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Abstract

Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and
metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried
out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear
receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the
nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi
knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including
numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were
sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also
compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that
encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to
those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at
least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4a
type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the
vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of
excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal
system.
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Introduction

Nuclear receptors (NRs) comprise a large family of transcription

factors distinguished by a highly conserved DNA binding domain

and a structurally conserved ligand-binding domain. NRs are

notable for their ability to interact with small molecule ligands,

enabling these factors to respond to autocrine, paracrine, and

endocrine signals in order to mediate transcriptional effects at a

distance [1,2]. The canonical NR family is exclusively found in

metazoans and the number of nuclear receptor members varies

dramatically depending on species; from 21 NR genes in Drosophila

melanogaster, to ,50 in rodents and humans, to over 250 NRs in

Caenorhabditis elegans and related nematodes [3]. The extraordi-

narily large NR family of C. elegans is particularly intriguing. Of the

283 predicted NR genes, only 15 are directly orthologous to NRs

found in other metazoans, including Drosophila and mammals [4].

The remaining 268 NRs are thought to be derived from extensive

duplication and diversification of an ancestral gene most closely

related to the mammalian and Drosophila HNF4 receptors [5]. The

presence of both highly similar and divergent HNF4-type

receptors in nematodes implies that many of these proteins will

carry out conserved structural and physiological functions,

whereas others will have evolved to adopt responsibilities more

specific to the nematode lineage. This idea is supported by the fact

the C. elegans NHR-49 nuclear receptor shares many of the

metabolic functions of the mammalian HNF4a, but not the

developmental activities [6,7]. Thus, study of C. elegans NRs should

not only be helpful for understanding mammalian NR function

and physiology, but should also reveal novel regulatory activities

for the nuclear receptor family.

The prospect that the responsibilities of mammalian receptors

may be divided among a larger number of NRs in C. elegans may

be advantageous for understanding the physiological function

these complex proteins. For example, the mammalian HNF4a
plays numerous roles in development, metabolism, and disease [8];

because of this widespread physiological impact, the functional

and mechanistic diversity of this receptor is far from understood.

Indeed, mutations in the human HNF4a are associated with

maturity onset diabetes of the young (MODY) and late onset type

II diabetes; yet, how these HNF4a lesions lead to diabetes has not

been established [9–11]. Furthermore, there is considerable

controversy over the quantity and identity of HNF4 target genes

[12–14]. These complications may be due, at least in part, to the

fact that HNF4a carries out essential functions in several different
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tissues, and that HNF4a likely regulates different target sets

depending on metabolic, developmental, and nutritional context.

HNF4a is also expressed in many cell types for which its

function has not yet been established; for example, the epithelial

cells of the intestine and the proximal and convoluted tubules of

the kidney, and while HNF4a has been shown to regulate

proliferation of transformed kidney cell lines, its role in kidney

development remains to be defined [15,16]. The C. elegans renal

system is comprised of only three cells, yet these cells carry out

many of the same functions as mammalian kidneys [17,18].

Therefore, C. elegans might be an advantageous system in which to

study the role of HNF4 receptors in renal development. The

largest portion of the C. elegans excretory system consists of the

excretory cell (EC). The development of the EC is extraordinary,

as it involves the formation and growth of four branches that

project outward from a single nucleus located near the anterior

bulb of the pharynx [17]. These branches grow along the length of

the animal to near the tip of the head and tail in early

development, and then continue to grow along with the animal

until adulthood. Each branch of the EC contains an inner

membrane that coalesces to form a lumen; thus, the excretory cell

becomes a large, single cell tube. Consequently, the EC has been

effectively used to understand the development of tubes and to

investigate mechanisms involved in excretory function [17,19,20].

At this point, factors known to participate in the development and

function of the C. elegans excretory cell include vATPases, WNK

kinases, CLIC-like proteins, Patched related proteins, and mucins

[17,21–24]. Additionally, the CEH-6 homeobox protein has also

been implicated as the only transcriptional regulatory factor, thus

far, involved in excretory cell development [25]. How the complex

structure of the EC is developed and maintained so precisely, even

at points very distant from the primary sites of gene regulation,

remains a mystery.

We have found a highly conserved C. elegans HNF4 paralog,

NHR-31, that is specifically expressed in the excretory cell of the

nematode, suggesting that investigation of this receptor may

provide unique insight into the role of nuclear receptors in renal

development and tube formation. In this study, we show that

NHR-31 specifically regulates the expression of genes that

coordinate the synchronous growth and elongation of excretory

canals, demonstrating a novel NR mediated pathway for renal

system development and function.

Results

nhr-31 Is Expressed in the Excretory Cell Throughout
Development

nhr-31 is predicted to encode an HNF4a related nuclear

receptor (NR) protein with a highly conserved DNA binding

domain (DBD) and ligand binding domain (LBD) (Figure 1A). To

help establish the physiological function of this NR, we determined

the tissues in which the nhr-31 gene is expressed. A GFP reporter

construct was generated by fusing 3.0 kb of nhr-31 upstream

regulatory sequence to the gfp gene (Pnhr-31::gfp). Injection of Pnhr-

31::gfp into WT worms revealed that the nhr-31 promoter drives

strong expression in the excretory cell (EC). In transgenic animals,

GFP protein was first observed in the EC cell shortly after EC

birth and persisted in the EC for the remainder of worm

embryogenesis, larval development, and adulthood (Figure 1B and

data not shown). GFP was observed throughout the cytoplasm of

the H-shaped excretory cell. Because our reporter construct was

designed by fusing only the nhr-31 promoter to the gfp gene, the

GFP localization pattern does not represent NHR-31 protein sub-

cellular localization. Pnhr-31::gfp expression was also observed, at

lower levels, in the intestine and in several unidentified cells

located near the tail (Figure 1B and data not shown).

nhr-31 Is Essential for Resistance to Osmotic Stress
In C. elegans, the EC functions cooperatively with duct and pore

cells, and together these cells are important for maintaining

osmolarity homeostasis [26,27]. To determine if nhr-31 RNAi

animals displayed compromised excretory function, we treated

animals with nhr-31 RNAi or control RNAi from the L1 to L4

stage of development and then stressed L4 animals with acute

exposure to a standard growth plate supplemented with 500 mM

NaCl, and determined their ability to respond to these unfavorable

conditions. 250 animals were assayed at each time point. After just

two hours, less than 5% of nhr-31 RNAi animals could be rescued

from 500 mM NaCl exposure. In contrast, L4 animals fed control

RNAi were able to thrive for much longer under these same

conditions, with over 50% of animals maintaining the ability to

recover even after 8 hours of high salt exposure (Figure 1C). These

data indicate that reducing nhr-31 gene expression strongly impairs

the ability to survive acute osmotic stress.

