactly similar to Model 1. Thus, with the use

of auxiliary variables, either single or both, the proposed method increases the precision of the

estimate compared to other univariate methods.

Table 6 provides the OSB and sample sizes using the other methods which can be compared

with the results of the proposed method presented in Table 1.

For simulated data, Table 7 presents the ∑Wh σh values for the three methods along with the

proposed method for the three different models (Models 4-6) together with the efficiencies of

the proposed method over the others. The results generally support the similar findings

obtained for real data. Compared to all other methods, the proposed method increases the pre-

cision ranging from about 11% to 63% in Model 4 and 21% to 133% in Model 6. For Model 5,

the proposed method increases the precision ranging from about 26% to 127% against Cum
ffiffiffi
f

p
method and 25% to 135% against L-H (Kozak) method. It doesn’t perform so well against

Geometric method. Table 8 provides the OSB and sample sizes using the other methods which

can be compared with the results of the proposed method presented in Table 2.

When considering Weibull distribution cases, the sample allocations under the proposed

method (which uses Neyman allocation given by (19)) are given in Tables 1 and 2 for real and

simulated data respectively. In the method, the overall size of strata (Nh) as well as variability

(S2
h) of the auxiliary variable(s) affects the stratum sample sizes (nh), i.e., nh/Wh Sh. It is

noticeable that for both real and simulated examples, the stratum samples sizes given by the

proposed method is a bit different from the sample sizes given by other methods presented in

Table 6. OSB and sample sizes for haemoglobin using other methods in real data.

Cum
ffiffiffi
f

p
Geometric L-H (Kozak)

L OSB nh OSB nh OSB nh
2 12.15 255 10.15 39 12.35 284

245 461 216

3 11.28 180 8.57 10 11.55 222

13.23 181 12.03 192 12.75 64

139 298 214

4 10.64 53 7.87 5 11.35 194

12.15 46 10.15 39 12.35 42

13.66 264 13.1 288 13.05 25

137 168 239

5 10.2 81 7.48 1 9.25 37

11.72 71 9.17 17 11.95 243

12.8 56 11.24 91 12.75 43

13.88 183 13.78 305 13.55 41

109 86 136

6 9.77 36 7.23 1 9.35 41

11.07 28 8.57 8 12.05 257

12.15 35 10.15 33 12.65 27

13.01 162 12.03 144 13.05 10

14.09 146 14.26 260 13.55 15

93 54 150

https://doi.org/10.1371/journal.pone.0194787.t006
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Table 7. Comparison of
PL

h¼1
Whsh for different models in simulated data.

Model 4 Efficiency (%) of DP Over

L Cum
ffiffiffi
f

p
Geo L-H (Kozak) Prop. DP Cum

ffiffiffi
f

p
Geo L-H (Kozak)

2 0.0067 0.0071 0.0067 0.0061 110.88 116.53 109.91

3 0.0052 0.0049 0.0052 0.0041 127.66 119.93 127.53

4 0.0043 0.0038 0.0044 0.0031 137.62 121.83 140.42

5 0.0037 0.0031 0.0038 0.0025 145.74 122.58 151.81

6 0.0034 0.0026 0.0035 0.0021 156.65 122.17 163.05

Model 5 Efficiency (%) of DP Over

2 0.015 0.011 0.015 0.012 126.23 93.68 125.07

3 0.013 0.008 0.013 0.008 157.88 93.76 157.16

4 0.011 0.006 0.011 0.006 181.48 94.10 184.09

5 0.010 0.005 0.010 0.005 202.11 94.35 209.14

6 0.009 0.004 0.010 0.004 227.15 94.61 235.25

Model 6 Efficiency (%) of DP Over

2 0.017 0.014 0.017 0.014 120.90 98.00 119.89

3 0.014 0.010 0.014 0.010 148.97 99.39 148.48

4 0.012 0.007 0.013 0.007 169.85 100.06 172.45

5 0.011 0.006 0.011 0.006 188.30 100.47 182.40

6 0.010 0.005 0.011 0.005 210.60 100.75 233.03

https://doi.org/10.1371/journal.pone.0194787.t007

Table 8. OSB and sample sizes for y using other methods in simulated data.