nhr-31 Is Necessary for Normal Excretory Cell
Development

Three different nhr-31 deletion strains have been isolated, and

all of these strains are inviable (www.wormbase.org). Using one of

these strains (nhr-31(tm1547)), we found that nhr-31 deletion leads

to early embryonic lethality (data not shown). Additionally,

application of nhr-31 RNAi throughout growth and development

results in significant embryonic lethality in the F1 generation (data

not shown). Thus, NHR-31, like its mammalian homolog HNF4a,

plays an essential role in early embryonic development. Because

we found that the nhr-31 gene is primarily expressed in the

excretory cell during larval and adult stages, however, we

investigated the participation of nhr-31 in EC development and

morphology using an RNAi feeding strategy that specifically

reduced nhr-31 expression during larval development and

adulthood. In postembryonic animals, the EC is an H-shaped

cell, with four canals emanating from a main cell body located

Author Summary

The function of many important biological structures
requires the construction of very complex cellular shapes.
For example, mammalian kidneys or related renal systems
in other animals rely on the formation of elongated tubes
that maximize surface area to facilitate the exchange of
ions between the body and excreted fluid. Defects in
kidney development or function may lead to kidney failure
or polycystic kidney disease. Mechanisms involved in
orchestrating the formation and function of the elaborate
tube structures in renal systems are still poorly character-
ized. Here, we show a novel transcription factor involved in
the growth and elongation of an excretory tube in C.
elegans. This factor helps manage tube development by
regulating genes involved in ion transport and membrane
fusion, likely helping to balance the growth of the inner
and outer portions of the excretory tube as this structure
elongates. This transcription factor shares significant
homology with a mammalian protein that participates in
hormone signaling and is present in the kidney tubules,
suggesting that elongation and growth of tube structures
may rely on a new kind of hormonal communication that
occurs between distant parts of the cell; this signaling
mechanism may be important for appropriate kidney
development in humans.

NHR-31 Control of Tube Growth
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near the terminal bulb of the pharynx [17]. Two canals project along

each side of the animal towards the posterior end, and two canals

project forward towards the anterior end (Figure 2A). To monitor

EC morphology, WT animals were injected with the Pnhr-31::

gfp reporter. In WT adult animals, GFP localization revealed that

the outer diameter of the excretory cell was relatively uniform

through the entire length of the canal, measuring ,3.5 mm in

proximal sections of the posterior canal, and tapering to ,2.4 mm in

distal sections of the posterior canal (Figure 2B and 2C).

When WT animals carrying the Pnhr-31::gfp construct were

treated with nhr-31 RNAi from the L1 stage of larval development

through adulthood, the morphology of the adult EC was

dramatically altered (Figure 2B and 2C). In particular, the

excretory canals were not uniform in diameter; instead, they

contained multiple enlarged varicosities, with diameters up to

10 mm (Figure 2B and 2C). These varicosities showed considerable

variability in size and shape and were located along the entire

length of the EC, including the proximal, middle, and distal

portions of the posterior arms, as well as in the anterior branches

of the EC canal (Figure 2B and 2C and data not shown). DIC

images of nhr-31(+/2) heterozygotes also revealed similar

excretory cell abnormalities, providing support for the specificity

of our nhr-31 RNAi construct (Figure S1).

High magnification of the GFP images obtained in nhr-31 RNAi

animals suggested that the varicosities consisted of dense cellular

material with an abundance of vacuoles (Figure 3A). This

phenotype was different from previously reported EC abnormal-

ities, which showed enlargement of the EC cell due to fluid

accumulation or cyst formation [19,27]. To more closely examine

the morphological defects in the EC of nhr-31 RNAi animals, we

employed high pressure freezing transmission electron microscopy

(HP-TEM). Table 1 shows quantitative analysis of sections

obtained from the middle region of the EC in 5 different control

RNAi animals and 5 different nhr-31 RNAi animals. Cross sections

of the EC of a WT animal showed a single circular lumen with an

average diameter of 1.6 mm (Table 1). Additionally, an abundance

of well-formed canaliculi were clearly visible in WT animals

(Figure 3C and Table 1). Canaliculi are smaller ‘‘mini-canals’’

surrounding the canal lumen; these canals are thought to greatly

increase the apical surface area of the EC lumen (Figure 3B) [17].

Canaliculi were visible in the wild type excretory canal cross

section as small, round, circular shapes and were regular in size

and consistent (,70/section) in number from section to section

(Figure 3D and Table 1). According to our EM measurements, the

average diameter of the EC was ,2.8 mm, which agreed nicely

with our GFP measurements (Figure 2C and Table 1).

HP-TEM imaging revealed multiple morphological defects in

the excretory canals of nhr-31 RNAi animals, particularly in the

varicosities (Figure 3D and Table 1). First, the average canal

diameter increased to 5.8 mm, with larger varicosities displaying

diameters of up to 8 mm, and the narrow regions showing

diameters from 2–3 mm. Second, the average diameter of the

lumen in nhr-31 RNAi animals was increased by 26% to 1.95 mm,

and the lumen often appeared multi-lobed. The diameter of the

lumen correlated strongly with the outer cell diameter, as the

largest lumen diameter measurements were found within large

varicosities (Table 1). Third, we found that the canaliculi were

uncharacteristically irregular in size and present at much higher

numbers (,126/cell) in nhr-31 RNAi animals (Figure 3D and

Table 1). Finally, the varicosities of nhr-31 RNAi animals possessed

an unusually high number of large vesicles, elevated endoplasmic

reticulum abundance, and a considerable increase in mitochondria

(Figure 3E and Table 1). Importantly, the TEM cross sections

showed that the varicosities were not a result of an EC canal

lumen that was folded back on itself or bent away from the normal

lateral alignment, or due to osmotic ‘‘swelling’’, both of which

have been previously reported for mutants that affected EC

structure [19,27]. Consequently, the EC phenotypes resulting

from loss of nhr-31 function are different from previous

observations and suggest that nhr-31 defects are distinctive in their

mechanism of origin. In summary, both fluorescence confocal

microscopy and TEM showed that loss of nhr-31 function leads to

significant defects in EC canal size, shape, and microstructure.

The abundance of cellular material and organelles, along with

significant structural abnormalities, implies that the abnormal

varicosities observed in adult nhr-31 RNAi animals are likely to

result from regions of uncontrolled cellular growth.