Cum
ffiffiffi
f

p
Geometric L-H (Kozak)

L OSB nh OSB nh OSB nh
2 12.15 246 7.28 119 12.05 288

254 381 212

3 11.06 123 5.51 8 11.02 149

13.23 188 9.61 408 13.06 150

189 84 201

4 10.24 90 4.79 2 10.33 144

12.15 103 7.28 149 12.12 119

13.78 152 11.05 310 13.62 107

155 39 130

5 9.69 55 4.41 1 9.88 89

11.33 123 6.16 34 11.45 89

12.69 88 8.6 300 12.69 88

14.05 99 12.01 144 13.93 96

135 21 138

6 9.42 65 4.17 1 9.61 75

11.06 60 5.51 9 11.08 61

12.15 68 7.28 153 12.21 71

13.23 122 9.61 249 13.19 67

14.32 97 12.7 75 14.24 83

88 13 143

https://doi.org/10.1371/journal.pone.0194787.t008
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Tables 6 and 8. This is because of the differences seen in the OSB, and hence theWh, between

the methods.

To substantiate the results, the method of bootstrap re-sampling is used to investigate the

behaviour of the findings made earlier on the real dataset. A large number (n = 10,000) of inde-

pendent re-samples are drawn with replacement from the population data. The re-samples are

of the same size as the Anaemia data (N = 724), creating many variants of the original data.

Since there are three variables in the Anaemia population, bootstrap re-sampling is done on

individuals, which means three variables are randomly generated for each population. From

the large number of bootstrap re-samples, results for only 5 randomly selected samples are pre-

sented for the sake of brevity. We consider all three models given by equations in (39).

For all five bootstrap samples, Tables 9—13 present the OSB, OSS (nh) and variances

ð
PL

h¼1
WhshÞ for all three models are calculated using the proposed method. It is again

observed that Model 2 has the lowest variance and this means that it is the best model to use

out of the three. To further investigate why Model 2 is the best, Table 14 is drawn up. It is

found out that results are consistent in all five bootstrap samples. Model 2 performs the best

because it has a low correlation with the main variable together with a high RSE, a very low

adjusted R2 and the highest AIC amongst the three models. Thus, whether it is a single or mul-

tiple auxiliary variables (ie., all models studied herein) used in the formulation of the problem

of stratification, the gains in efficiency of the proposed method over other established methods

are substantial. These are given by Tables 15—19 where we see that the variances given by the

proposed method are lower than the other methods. Hence, with bootstrap re-sampling proce-

dure, it is seen that we obtain consistent findings to what was seen in the original Anaemia

data.

Table 9. Results for bootstrap re-sample 1 using 3P Weibull distribution.

Model 1 Model 2 Model 3

L OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

2 11.05 100 0.086 11.18 113 0.019 11.05 100 0.084

400 387 400

3 9.18 19 0.058 9.37 28 0.013 9.19 19 0.057

12.85 311 12.97 311 12.86 311

170 161 170

4 8.36 12 0.044 8.52 16 0.010 8.37 12 0.043

10.95 74 11.13 89 10.96 74

13.81 355 13.91 341 13.82 355

59 54 59

5 7.89 6 0.035 8.03 12 0.008 7.89 6 0.034

9.87 33 10.06 34 9.88 33

12.06 157 12.22 174 12.07 157

14.40 269 14.49 244 14.41 269

35 37 35

6 7.58 4 0.029 7.70 5 0.007 7.59 4 0.029

9.18 13 9.37 21 9.19 13

10.94 73 11.12 85 10.95 73

12.82 206 12.96 194 12.83 206

14.81 190 14.88 180 14.81 190

15 15 15

https://doi.org/10.1371/journal.pone.0194787.t009
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Table 10. Results for bootstrap re-sample 2 using 3P Weibull distribution.

Model 1 Model 2 Model 3

L OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

2 10.95 101 0.106 11.09 115 0.034 11.17 121 0.099

399 385 379

3 9.10 27 0.072 9.20 27 0.023 9.30 31 0.067

12.79 273 12.88 284 12.92 294

200 189 175

4 8.30 11 0.054 8.39 11 0.018 8.50 16 0.050

10.86 74 10.98 87 11.05 95

13.76 333 13.83 330 13.86 314

82 72 75

5 7.84 12 0.043 7.92 13 0.014 8.04 14 0.040

9.78 25 9.89 26 9.98 25

11.98 143 12.09 158 12.14 180

14.36 268 14.42 253 14.45 230

52 50 51

6 7.54 8 0.036 7.61 11 0.012 7.73 12 0.034

9.11 16 9.21 14 9.30 16

10.85 54 10.96 65 11.03 74

12.75 203 12.84 195 12.89 175

14.77 189 14.82 189 14.84 196

30 26 27

https://doi.org/10.1371/journal.pone.0194787.t010

Table 11. Results for bootstrap re-sample 3 using 3P Weibull distribution.

Model 1 Model 2 Model 3

L OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

2 10.85 83 0.110 11.00 96 0.022 10.85 83 0.106

417 404 417

3 8.96 20 0.074 9.21 25 0.015 8.96 20 0.072

12.59 258 12.74 277 12.59 258

222 198 222

4 8.19 8 0.056 8.40 12 0.011 8.19 8 0.054

10.69 55 10.93 91 10.70 55

13.54 339 13.66 306 13.54 339

98 91 98

5 7.75 7 0.045 7.93 9 0.009 7.75 7 0.043

9.63 28 9.88 31 9.63 28

11.79 119 12.00 141 11.79 119

14.12 295 14.23 271 14.12 295

51 48 51

6 7.46 2 0.037 7.62 8 0.008 7.46 2 0.036

8.97 15 9.21 14 8.97 15

10.68 48 10.92 81 10.68 48

12.55 197 12.72 173 12.55 197

14.52 198 14.61 192 14.52 198

40 32 40

https://doi.org/10.1371/journal.pone.0194787.t011
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Table 12. Results for bootstrap re-sample 4 using 3P Weibull distribution.

Model 1 Model 2 Model 3

L OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

2 11.17 105 0.092 11.28 111 0.022 11.17 105 0.089

395 389 395

3 9.31 18 0.062 9.48 21 0.015 9.30 18 0.060

12.93 315 13.03 325 12.92 315

167 153 167

4 8.50 9 0.047 8.65 10 0.011 8.50 7 0.045

11.05 90 11.22 108 11.05 98

13.87 334 13.96 323 13.86 329

67 59 66

5 8.04 6 0.037 8.17 7 0.009 8.04 6 0.036

9.99 33 10.16 35 9.98 33

12.14 183 12.29 180 12.14 183

14.45 233 14.53 242 14.45 233

45 36 45

6 7.74 3 0.031 7.85 5 0.008 7.73 3 0.030

9.31 18 9.48 18 9.30 18

11.04 79 11.21 92 11.03 79

12.89 190 13.02 199 12.89 190

14.84 189 14.91 170 14.84 189

21 17 21

https://doi.org/10.1371/journal.pone.0194787.t012

Table 13. Results for bootstrap re-sample 5 using 3P Weibull distribution.

Model 1 Model 2 Model 3

L OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

2 11.17 93 0.092 11.28 98 0.022 11.17 93 0.089

407 402 407

3 9.31 20 0.062 9.48 20 0.015 9.30 18 0.060

12.93 295 13.03 309 12.92 299

185 171 183

4 8.50 8 0.047 8.65 10 0.011 8.50 8 0.045

11.05 85 11.22 90 11.05 85

13.87 334 13.96 325 13.86 334

73 75 73

5 8.04 6 0.037 8.17 6 0.009 8.04 6 0.036

9.99 31 10.16 37 9.98 31

12.14 141 12.29 154 12.14 141

14.45 282 14.53 261 14.45 282

40 42 40

6 7.74 4 0.031 7.85 4 0.008 7.73 3 0.030

9.31 17 9.48 18 9.30 19

11.04 63 11.21 73 11.03 63

12.89 203 13.02 189 12.89 203

14.84 193 14.91 196 14.84 192

20 20 20

https://doi.org/10.1371/journal.pone.0194787.t013
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Table 14. Measure of Error, GoF and AIC for bootstrap samples of Anaemia data.