NHR-31 Coordinately Regulates Expression of Vacuolar
ATPase Genes

We next applied gene expression profiling to establish

downstream regulatory targets of nhr-31. Gene expression was

measured using C. elegans oligomer based microarrays. We carried

out this study in L4 larvae, as this is the larval stage at which the

EC morphology differences between WT animals and nhr-31

Figure 1. The C. elegans HNF4a homolog nhr-31 is expressed in
the excretory cell and is required for resistance to osmotic
stress. (A) The NHR-31 protein shares significant homology with HNF4a
in both the DNA (DBD) and ligand binding domains (LBD). (B) An adult
animal harboring a transgenic Pnhr-31::gfp reporter. This reporter
construct showed that the nhr-31 promoter drives strong GFP
expression in the excretory cell. GFP expression in both the excretory
cell nucleus and canals are indicated with arrows. There is also faint GFP
expression in the intestine (C) The ability of L4 animals to survive acute
exposure to 500 mM NaCl was severely compromised by reduced nhr-
31 expression. Animals fed control RNAi are shown as black squares and
animals fed nhr-31 RNAi are shown as black triangles. Data were
collected using 250 animals for each time point and are presented as
average number of worms surviving +/2SEM.
doi:10.1371/journal.pgen.1000553.g001

NHR-31 Control of Tube Growth
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Figure 2. nhr-31 is required for excretory cell morphology. (A) Diagram of the C. elegans excretory cell. The cell body of the excretory cell,
including the nucleus, is located in the anterior part of the animal near the terminal bulb of the pharynx. Two projections extend from the cell body
and each projection bifurcates into two branches. One branch runs to the posterior (tail) of the animal and the opposite branch runs to the anterior
(head), building an H-shaped cell. Each projection contains an inner membrane (apical) that lines a lumen, forming a tube structure, and an outer
membrane (basal), which borders and attaches to the hypodermis. Therefore, there are four tubular projections, two running down each side of the
animal to the rear, and two running to the front. (B) RNAi of nhr-31 during larval development resulted in an excretory cell that was much larger than
in WT animals. nhr-31 RNAi animals also displayed numerous enlarged areas along the entire length of the excretory cell tube; these areas are defined
as ‘‘varicosities’’. Excretory cell defects resulting from nhr-31 RNAi occurred throughout the EC: shown here are the proximal, middle, and distal
regions of the posterior branches. In WT adult animals, the excretory cell was uniform in diameter and did not display noticeable varicosities at any
location in the EC. (C) Quantitative measurements highlight the variability in EC cell diameter in WT and nhr-31 RNAi animals. In each control and nhr-
31 RNAi animal, the excretory cell diameter was measured in three separate 50 mm regions, one selected from the anterior portion of the worm, one
from the middle, and one from the posterior region, within these regions 10 diameter measurements were obtained by imaging the EC in 5 mm
intervals. 5 control RNAi and nhr-31 RNAi animals were quantified using this strategy resulting in 50 independent diameter measurements for each EC
region. To show the variation, each individual measurement is displayed here as an open circle. The black circles show the average excretory cell
diameter for each measured region, and error bars represent standard deviation.
doi:10.1371/journal.pgen.1000553.g002

NHR-31 Control of Tube Growth
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RNAi animals first begin to show. Overall, we found that, in nhr-

31 RNAi worms, the expression of 20 genes was suppressed by

greater than 2-fold and the expression of 63 genes were enhanced

by greater than 2-fold (Table S1).

The most striking outcome of our microarray experiments was

the discovery that RNAi of nhr-31 dramatically affected the

expression of 15 genes that encode subunits of the vacuolar

ATPase (gene names are referred to as vha), and one gene

predicted to code for a vATPase cofactor (gene name, R03E1.2).

In fact, of the 30 genes most strongly reduced by inhibition of nhr-

31, 15 of these were vha genes (Table S2). The vacuolar ATPase

(vATPase) is an ATP-dependent proton pump, which transports

protons across cellular membranes (Figure 4A). Each C. elegans vha

gene encodes for one subunit of the holoenzyme, and there are 15

separate subunits that make up the holoenzyme. For several of the

vATPase subunits, C. elegans possesses multiple gene isoforms;

consequently there are 18 vha genes in total. As a secondary

confirmation of the microarray data, we employed quantitative

RT-PCR to specifically measure the mRNA levels of all 18

vATPase genes found in C. elegans. We found that the expression of

16 of these genes was reduced when nhr-31 was inhibited

(Figure 4A). Importantly, previously published data show that

nearly all vha subunits are expressed in the excretory cell,

indicating NHR-31 is likely to be mediating expression of these

vha genes directly in the EC (Table 2) [19,20,29–33]. Additionally,

most vha genes are also expressed in the intestine, where NHR-31

Figure 3. Knockout of nhr-31 results in uncontrolled cellular growth. (A) High magnification confocal images revealed that the varicosities in
the nhr-31 RNAi animals appeared to be dense with cytoplasm and punctuated with vacuole like structures. (B) Illustration of an excretory cell cross-
section. Excretory cell tubes harbor an apical membrane that forms the lumen; the surface area of the inner lumen is significantly enhanced by
numerous canaliculi that branch off of the center lumen. (C) High pressure freezing transmission electron microscopy (HP-TEM) images of animals
subjected to control RNAi. The excretory cell resides within the black dotted line, which is drawn just outside of the EC membrane. For better
visibility, the EC is also shown enlarged in an inset. Control RNAi animals displayed a well-formed lumen with small regions of endoplasmic reticulum
(ER) on both sides of the EC (the ER is indicated with black arrows in the inset). The outer diameter of the excretory cell was approximately 2.0–2.5 mm
(depending on the axis), and the diameter of the lumen was approximately 1.6 mm normal diameter. Furthermore, the lumen was surrounded by
well-formed canaliculi (illustrated in black rectangle), which appear as circular structures around the lumen. (D) A TEM image of an nhr-31 RNAi animal
at the same magnification. This section was taken through a large abnormal varicosity. This excretory cell harbors more abundant ER (black arrows),
mitochondria and canaliculi, as well as large intracellular vesicles (indicated with an asterisk). As clearly shown in this TEM image, nhr-31 RNAi animals
also displayed poorly defined basal membranes (visible just inside the dotted line). In this image, the cell and lumen diameters were significantly
greater than those of a WT excretory cell. Larger images are available in the online supplementary data section (Figure S2).
doi:10.1371/journal.pgen.1000553.g003

NHR-31 Control of Tube Growth
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also resides. Accordingly, the only two vha genes not regulated by

NHR-31, vha-7 and unc-32, are not expressed in the excretory cell.

In sum, our microarray and QRT-PCR convincingly demonstrate

that a primary function of NHR-31 is to coordinately promote the

expression of almost the entire complement of vacuolar ATPase

genes. NHR-31 localization to the excretory cell, where nearly all

vha genes are expressed, also argues that NHR-31 is regulating vha

genes in this cell type.

Vacuolar ATPase Subunits Are Required Late in Larval
Development

Because the vacuolar ATPase subunits are highly expressed in

the EC, we suspected that the impact of nhr-31 on EC

development might be a consequence of vacuolar ATPase

regulation. To test this hypothesis, we used RNAi feeding to

specifically reduce the expression of three different vacuolar

ATPase subunits: vha-5 (small a subunit), vha-8 (catalytic E subunit)

and vha-12 (B subunit). Because previous studies have shown that

RNAi of the vacuolar ATPase subunits leads to larval lethality, we

did not apply vha or nhr-31 RNAi until the L3 stage of

development. Using this approach, we found that RNAi of each

of these subunits was sufficient to cause excretory canal formation

defects similar to those of nhr-31 RNAi animals (Figure 4B). These

results imply that the control of EC development by NHR-31 is

mediated, at least in part, by its stimulation of vATPase

expression. We also note that this experiment shows that

knockdown of nhr-31 or vATPase expression specifically in late

larval development is sufficient to cause irregular EC growth and

adult varicosities.