Bootstrap Sample 1

Model Correlation RSE Adj R2 AIC

1 0.3340 1.5330 0.11 2677.05

2 0.1239 1.6140 0.01 2751.50

3 0.3320 1.5330 0.11 2678.18

Bootstrap Sample 2

Model Correlation RSE Adj R2 AIC

1 0.400 1.560 0.16 2702.64

2 0.211 1.664 0.04 2795.95

3 0.409 1.552 0.17 2695.83

Bootstrap Sample 3

Model Correlation RSE Adj R2 AIC

1 0.394 1.555 0.15 2697.92

2 0.157 1.671 0.02 2801.71

3 0.398 1.551 0.16 2695.05

Bootstrap Sample 4

Model Correlation RSE Adj R2 AIC

1 0.356 1.534 0.13 2678.26

2 0.144 1.624 0.02 2761.15

3 0.361 1.529 0.13 2674.93

Bootstrap Sample 5

Model Correlation RSE Adj R2 AIC

1 0.334 1.535 0.11 2678.95

2 0.194 1.598 0.04 2737.13

3 0.346 1.527 0.12 2672.31

https://doi.org/10.1371/journal.pone.0194787.t014

Table 15. Comparison of
PL

h¼1
Whsh for different models in bootstrap sample 1.

Model 1 Efficiency (%) of DP Over

L Prop. DP Cum
ffiffiffi
f

p
Geo L-H (Kozak) Cum

ffiffiffi
f

p
Geo L-H (Kozak)

2 0.086 0.089 0.091 0.088 102.69 105.32 101.44

3 0.058 0.065 0.062 0.065 111.77 105.63 111.35

4 0.044 0.053 0.046 0.052 122.06 105.90 118.85

5 0.035 0.045 0.037 0.046 127.14 106.01 131.65

6 0.029 0.040 0.031 0.042 135.84 106.07 141.68

Model 2 Efficiency (%) of DP Over

2 0.019 0.018 0.021 0.018 96.29 110.30 96.24

3 0.013 0.013 0.014 0.014 103.37 111.98 105.80

4 0.010 0.011 0.011 0.011 113.94 112.69 110.74

5 0.008 0.009 0.009 0.010 117.47 113.03 123.29

6 0.007 0.008 0.007 0.009 124.87 113.18 132.10

Model 3 Efficiency (%) of DP Over

2 0.084 0.086 0.089 0.085 102.68 105.36 101.43

3 0.057 0.063 0.060 0.063 111.77 105.68 111.36

4 0.043 0.052 0.045 0.051 122.06 105.96 118.85

5 0.034 0.043 0.036 0.045 127.14 106.07 131.66

6 0.029 0.039 0.030 0.040 135.84 106.13 141.69

https://doi.org/10.1371/journal.pone.0194787.t015

Optimum strata boundaries and sample sizes
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Table 16. Comparison of
PL

h¼1
Whsh for different models in bootstrap sample 2.

Model 1 Efficiency (%) of DP Over

L Prop. DP Cum
ffiffiffi
f

p
Geo L-H (Kozak) Cum

ffiffiffi
f

p
Geo L-H (Kozak)

2 0.106 0.108 0.112 0.108 101.13 105.01 101.69

3 0.072 0.081 0.076 0.081 113.26 105.22 112.61

4 0.054 0.066 0.057 0.062 121.58 105.49 114.77

5 0.043 0.057 0.046 0.054 131.91 105.59 124.67

6 0.036 0.049 0.038 0.050 135.30 105.65 138.48

Model 2 Efficiency (%) of DP Over

2 0.034 0.033 0.038 0.033 95.62 109.59 95.60

3 0.023 0.024 0.026 0.025 104.81 110.49 105.55

4 0.018 0.020 0.020 0.019 112.39 111.16 106.94

5 0.014 0.017 0.016 0.016 119.23 111.42 116.14

6 0.012 0.015 0.013 0.015 123.05 111.54 128.61

Model 3 Efficiency (%) of DP Over

2 0.099 0.101 0.105 0.102 101.56 105.72 102.11

3 0.067 0.076 0.071 0.076 113.97 106.26 113.37

4 0.050 0.062 0.054 0.058 122.47 106.64 115.63

5 0.040 0.054 0.043 0.051 132.85 106.79 125.67

6 0.034 0.046 0.036 0.047 136.31 106.86 139.59

https://doi.org/10.1371/journal.pone.0194787.t016

Table 17. Comparison of
PL

h¼1
Whsh for different models in bootstrap sample 3.

Model 1 Efficiency (%) of DP Over

L Prop. DP Cum
ffiffiffi
f

p
Geo L-H (Kozak) Cum

ffiffiffi
f

p
Geo L-H (Kozak)

2 0.110 0.112 0.115 0.111 102.55 104.94 101.66

3 0.074 0.083 0.078 0.085 111.02 104.63 113.91

4 0.056 0.065 0.059 0.065 116.68 104.97 116.48

5 0.045 0.055 0.047 0.058 123.54 105.02 130.36

6 0.037 0.047 0.039 0.054 126.22 105.02 143.78

Model 2 Efficiency (%) of DP Over

2 0.022 0.021 0.024 0.021 95.43 109.97 95.44

3 0.015 0.015 0.017 0.015 102.21 111.39 103.28

4 0.011 0.012 0.013 0.012 105.62 112.22 106.53

5 0.009 0.010 0.010 0.011 111.96 112.45 117.76

6 0.008 0.009 0.009 0.009 115.04 112.57 124.99

Model 3 Efficiency (%) of DP Over

2 0.106 0.108 0.111 0.107 102.46 104.96 101.57

3 0.072 0.080 0.075 0.082 110.93 104.69 113.79

4 0.054 0.063 0.057 0.063 116.57 105.04 116.38

5 0.043 0.053 0.045 0.056 123.43 105.09 130.23

6 0.036 0.046 0.038 0.052 126.12 105.10 143.59

https://doi.org/10.1371/journal.pone.0194787.t017
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Table 18. Comparison of
PL

h¼1
Whsh for different models in bootstrap sample 4.

Model 1 Efficiency (%) of DP Over

L Prop. DP Cum
ffiffiffi
f

p
Geo L-H (Kozak) Cum

ffiffiffi
f

p
Geo L-H (Kozak)

2 0.092 0.094 0.096 0.094 102.07 104.53 102.13

3 0.062 0.070 0.065 0.071 112.87 104.74 113.48

4 0.047 0.056 0.049 0.056 120.54 104.90 119.18

5 0.037 0.046 0.039 0.046 123.22 105.01 123.40

6 0.031 0.040 0.033 0.043 127.54 105.04 138.27

Model 2 Efficiency (%) of DP Over

2 0.022 0.021 0.024 0.021 96.45 109.56 96.45

3 0.015 0.016 0.017 0.016 103.61 110.97 106.61

4 0.011 0.013 0.013 0.013 110.29 111.50 110.04

5 0.009 0.010 0.010 0.010 114.59 105.58 114.37

6 0.008 0.009 0.010 0.010 115.82 134.02 128.56

Model 3 Efficiency (%) of DP Over

2 0.089 0.091 0.093 0.091 101.94 104.58 102.00

3 0.060 0.068 0.063 0.068 112.63 104.79 113.28

4 0.045 0.055 0.048 0.054 120.29 104.97 118.95

5 0.036 0.045 0.038 0.045 123.00 105.08 123.18

6 0.030 0.039 0.032 0.042 127.26 105.12 138.04

https://doi.org/10.1371/journal.pone.0194787.t018

Table 19. Comparison of
PL

h¼1
Whsh for different models in bootstrap sample 5.

Model 1 Efficiency (%) of DP Over

L Prop. DP Cum
ffiffiffi
f

p
Geo L-H (Kozak) Cum

ffiffiffi
f

p
Geo L-H (Kozak)

2 0.086 0.088 0.090 0.087 103.00 105.03 101.69

3 0.058 0.065 0.061 0.065 112.47 105.48 111.91

4 0.043 0.053 0.046 0.052 122.85 105.75 119.63

5 0.035 0.045 0.037 0.046 128.09 105.87 132.56

6 0.029 0.040 0.031 0.041 136.94 105.93 142.75

Model 2 Efficiency (%) of DP Over

2 0.028 0.028 0.032 0.028 99.40 113.65 99.33

3 0.020 0.020 0.022 0.021 102.73 110.98 105.09

4 0.015 0.017 0.016 0.016 113.20 111.65 110.02

5 0.012 0.014 0.013 0.015 116.70 111.95 122.46

6 0.010 0.012 0.011 0.013 124.05 112.08 131.20

Model 3 Efficiency (%) of DP Over

2 0.080 0.082 0.084 0.081 102.70 105.14 101.45

3 0.054 0.060 0.057 0.060 112.03 105.62 111.59

4 0.040 0.050 0.043 0.048 122.43 105.93 119.22

5 0.032 0.041 0.034 0.043 127.62 106.06 132.14

6 0.027 0.037 0.029 0.038 136.42 106.12 142.28

https://doi.org/10.1371/journal.pone.0194787.t019
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Number of strata