Abnormal Varicosities in nhr-31 RNAi Worms Arise Late in
Development

Although the large, irregular, varicosities observed in nhr-31

RNAi animals were never observed in WT adults, we did notice

varicosity-like structures early in WT larval development, residing

at regular intervals along the EC canal in L1 and early L2 animals

(Figure 5A and Table 3). These varicosities differed from those

present in nhr-31 RNAi adults in that they displayed a consistently

symmetrical oval shape (Figure 5A). In L1 larvae, ,10 of these

varicosities were observed in each EC canal branch, but as worms

developed the regions of the excretory cell between varicosities

grew wider and the varicosities consequently decreased in

prominence such that, by the late L3 stage of development, the

entire length of the excretory cell possessed a diameter similar to

the varicosities observed in L1 animals (Figure 5B and 5E). The

presence of these growth varicosities in WT L1 larvae was

Table 1. Analysis and Quantification of TEM Excretory Cell Images.

Section # Cell Diameter (mm) Lumen Diameter (mm) # Ectopic Vesicles Total # Mitochondria ER Abundance Canaliculi

Control RNAi

1 3 1.6 0 2 + 57

2 2.5 1.5 0 1 + 63

3 2.8 1.5 0 1 + 64

4 3.5 2 1 4 + 93

5 2 2 0 2 + 81

6 2.5 1.5 0 2 + 64

7 3 1.5 0 2 + 78

8 2.5 1.3 0 4 + 53

9 3 1.3 0 1 + 71

10 2.7 1.3 0 2 + 64

Average 2.8 1.6 0.1 2.1 68.8

nhr-31 RNAi

1 8 2 6 22 +++ 115

2 8 1.5 10 20 +++ 116

3 8 2.5 13 12 +++ 156

4 8 4 26 27 +++ 408

5 8 1.5 0 7 ++ 74

6 8 4.2 3 13 +++ 118

7 6 2 3 4 +++ 106

8 4 1.4 1 6 ++ 108

9 4 1.2 0 6 +++ 102

10 3 0.7 1 3 2 26

11 2 1.5 2 4 2 101

12 2 0.5 0 2 2 77

Average 5.8 1.9 5.4 10.5 125.6

High-pressure TEM sections were prepared from young adult animals exposed to control RNAi and nhr-31 RNAi. Images are sorted from sections showing the highest EC
diameter to the lowest. For ER abundance, (+) is equal to normal ER abundance, whereas (++) and (+++) represent above normal and much above normal, respectively.
(2) indicates below normal ER abundance.
doi:10.1371/journal.pgen.1000553.t001

NHR-31 Control of Tube Growth
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Figure 4. NHR-31 promotes expression of numerous genes encoding subunits of the vacuolar ATPase. (A) Change in the expression of
vacuolar ATPase genes (vha genes) in nhr-31 RNAi animals. Data were obtained by QRT-PCR and are plotted as the fold-decrease in gene expression
observed in nhr-31 RNAi animals as compared to animals fed control RNAi. The data are presented on a log scale and are color-coded according to
the specific subunit encoded by that gene (the vATPase holoenzyme is shown in the inset, the peripheral domain is named as the V1 domain and the
integral membrane domain is termed V0). For some subunits, several different gene isoforms exist. Error bars represent standard error (n = 7). (B) RNAi
of vacuolar ATPase subunits revealed tube formation phenotypes similar to those of nhr-31 RNAi animals. To avoid the larval lethality that occurs
when vha subunits are disrupted very early in development, we treated worms with nhr-31, vha-5, vha-8 and vha-12 RNAi beginning at the L3 stage of
larval development. In each confocal image, the middle region of a posterior excretory cell canal is shown. RNAi of all four genes yielded excretory
cells punctuated by abnormally shaped and large varicosities.
doi:10.1371/journal.pgen.1000553.g004

NHR-31 Control of Tube Growth
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confirmed by hp-TEM (Figure 5C and 5D). According to these

TEM measurements, L1 varicosities displayed a diameter that was

2.8 times that of narrow regions, and a lumen diameter that was

about 2-fold larger than the narrow regions (Table 3). Addition-

ally, the varicosity regions harbored many more canaliculi

(Figure 5C and 5D and Table 3). This data implies that the

varicosities may form in L1 animals and spread horizontally along

the excretory cell to help increase cellular diameter, and perhaps

also length. Thus, we suspected that nhr-31 RNAi animals might

improperly maintain these structures such that they continue to

enlarged and become irregularly shaped as animals developed into

adults. However, examination of nhr-31 RNAi animals revealed no

obvious signs of varicosities in the L3 stage of development,

implying that knockdown of nhr-31 did not interfere with the

normal dissipation of these structures during mid-larval develop-

ment (Figure 5E). The varicosities that arise in nhr-31 RNAi

animals first appear in the late L4 stage of development and

continue to grow larger as animals grow older (Figure 5E).

Consequently, the varicosities observed in adult nhr-31 RNAi

animals must either occur from growth of new structures, or the

reactivation and renewed growth of these original varicosities. We

also note that the varicosities caused by nhr-31 loss of function

continue to grow larger during adulthood, such that by day 2 of

adulthood they are nearly twice as large as varicosities in early

adults (Figure 5E).

NRE Response Element Prediction in Nematode and
Mammalian vATPase Genes

Nuclear receptors typically associate with complex binding

motifs comprised of two hexameric half-sites [2]. These half sites

may be paired in multiple orientations with various amounts of

spacing, and this architecture helps determine the type of NHR

that binds. To identify NREs in the promoters of the C. elegans

vacuolar ATPase genes, we used the NHR-computational analysis

program ‘‘NHR-scan’’ [34]. This program identified strong NRE

candidates in nearly all of the vha promoters; 15 out of 18 vha genes

harbored candidate NREs in close proximity to their transcription

start site. If a vha gene was expressed as part of an operon, NREs

were found near the transcription start site of the first gene in the

operon. Analysis of predicted NREs showed a strong presence of

an AGTTCA consensus half site (Figure 6A and Table 4). The

most common repeats were an ER6 (40% of all binding sites),

which is an everted repeat separated by 6 base pairs and an ER8

(27% of all binding sites), an everted repeat separated by 8 base

pairs. In fact, 13 of 19 vATPase genes had at least one highly

conserved ER6 or ER8 site in their promoters, while several other

types of AGTTCA repeats were also found once or twice in

vATPase promoters. Interestingly, we also found a consensus ER6

site in the nhr-31 promoter, implying that nhr-31 may regulate its

own expression through a feedback or feed-forward mechanism.

This putative regulation did not manifest in our GFP reporter

studies, however, implying that self-regulation in the excretory cell

is not very significant during development.

The most common spacing for mammalian HNF4a receptors is

a DR1 or DR2, however it would not be surprising if NHR-31

adopted a different NRE specificity, as nematode NR binding sites

have likely evolved to generate NREs to help distinguish between

all of the different HNF4 paralogs in C. elegans. Consistent with this

notion, the NHR-31 LBD does not retain two conserved amino

acids that help direct HNF4a homodimerization on DR1 and

DR2 sites [35]. It is also possible, however, that everted repeats

have not yet been widely characterized as HNF4a sites in other

organisms. The presence of so many binding sites that closely

match a consensus site is quit remarkable, especially since NHR

response elements are notoriously degenerate [36]. Furthermore,

nuclear receptor regulated genes often contain several conserved

and cryptic NREs that are necessary for modulating expression

level, consequently, there are likely to be important cryptic NREs

in these promoters as well [37].