To study the relationship between the number of strata and the ∑Wh σh value, an investigation

is carried out for the real and simulated data using the six models. The ∑Wh σh are calculated

using the proposed method and the results are presented for L = 2, 3, . . ., 20. These are pre-

sented in Figs 4 and 5 where the curves appear to be on top of each other and all of them

decrease exponentially. After L = 7, where the “elbow” is found, the rate of decrease in the

∑Wh σh values from there onwards is not as big as what is seen from L = 2 to 7. For argument’s

sake, one might even be comfortable with L = 6 as the appropriate number of strata. The find-

ing supports the investigation carried out by Cochran [1] that the number of strata to be

Fig 4. Var ð�ystÞ for haemoglobin in real data.

https://doi.org/10.1371/journal.pone.0194787.g004

Fig 5. Var ð�ystÞ for y in simulated data.

https://doi.org/10.1371/journal.pone.0194787.g005
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constructed beyond six is not much useful in terms of the relative gain in efficiency or the

reduction of ∑Wh σh. All six models in real and simulated data are very similar when it comes

to the relative gain in efficiencies and one can easily pick out L = 7 where the “elbow” appears,

indicating that the percentage reduction thereafter is not worth investing in for a sample sur-

vey since additional costs are involved with increase in the number of strata. Increasing the

number of strata to more than 7 may not be a good trade-off for a little gain of precision in the

estimates.

Using skewed distributions other than Weibull

The distribution of the auxiliary variable can vary depending on how well the data fits a partic-

ular skewed distribution based on the best MLE of its parameters. Weibull is selected in this

paper due it’s versatility in fitting skewed distributions, especially for health data. To probe

into the performance of Weibull distribution against any other skewed distribution, both aux-

iliary variables in the real and simulated data are fitted with a 3P Gamma distributions because

of its moderately skewed profile as well. Three different linear regression models are again

used for the comparison of results. The associated MPP is formulated and solved using the DP

technique.

The OSB, sample sizes and ∑Wh σh values are presented in Table 20 for the real data while

Table 21 is for the simulated data. Similar to the results obtained under Weibull distribution,

the results for Gamma show that the OSB are slightly different from each other in all the three

models. To compare the performance of Gamma results against those obtained under Weibull

distribution for the real data, ∑Wh σh values from Table 20 are compared with Table 1. They

Table 20. Results for real data using 3P gamma distribution.

Model 1 Model 2 Model 3

L OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

2 11.08 107 0.095 11.17 116 0.0281 11.08 107 0.091

393 384 393

3 9.23 22 9.32 25 9.22 22

12.87 306 0.064 12.94 314 0.0194 12.87 306 0.061

172 161 172

4 8.38 9 8.46 11 8.38 9

10.99 93 0.0482 11.08 102 0.0147 10.98 93 0.046

13.83 336 13.88 321 13.83 335

64 66 64

5 7.90 7 7.97 7 7.89 6

9.90 40 10.00 44 9.90 40

12.09 157 0.0386 12.17 169 0.0118 12.09 157 0.037

14.42 257 14.46 240 14.42 257

39 40 39

6 7.58 5 7.64 5 7.58 5

9.21 20 9.3 22 9.2 20

10.97 75 0.0322 11.07 88 0.0099 10.97 80 0.031

12.85 205 12.92 203 12.84 203

14.82 174 14.86 161 14.82 173

20 21 20

https://doi.org/10.1371/journal.pone.0194787.t020
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reveal that fitting the data with Weibull distribution yields a much more efficient set of OSB

compared to fitting the data with Gamma distribution. This holds true for both single or multi-

ple auxiliary variables. Results for the simulated data in Tables 2 and 21 also reveal similar find-

ings. This may be due to the fact that Weibull was a better fit than Gamma for the two

auxiliary variables,

Linear versus nonlinear regression

As shown in (5), the proposed method can incorporate linear as well as nonlinear regression

for construction of OSB. In the preceding sections, it has been discussed that linear regression

performs well in real as well as simulated data. To investigate the sensitiveness of linear regres-

sion over nonlinear regression, a simple case of quadratic regression is fitted in this section.

Consider that the study variables are to be stratified using a single auxiliary variable (e.g., Iron

in real & and x2 in simulated data). Then, λ(x) in (5) reduces to:

Real : lðxÞ ¼ b0 þ b1Iron þ b2Iron2 ð40Þ

Simulated : lðxÞ ¼ b0 þ b1x2 þ b2x2
2

ð41Þ

The ANOVA results for this quadratic regression reveals that the model is statistically signifi-

cant (p-value < 0.001) for both real and simulated data.

Table 21. Results for simulated data using 3P gamma distribution.

Model 4 Model 5 Model 6

L OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

2 2.48 28 0.4117 4.28 21 0.2393 2.49 21 0.4077

472 479 479

3 2.53 4 2.55 2 2.53 2

6.01 194 0.4069 5.45 203 0.2200 6.00 203 0.4052

302 295 295

4 2.16 2 2.07 2 2.17 2

2.99 38 0.3290 4.07 26 0.1857 2.99 26 0.3289

5.95 296 6.25 325 5.94 325

164 147 147

5 1.98 2 1.77 2 1.98 2

2.60 10 3.17 10 2.61 10

3.37 99 0.2822 4.88 99 0.1601 3.38 99 0.2829

5.98 298 6.69 298 5.98 298

91 91 91

6 1.96 2 1.56 2 1.96 2

2.56 4 2.64 4 2.56 4

3.28 35 0.2766 3.99 35 0.1387 3.28 35 0.2767

5.07 149 5.45 149 5.07 149

6.79 256 6.99 256 6.79 256

54 54 54

https://doi.org/10.1371/journal.pone.0194787.t021
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Using the procedures discussed in Sections 3–7, the OSB and sample sizes are determined.

Table 22 presents the results along with the ∑Wh σh values for real and simulated data respec-

tively. The results reveal that for both data, the ∑Wh σh values from linear regression (Model 3

from Table 1 and Model 6 from Table 2) are lower than non-linear regression model which

means that linear regression performs better than the nonlinear regression.

To investigate this further, Table 23 presents some key statistical measures such as measure

of regression error (RSE) and goodness of fit (AIC) with regards to how the model under non-

linear regression performs against the models under linear regression for both real and simu-

lated data. The measures for linear regression are presented in Tables 3 and 4. They reveal that

the results are consistent with the findings earlier in the paper—that the model with the lowest

Adjusted R2 and the highest RSE or AIC performs the best. Thus, linear regression model per-

forms better than the nonlinear regression model.

Table 22. Non-linear regression results for real and simulated data.

Real Data Simulated Data

L OSB nh
PL

h¼1
Whsh

OSB nh
PL

h¼1
Whsh

2 10.76 72 0.095 4.08 84 0.242

428 416

3 8.93 18 2.3 23

12.68 282 0.064 5.44 257 0.208

200 220

4 8.17 7 1.89 12

10.68 60 0.048 3.50 72 0.175

13.66 351 5.96 308

82 108

5 7.73 5 1.64 7

9.61 29 2.81 30

11.83 147 0.039 4.61 133 0.150

14.28 270 6.54 272

49 58

6 7.45 2 1.44 7

8.95 18 2.37 14

10.67 44 0.032 3.53 59 0.128

12.62 213 5.13 170

14.7 194 6.82 213

29 37

https://doi.org/10.1371/journal.pone.0194787.t022

Table 23. Measure of RSE and AIC for nonlinear regression models.

Data RSE Adj R2 AIC

Real 1.524 16.67% 2670.09

Simulated 0.734 5.46% 11104.42

https://doi.org/10.1371/journal.pone.0194787.t023
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Conclusion

Stratified random sampling is an efficient and widely used sampling technique in health sur-

veys to estimate the prevalence of diseases and many other parameters. Often, the surveyors

encounter two major difficulties prior to drawing the samples and these are: (i) constructing

the optimum strata within which the units are as homogeneous as possible and (ii) determin-

ing the optimum sample size to be drawn from each stratum, so that the precision of the esti-

mates of parameters of the study or target variables are maximized. In this paper, a

parametric-based method is proposed to address these two problems, which can be used to

estimate parameters with more precision.