Analysis of the vATPase gene promoters from mice (Mus

musculus) showed an astonishing enrichment of HNF4a binding

sites (Table 4). In fact, we found highly conserved HNF4a binding

sites in 10 vacuolar ATPase genes, and most of these genes

harbored at least two independent HNF4a binding sites. The

repeats were almost always in DR1 or DR2 configuration and the

consensus half-site sequence for these sites was AG(G/T)TCA

(Figure 6B), which matches the consensus site previously reported

for HNF4a binding sites [38]. As with the C. elegans NREs, the

enrichment of these binding sites is highly significant.

Taken together, these data strongly argue that coordinate

regulation of vacuolar ATPase genes by the HNF4 nuclear

receptor is conserved in mammals. We should note, however, that

the DR1 and DR2 elements can also bind other mammalian

nuclear receptors; therefore, even though NHR-31 is most closely

related to HNF4a, and expressed along with vATPases in the

excretory system, the participation of other mammalian nuclear

receptors in coordinate regulation of vATPase genes cannot be

ruled out. Similarly, we cannot rule out the involvement of

additional C. elegans NRs in regulation of nematode vATPase

genes.

Discussion

NHR-31 Control of the Vacuolar ATPase Is Critical for
Excretory Cell Development

We have identified a new pathway involved in the development

of the C. elegans renal system. In summary, we have shown that the

Table 2. Expression Patterns of C. elegans vha Genes.

vha-1 expressed in excretory cell in larvae and adults

vha-2 expressed in excretory cell in larvae and adults

vha-3 intestine, hypodermis, and excretory cell

vha-4 excretory cell

vha-5 broadly in embryo, excretory cell, pharynx, and some hypodermal
cells

vha-6 intestinal cells

vha-7 mature gonad, spermatheca

vha-8 excretory cell

vha-9 N/A

vha-10 N/A

vha-11 excretory cell and intestine

vha-12 pharynx, intestine, and excretory cell

vha-13 intestine, body wall muscle, and excretory cell

vha-14 N/A

vha-15 widely expressed, including excretory cell and intestine

vha-16 widely expressed, including excretory cell and intestine

vha-17 excretory cell, intestine, and epidermal cells

unc-32 gonad, intestine, and many neuronal cells

Expression patterns of the vha genes were obtained from previously published
studies [19,20,29–32]. vha-6 and unc-32 are indicated in bold because they are
not regulated by nhr-31.
doi:10.1371/journal.pgen.1000553.t002
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Figure 5. In WT animals, varicosities are present during excretory cell development and disappear in adult animals. (A) Although
large and irregular varicosities were not observed in WT adult animals, we found that varicosity structures were common in early larval development.
In L1 larvae, varicosities were present at regular intervals along the entire length of the excretory cell. (B) By the L3 stage of development, these
developmental varicosities decreased in size such that they were no longer easily visible. (C,D) A TEM image of a narrow region (C) and a varicosity (D)
in the EC of a WT animal during the L1 stage of larval development. Like the varicosities observed in nhr-31 RNAi adults, the L1 varicosities contained
extra cellular material, with more canaliculi and larger mitochondria (see also Table 3). Larger EM images are available in the supplement (Figure S3).
(E) Quantification of EC diameters when exposed to RNAi at different points in development. Graph includes diameters measured using the Pnhr-

31::gfp strain and confocal microscopy. The graph contains measurements of the EC of animals exposed to the following treatments: Measurement of
L1 larvae starved for 12 hours (starved-L1), measurement of L3 ECs when exposed to control RNAi (L3-control) or nhr-31 RNAi (L3+nhr-31 RNAi) from
the L1 to the L3 stage of development. Measurement of L4/young adult ECs when worms are exposed to control (L4/YAd control) or nhr-31 RNAi (L4/
YAd+nhr-31 RNAi) from the L1 to the L4 stage. Animals exposed to control RNAi (Day 2Ad Control) or NHR-31 RNAi (Day2 Ad+larval nhr-31 only) from
L1 to 2 day old adults, and then switched to control RNAi, and animals exposed to nhr-31 RNAi from L1 until day 2 of adulthood (day 2Ad+nhr-31
RNAi). This data shows that exposure to nhr-31 RNAi from the L1 stage of development to the L3 stage of development does not impact EC size in L3
worms, but that varicosities appear in late L4 development and continue to grow into adulthood.
doi:10.1371/journal.pgen.1000553.g005
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NHR-31 nuclear receptor, through promotion of vacuolar

ATPase gene expression, is essential for the appropriate growth,

morphology, and function of the C. elegans excretory cell. This

study not only identifies a new transcriptional regulator necessary

for EC development, but also establishes the specific regulatory

targets that mediate its effects, and highlights potential nuclear

receptor response elements. The regulatory or developmental

activities carried out by NHR-31 have not yet been observed for a

Table 3. Analysis of TEM Excretory Cell Images From WT L1 Larvae.

Section # Cell Diameter (mm) Lumen Diameter (mm) Total # Mitochondria Canaliculi

L1 Narrow Regions

1 1.21 0.34 1 9

4 1.51 0.37 1 14

6 1.34 0.37 1 14

8 1.57 0.36 1 15

10 1.55 0.34 1 10

12 1.73 0.37 2 12

Average 1.49 0.36 1.17 12.3

L1 Varicosities

3 4.4 0.6 1 28

5 4.2 0.9 2 35

9 3.4 0.6 1 23

11 4.3 0.7 1 27

Average 4.1 0.7 1.3 28.3

High-pressure TEM sections were prepared from WT L1 larvae. Sections were taken through narrow regions of the EC and through varicosities.
doi:10.1371/journal.pgen.1000553.t003

Figure 6. Identification of Nuclear Receptor Response Elements in C. elegans and mouse. Half-sites were taken from the NREs identified using
NHR-scan and displayed in Table 3. These sites were analyzed using WebLogo software [43], and the consensus half-site determined by that program is
displayed here for (A) C. elegans vATPase genes and (B) for mouse vATPase genes. The frequency of each type of response element is also shown in this figure.
doi:10.1371/journal.pgen.1000553.g006
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Table 4. Predicted NRE Sites in Nematode and Mammalian vATPase Promoters.

Predicted NRE Sites in C. elegans Vacuolar ATPase Genes

Promoter Repeat Type Sequence Match Orientation Location

vha-1/vha-2 DR2 AGTTCA ta AGTaCA 11/12 Reverse 2612

ER8 TGACCg tttttatt AGTTCA 11/12 Reverse 266

vha-3/vha-11 ER8 TGtCCT tcgcataa AGaTCA 10/12 Forward 22612

vha-4 ER1 TtACCT t cGTTCA 10/12 Forward 2528

ER8 TtACCT ttcagaga AGTTgA 10/12 Forward 2625

vha-5 ER8 TGAAag tttggatt AGTTCA 10/12 Forward 2729

ER6 aGAACT gtgaga AtTTCA 10/12 Forward 2286

vha-6 ER6 TGAACT tgtaag gcTTCA 10/12 Forward 2306

ER6 TGTAgT caaaag AGcTCA 10/12 Forward 2729

vha-7 DR1 AGGtAA a cGTTCA 10/12 Reverse 22283

ER6 TGAAaT tcaact AtTTCA 10/12 Forward 21036

vha-9 IR8 AGcTtt acagattc TGAgCT 8/12 Forward 2537

ER6 gGTTCA attttc TGAtaT 9/12 Forward 22102

vha-10 ER8 TGAAaT tctaaaat AtTTCA 10/12 Forward 2663

ER8 TGACtT ttagttaa aGTTCa 9/12 Forward 2319

vha-12 DR1 gGTTCA t cGGTCt 9/12 Forward 2219

DR4 gGGTCt tcat gGTTCA 9/12 Reverse 2583

DR5 AGTTCA aaaat tGTTCA 11/12 Forward 21928

ER8 TGaACc taaaaatc AGTTCA 10/12 Forward 22448

vha-13 ER8 TGAACT ccgttcga AaTTCc 10/12 Forward 2458

ER6 TcAACT aatttt tGTTCA 10/12 Forward +241

ER6 TGAACa aaaatt AGTTgA 10/12 Forward +1028

vha-14 DR3 AGTTCg tgg AGTTCA 11/12 Forward 23068

vha-16 ER6 TGgaCT ttcgga AGTTaA 9/12 Forward 2307

vha-17 ER6 TGAACT gatgga AtgTCg 9/12 Forward 21570

nhr-31 ER6 TGAtCT acgaat AGTTCA 11/12 Forward 24788

Predicted HNF4a Sites in Mouse Vacuolar ATPase Genes

Promoter Repeat Type Sequence Match Orientation Location

Atp6voe-008 DR1 AGTTCA t gGTgCA 10/12 Forward 2999

DR2 AGGTCc aa AGTTCA 11/12 Reverse 21361

Atp6v0c DR2 AGaTCA tg AGTTCA 11/12 Forward 2798

Atp6v0d1 DR1 AGGTCt c tGGcCA 9/12 Reverse 2726

DR1 tGGaCt c AGGTCA 9/12 Reverse 21028

Atp6v0a2 DR1 AGGaCA t tGGTCc 9/12 Reverse 21573

DR2 ctTTCA ta AGTTCA 10/12 Reverse 2775

Atp6v1a-007 DR1 gGGTgA t AGGTCA 10/12 Reverse 21182

DR1 gGGTtA a AGTgCA 10/12 Reverse 21741

Atp6v1h-007 DR1 AGGTCA t AaacCA 9/12 Forward 21748

DR1 tGTaCt a AGGTCA 9/12 Forward 2243

Atp6v1c2 DR2 gGaTCA tt AGTTCA 10/12 Reverse 2772

DR2 AGGTCc tg AGTTCA 11/12 Forward 21232

Atp6v1c1 DR0 AGTTCA AGGTCA 12/12 Forward 21327

DR1 gGcTCA c AGTTCA 10/12 Forward 2517

DR2 gGTTCA ac AGGTaA 10/12 Reverse 2797

DR1 AGTgCA g AaGTCA 10/12 Forward 21719

Atp6v1b2 DR2 AGGTCc ag AGTTCA 11/12 Reverse 2587

DR1 gGGcCA c AGGgCA 10/12 Reverse 21732

Atp6v1g2 DR1 AGGcCg g AGGcCt 8/12 Forward 21152

Response elements were identified using the NHR-scan computational program (nhrscan.genereg.ne). Predicted NHR-31 and HNF4 response elements are shown along
with their correlating vATPase genes. Nucleotides matching the consensus sequence are shown in capital letters. Location refers to the distance of the response
element from the predicted ATG translational start site.
doi:10.1371/journal.pgen.1000553.t004
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nuclear receptor; consequently our findings expand the physio-

logical repertoire of the NR superfamily.

A primary function of NHR-31 is to maintain the structure of

the EC canal during the transition from larval development into

adulthood. When exposed to nhr-31 RNAi throughout larval

development, or specifically in late larval development, we

observed numerous large and irregular varicosities all along the

length of the posterior and anterior EC canals, these varicosities

first manifested in L4 development and continued to amplify and

grow several days into adulthood. As the excretory cell is involved

in the regulation of ion transport and osmolarity, we considered

that these varicosities might have been due to accumulation of

fluid within the EC cytoplasm to create ‘‘cyst-like’’ structures.

However, HP-TEM revealed numerous sub-cellular abnormalities

within the varicosities that could not be explained by an abnormal

accumulation of fluid. For example, nhr-31 RNAi dependent

varicosities generally contained abnormally shaped lumens,

significant increases in the number of canaliculi, ER and

mitochondria, and abnormally large numbers of ectopic vesicles.

These data imply that the EC varicosities are not fluid filled, but

rather overdeveloped. In contrast, in the narrow regions of the nhr-

31 RNAi EC, we found normal numbers of mitochondria, ER,

and canaliculi, implying the majority of EC irregularities that

occur in nhr-31 RNAi animals are localized to the enlarged

varicosities. This excessive growth phenotype significantly differs

from previously characterized excretory cell phenotypes [19,27].

Another intriguing finding of our study is that NHR-31 has a

surprisingly specific and strong impact on the expression of v-

ATPase encoding genes (vha genes). The vacuolar ATPase (v-

ATPase) is an ATP-dependent proton pump that is organized into

a peripheral domain (V1), which is responsible for ATP hydrolysis,

and an integral domain (V0), responsible for proton transport.

Although it is referred to as the vacuolar ATPase, this enzyme is

found in multiple intracellular membranes, including endosomes,

lysosomes, Golgi-derived vesicles, clathrin coated vesicles, secre-

tory vesicles, as well as the plasma membrane [39,40]. vATPases

are important for numerous cellular functions, including ion

transport, substrate transport, acidification of vesicles and other

organelles. Additionally, recent studies have shown that vATPases

also play a predominant role in vesicular trafficking of the

endocytic and exocytic pathways, participating directly in

membrane fusion by not only providing the proper acidic

environment, but also by directly forming protein complexes

during the fusion process [40]. Given the diversity of vATPase

functions, it seems likely that the transcription of vATPase would

be precisely regulated both spatially and temporally in order to

facilitate the development and function of different cell types.

Although numerous factors have been shown to regulate the

vATPase at the enzymatic level, our study has identified a

transcription factor with a specific role in regulating vATPase

expression in a tissue specific manner.