The optimum stratification based on the study variable is not feasible in practice since it is

unknown prior to conducting the survey. Thus, the proposed technique uses auxiliary infor-

mation in designing the sampling plan. This paper investigates how the usage of one or more

auxiliary variables influence the OSB and hence the effect on the efficiency of the stratum

boundaries by fitting a distribution of Weibull family that characterize many health variables.

It also investigates the sensitivity of the OSB and the performance of the proposed method by

fitting with other skewed distributions such as Gamma. Together with investigating the opti-

mum number of strata, the proposed method also sees the sensitiveness of linear and nonlinear

regression modelling techniques in implementing the proposed method.

The problem of finding the OSB is formulated as an MPP that seeks minimization of the

variance of the estimated population parameter and solved using a DP technique. The solution

procedure is implemented through a C++ computer program and an R script to facilitate the

computation of the OSB through the C++ program. Both materials can be made available on

request from the authors. After obtaining the OSB, they are then used to compute the opti-

mum sample size for each stratum using Neyman allocation. Numerical examples using a real

data set and a simulated data set are presented to illustrate the application, the sensitivity and

the usefulness of the proposed technique. This paper also presents the results from cum
ffiffiffi
f

p

method [20], geometric method [19] and the generalized Lavallée and Hidiroglou’s method

[11, 18] for a comparative analysis.

It can be concluded that in the construction of strata for health populations, usage of both

single or multiple auxiliary variables leads to substantial gains in the precision of the estimates

over other available methods. It was also established that using uncorrelated auxiliary variable

(s) to determine OSB for the main variable leads to much more efficient results. It was also

found out that when another skewed distribution such as Gamma is used to characterize the

distribution of the auxiliary variables, it performed well but not quite as accurate as Weibull.

Hence, the best-fit distribution should always be chosen for more accurate calculation of OSB.

It was also found out that when linear regression was used in formulating the problem of strat-

ification, it performed better than nonlinear regression. This simply depends on the data and

one must always choose the best regression technique to represent the relationship between

the variables.

Appendix A

The following steps are followed in implementing the DP technique to solve the MPP for the

OSB:

1. Start at k = 1. Set F0(d0) = 0.

2. Calculate F1(d1), the minimum value of RHS of (18) for l1 = d1, 0� l1� d1, and 0� d1� d.

3. Record F1(d1) and l1.
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4. For k = 2, express the state variable as dk−1 = dk − lk.

5. Set Fk(dk) = 0 if lk> dk, where 0� dk� d.

6. Calculate Fk(dk), the minimum value of RHS of (17) for lk;0� lk� dk.

7. Record Fk(dk) and lk.

8. For k� 3, . . ., L, go to Step 4.

9. At k = L, FL(d) is obtained and hence the optimum value l�L of lL is obtained.

10. At k = L − 1, using the backward calculation for dL� 1 ¼ d � l�L, read the value of FL−1(dL−1)

and hence the optimum value l�L� 1
of lL−1.

11. Repeat Step 10 until the optimum value l�
1

of l1 is obtained from F1(d1).

Acknowledgments

The authors are grateful to the Academic Editor and Reviewers for their invaluable comments

and suggestions to improve the manuscript.

Author Contributions

Conceptualization: Karuna Garan Reddy, Mohammad G. M. Khan, Sabiha Khan.

Formal analysis: Karuna Garan Reddy.

Investigation: Karuna Garan Reddy.

Methodology: Mohammad G. M. Khan, Sabiha Khan.

Project administration: Karuna Garan Reddy.

Resources: Sabiha Khan.

Software: Karuna Garan Reddy.

Supervision: Sabiha Khan.

Visualization: Karuna Garan Reddy.

Writing – original draft: Karuna Garan Reddy.

Writing – review & editing: Mohammad G. M. Khan.

References
1. Cochran WG. (1977); Sampling techniques. New York, Wiley and Sons. 1977; 98:259–261.

2. Lohr S. Sampling: design and analysis. Nelson Education; 2009.

3. Dalenius T. The problem of optimum stratification. Scandinavian Actuarial Journal. 1950;(3-4):203–

213. https://doi.org/10.1080/03461238.1950.10432042

4. Dalenius T, Gurney M. The problem of optimum stratification. II. Scandinavian Actuarial Journal. 1951;

1951(1-2):133–148. https://doi.org/10.1080/03461238.1951.10432134

5. Mahalanobis PC. Some aspects of the design of sample surveys. SankhyÄ: The Indian Journal of Sta-
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