In C. elegans it has been shown that vATPase subunits of either

the V0 sector or the V1 sector, are important in excretory cell

development and morphology [19]. In this previous study, several

distinct vha subunits were knocked down early in development

resulting in several defects in the hypodermis, cuticle, and

excretory cell. Specifically, abnormal structures were observed in

the ECs that were described as ‘‘whorls’’. Because RNAi of nhr-31

leads to the reduced expression of 17 out of the 19 genes that

encode vha subunits, we suspected that the role of nhr-31 in EC

development may be due, at least in part, to regulation of vATPase

gene expression. In support of this hypothesis, we found that larval

specific knockdown of NHR-31 target genes encoding either an a

subunit, an E subunit, or a B subunit of the vATPase, led to

excretory cell phenotypes nearly identical to those observed in nhr-

31 RNAi animals. Although varicosities found in our experiments

may be related, in some fashion, to the ‘‘whorls’’ observed in the

previous study ([19], it should be noted that the previous study

focused on reduction of vATPase expression much earlier in

development. In contrast, in our study, vha expression was knocked

down specifically in late L3 development through early adulthood.

Thus, our findings show that regulation of vATPase expression is a

prominent factor in NHR-31 function.

Model for the Role of NHR-31 in Excretory Cell
Development

The phenotypic abnormalities observed in nhr-31 RNAi

animals, combined with the predicted function of nhr-31 regulatory

targets, provide several clues into how this nuclear receptor may

impact the generation of a healthy EC (Figure 7). A critical

component of EC development is the outgrowth of the excretory

canals. During larval development, four excretory canals must

grow out of the main cell body and migrate towards the posterior

and anterior ends of the animal and then continue to grow as the

animal increases in length. We observed that, during early larval

development, the EC migrates along the length of the animal and

Figure 7. Model for NHR-31 control of EC growth and morphology. We propose that EC growth and elongation is mediated by regions of
high growth activity, visible as varicosities in young larvae, but which normally dissipate as the EC reaches its full length. In nhr-31 RNAi animals,
regulation of these growth regions is disrupted, leading to uncontrolled growth and thereby formation of ectopic varicosities.
doi:10.1371/journal.pgen.1000553.g007
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is periodically punctuated with small oval shaped varicosities. By

the time a worm reaches later larval stages, these varicosities are

no longer present and adult EC canals are exquisitely uniform in

diameter. We suggest that the growth varicosities that form during

early larval development may be regions of high cellular growth

activity, where robust protein, organelle, and membrane synthesis

occur, these areas of growth then serve to supply material to the

cytosol, as well as the basal and apical membranes of the EC, thus

enabling the EC canal to elongate in a bidirectional manner. TEM

images of the EC in L1 larvae, which show periodic varicosities

with a more dense supply of membrane and organelles, support

this hypothesis (Figure 5C and 5D). As the EC reaches its full-

length, precise regulation of new cellular synthesis and cellular

elongation reaches equilibrium such that regions of high EC

cellular mass become evenly distributed and the EC adopts a fully

mature and uniform shape.

Many of defects observed in nhr-31 RNAi animals are consistent

with an inability to properly regulate the coordination between EC

cell outgrowth and new synthesis of cellular material. Thus, the

NHR-31 nuclear receptor may play an important role in

regulating the growth and elongation of the EC cell, and, in nhr-

31 RNAi animals, excess lipid synthesis and other factors involved

in cellular growth proceed unchecked leading to the production of

new EC cellular material, even as this cell is no longer growing

lengthwise. In this scenario, actively growing regions of the

excretory cell could not expand laterally in either direction;

consequently, excess cellular material would accumulate in

varicosities that continue to grow larger even after animals reach

adulthood.

A New Role for Nuclear Receptors in Control of vATPase
Expression and Tube Morphogenesis

It is astonishing that NHR-31 controls such a small and specific

set of target genes, and that nearly all of its targets comprise

subunits or cofactors of the vATPase. While the fundamental

conclusions of this study are not dependent upon the mechanism

by which NHR-31 regulates gene transcription, NHR-31 is a

transcription factor of the nuclear receptor type, and therefore it is

tempting to propose that NHR-31 regulates the vATPases in

response to a ligand signal by directly binding to the vATPase

promoters. Consistent with this hypothesis, our binding site

analyses of the vATPase promoters revealed a significant

enrichment of nuclear receptor response elements in the form of

ER6 or ER8 everted repeats with an AGTTCA consensus half site

(Figure 6A and Table 4). The fact that this response element does

not perfectly match the preferred response element architecture of

the mammalian HNF4a is not surprising, as C. elegans contains

dozens of HNF4-like receptors, and it is likely that NREs have

evolved in nematodes in order to distinguish between NHR

paralogs. We did, however, find strong enrichment of classical

HNF4a binding sites (DR1 and DR2) in the promoters of the

mouse vATPase genes, suggesting that coordinate regulation of the

vATPase by HNF4 type receptors may be well conserved in

mammals, even though the exact response element architecture

may have changed.

The physiological functions and target genes of nhr-31 have not

been previously linked to an HNF4-type receptor, or any other

nuclear receptor. NHR-31 shares a high degree of homology with

mammalian HNF4 receptors, including nearly perfect conserva-

tion of key DNA binding elements and a strongly conserved

ligand-binding domain (LBD). Interestingly, it has been proposed

that the mammalian HNF4 receptors interact with free fatty acids

and fatty acyl-CoA molecules [41,42]. An ability of NHR-31 to

bind to the acyl chain of a fatty acid or lipid molecule would

provide a provocative explanation for how NHR-31 may be

coordinating membrane synthesis and cellular elongation in the

EC, which is likely to be occurring at sites distant from the nucleus.

Because intensive membrane synthesis, transport, and fusion must

take place in order to meet the needs of a growing excretory cell,

such processes may release lipid based signals that activate or

repress NHR-31 control of vacuolar ATPases and other genes

associated with membrane biogenesis. Whether or not the

functions of NHR-31 are conserved in mammals remains to be

determined; however, the fact that both HNF4a and vacuolar

ATPases are expressed at high levels in the proximal tubules of the

mammalian kidney, combined with our demonstration that the

mammalian vATPase genes contain a high density of HNF4a
binding sites, implies that a functional role for HNF4 receptors in

coordinate regulation of the vATPase in the renal system may

indeed be a conserved process [16,39].

Materials and Methods

C. elegans Strains and RNAi Constructs
The N2 Bristol strain of C. elegans was used for all experiments.

Worms were maintained by standard techniques at 20–22uC. nhr-

31 RNAi constructs were created by introducing the full-length

NHR-31 cDNA into the L4440 RNAi feeding vector (Andy Fire,

Stanford University). RNAi constructs for vha-5, vha-8, and vha-12

were obtained from the Ahringer RNAi library (University of

Cambridge, Cambridge, UK). All RNAi constructs were trans-

formed into the HT115 strain of E. coli and RNAi was introduced

to N2 worms by RNAi feeding. RNAi expression was induced in

the feeding bacteria by growing bacteria on NGM plates

containing 3 mM IPTG and 100 mg/ml carbenicillin. Bacteria

containing an empty L4440 RNAi vector were used for the RNAi

control. Although NHR-31 is part of a large family of related

nuclear receptors, these receptors have extensively diverged from

one another during evolution, such that the closest paralog of

NHR-31 shares only 55% homology in cDNA sequence;

therefore, it is highly unlikely that there will be cross reactivity

of the RNAi. Furthermore, C. elegans RNAi prediction programs

do not indicate any cross reactivity (www.wormbase.org) [28].

Finally, the fact that nhr-31(+/2) heterozygotes displayed similar

EC defects further supports the specificity of this RNAi construct

(Figure S1).

Construction of GFP Reporter Plasmid
An nhr-31 promoter/gfp reporter construct (Pnhr-31::gfp) was

generated by fusing ,3 kb of upstream regulatory sequence and

17 base pairs of the first nhr-31 exon to the gfp gene, primers were

created using the nhr-31a.1 predicted isoform. Promoter DNA was

amplified from genomic DNA using the following primers: NR-

31UPGF (59-TAA CTC GAG GAC GCA GGA AAG TCG GCA

GTA GG-39), as the 59 upstream primer and NR-31-ExonI (59-

TCA CCC GGG TAC TCC CAA TCT TCG A-39) as the 39

downstream primer. Amplified DNA was inserted into the L3691

GFP reporter vector (from Andy Fire, Stanford University).

Imaging and Measurement of the Excretory Cell by
Fluorescence Microscopy

The Pnhr-31::gfp reporter vector was introduced into N2 worms

by microinjection at a concentration of 50 ng/ml, worms were

selected by EC fluorescence and no co-injection marker was used.

Worms harboring the Pnhr-31::gfp transgene were examined by both

standard fluorescence microscopy and confocal microscopy.

Images were taken using AxioVision 4.6 software in multi-channel

acquisition mode with an AxioCam MRU camera (Carl Zeiss
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Microimaging). For observation, larval or adult worms were

mounted on glass slides with 2% agarose pads containing azide.

Stack images of animals treated with nhr-31, vha-5, vha-8 and vha-12

RNAi were taken in both the FITC channel (488 nm) and DIC

channels.

To measure excretory cell diameter, control and nhr-31 RNAi

animals expressing Pnhr-31::gfp (5–6 animals) were analyzed by

taking images which captured 50–100 mm of the proximal, middle,

or distal regions of the posterior excretory cell tube. Diameter

measurements were taken every 4–5 mm within the imaged

regions using Zeiss measurement software. Data were plotted

using Origen 5.0 (OrigenLab, Northampton, MA) software, and

data displayed in dot plots reflected values from each independent

measurement, along with the mean, and standard deviation from

the mean.

High-Pressure Freezing Transmission Electron
Microscopy

Day 2 adults or L1 larvae were placed into a 20% BSA/PBS

buffer solution and prepared in a Leica-Impact-2 high-pressure

freezer according to the following protocol: 1) 60 hours in 100%

acetone and uranyl acetate at 290uC. 2) Temperature was

ramped from 290uC to 225uC over the course of 32.5 hours. 3)

Next, sample was incubated at 225uC for 13 hours. 4) Next, the

temperature change was brought from 225uC to 27uC in a

13 hour temperature ramp. Serial sections were post-stained in

uranyl acetate followed by lead citrate. Thin cross sections were

taken from resin-embedded clusters of young adults or L1 larvae.

Sections for nhr-31 RNAi and control RNAi adult animals were

obtained from 5 different animals, and sections for L1 larvae were

also taken from 5 independent animals.

Microarray and QRT–PCR
Synchronized L1 populations were prepared by hypochlorite

bleaching of gravid N2 adults according to established protocols

[6]. Synchronized L1 larvae were grown on control RNAi bacteria

or nhr-31 RNAi until animals reached the early L4 stage of

development. Worms were then harvested in M9, washed five

times and immediately frozen in liquid nitrogen. RNA was

extracted using a TRIZOL based method as described [6]. RNA

was then labeled with Cy3 or Cy5 and hybridized to Washington

University manufactured C. elegans microarrays (http://genome.

wustl.edu). Data were obtained from three independent biological

replicates and analyzed using GenePix Pro 6.0 software (Molecular

Devices, Sunnyvale, CA). Ratios were calculated using back-

ground corrected, and normalized data (global mean).

For QRT-PCR, RNA was extracted and cDNA was prepared

using our previously published protocol [6] with the following

exception: RNA was separated from genomic DNA with a Turbo

DNA free prep kit from Ambion (Austin, TX). qPCR was

performed using a BioRad iCycler (MyiQ Single Color, Bio-Rad

Laboratories, Hercules, CA). The data were analyzed as

previously described [6]. QRT-PCR primers amplified ,100

base pair regions of NHR-31 target genes. Primers were designed

using Primer3 software and calibrated by serial dilution of cDNA

and genomic DNA. Primer sequences are available upon request.

Salt Sensitivity Assays
Worms treated with control RNAi or nhr-31 RNAi from the L1

to L4 stage of development were plated on high salt (500 mM

NaCl) NGM-Lite plates seeded with E. coli. After various periods

of high salt exposure, worms were scored for the ability to survive

when rescued to a standard salt plate. Data for each time point was

obtained from 250 animals. For rescue, worms were collected from

the salt plates using M9 buffer+300 mM NaCl and transferred to

standard NGM plates containing 50 mM NaCl. Worms were

scored for survival after 12 hours of recovery [28].

Nuclear Receptor Response Element Prediction
To identify putative nuclear receptor response elements (NREs),

we use the online computer program NHR-scan (http://nhrscan.

genereg.net), which was first presented in a study by Sandelin and

Wasserman [34]. The promoters of C. elegans vATPase genes were

defined as the sequence between the ATG translational start site of

the vha gene of interest and the beginning or end of the next

upstream gene in the C. elegans genome. For vATPase genes

expressed in operons, the promoter was chosen using the ATG

translational start site of the first gene in the operon. For mouse

promoters, 2000 nucleotides of upstream sequence were extracted

from each vATPase gene. This sequence included 1950 nucleo-

tides upstream of the translational start site +50 nucleotides of

coding sequence. In all cases, the isoform with the most 59

translational start site was selected for promoter sequence

extraction. To calculate and display the consensus half sites shown

in Figure 6, all half site sequences were analyzed using the

WebLogo online program (http://weblogo.berkeley.edu/logo.cgi)

[43].

Supporting Information

Figure S1 DIC image of the excretory cell of an nhr-31(+/2)

mutant shows EC defects similar to those of nhr-31 RNAi animals.

Found at: doi:10.1371/journal.pgen.1000553.s001 (0.14 MB PDF)

Figure S2 Enlarged versions of the EM images shown in the

text.

Found at: doi:10.1371/journal.pgen.1000553.s002 (10.93 MB

PDF)

Table S1 The top upregulated (.3.5 fold) and downregulated

(.2.5 fold) genes in nhr-31 RNAi animals.

Found at: doi:10.1371/journal.pgen.1000553.s003 (0.07 MB

XLS)

Table S2 Of the top 30 downregulated genes, 15 of them

encode subunits of the vacuolar ATPase.

Found at: doi:10.1371/journal.pgen.1000553.s004 (0.04 MB

DOC)
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