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For the past decades, complement activation and complement-mediated destruction of
allograft cells were considered to play a central role in anti-HLA antibody-mediated
rejection (AMR) of kidney transplants. However, also complement-independent
mechanisms are relevant in the downstream immune activation induced by donor-
specific antibodies, such as Fc-gamma receptor (FcγR)-mediated direct cellular
activation. This article reviews the literature regarding FcγR involvement in AMR, and
the potential contribution of FcγR gene polymorphisms to the risk for antibody mediated
rejection of kidney transplants. There is large heterogeneity between the studies, both in
the definition of the clinical phenotypes and in the technical aspects. The study populations
were generally quite small, except for two larger study cohorts, which obviates drawing
firm conclusions regarding the associations between AMR and specific FcγR
polymorphisms. Although FcγR are central in the pathophysiology of AMR, it remains
difficult to identify genetic risk factors for AMR in the recipient’s genome, independent of
clinical risk factors, independent of the donor-recipient genetic mismatch, and in the
presence of powerful immunosuppressive agents. There is a need for larger, multi-center
studies with standardised methods and endpoints to identify potentially relevant FcγR
gene polymorphisms that represent an increased risk for AMR after kidney transplantation.
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INTRODUCTION

Kidney transplantation remains the most cost-effective treatment for patients with end-stage kidney
failure (1). Antibody-mediated rejection (AMR) has been identified as a main reason for this failure
(2–5). The term “AMR” defines allograft rejections caused by donor-specific antibodies (DSAs),
either against anti-human leukocyte antigens (HLA), blood group antigens, or endothelial cell
antigens (6). AMR has been reported to occur in 3%–12% of kidney transplant patients (7) but can be
as high as 50% in patients with HLA incompatible transplants (8–10).
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Complement-mediated destruction of allograft cells induced
by donor-specific anti-HLA antibodies (DSAs) is considered a
key component to this pathophysiology of AMR, next to other
mechanisms including alternative pathways of NK cell activation
and antibody-dependent cellular cytotoxicity (11, 12). C1q binds
to the antigen-antibody complexes on the graft endothelium. This
activates the complement cascade which ultimately produces a
membrane attack complex, initiating osmotic cell lysis. One of the
complement split proteins (C4d) can covalently bind to the
endothelium or basement membrane collagen. The presence of
C4d in the allograft biopsy is therefore regarded as a marker of
recent complement activation (13).

However, it was illustrated that graft survival is also impaired
in patients with DSAs that are not complement-binding, when
compared to patients without antibodies (14, 15). Furthermore,
complement-inhibiting therapies did not effectively prevent
AMR in all patients with non-complement binding DSAs
(16–18). Finally, AMR cases often have no microvascular C4d
deposition (19). Taken together, these findings suggest a role of
complement-independent processes in antibody-mediated
damage of kidney allografts.

Antibodies can also lyse target cells by complement-
independent pathways, through the IgG Fc portion and FcγRs
variably expressed at the surface of natural killer (NK) cells and of
monocytes in a process known as antibody-dependent cell-
mediated cytotoxicity (ADCC) (20–25). The antibody Fc
region can bind to receptors on monocytes, macrophages,
neutrophils, and NK cells. Through interaction between the Fc
portion of the coating antibody and the Fc gamma receptor on
NK cells, a signalling cascade is initiated that results in the release

of cytotoxic granules (containing perforin, granzyme B) and
production of cytokines (TNF-alpha and IFN-gamma),
ultimately inducing apoptosis of the antibody-coated cell (22).

There are both inhibiting and activating FcγRs which differ in
IgG affinity and signalling mechanisms. These signalling
mechanisms can initiate various effector mechanisms
including production of reactive oxygen species, cytokines and
cytotoxins, immune cell recruitment and activation (Figure 1).
Further evidence through histological appearances of FcγR
expressing cells in AMR, transcriptomic signatures of
FcγRIIIA transcripts in AMR and genetic association studies
in transplantation that show a number of single nucleotide
polymorphisms (SNPs) in FcγRs, have led to increasing
evidence of the major role that FcγRs play in AMR (26–39).

Most SNPs or genetic polymorphisms have no effect on health
or disease development, but some of them can act as biological
markers by leading to variations in the amino acid sequence of a
gene. This way, certain SNPs can be associated with certain
diseases or a predisposition to develop a disease later. Several
FcγR gene polymorphisms have been shown to change the
functionality of FcγRs (29, 39, 40). Decreased immune cell
activation, altered binding characteristics to immunoglobulins
and altered receptor functions are some examples of how FcγRs
can be influenced by certain SNPs. This article reviews the
literature on the role of a complement-independent process
via FcγRs in the pathophysiology of AMR, and the possible
role of FcγR gene polymorphisms in the risk of rejection,
AMR and ADCC. In 2016, Castro-Dopico et al reported on
this topic (41). We re-evaluated the literature, including more
recent references.

FIGURE 1 |Cellular distribution and function of FcγRs [Adapted fromCastro-Dopico et al. (41)]. Multiple immune cells are implicated in AMR and express FcγRs. By
promoting cell-type-specific immunological mechanisms they contribute to allograft rejection. B-cells only contain the inhibitory FcγRIIB, which is why they lead to BCR
inhibition and apoptosis. NK-cells only express activating FcγRs which is why they only lead to activation of immunological mechanisms such as ADCC and cytokine
production. Dendritic cells, macrophages and monocytes contain both activating and inhibitory FcγRs. ADCC, antibody-dependent cellular cytotoxicity; ROS,
reactive oxygen species; NET, neutrophil extracellular traps; BCR, B-cell receptor.
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MATERIALS AND METHODS

A comprehensive literature search was performed by utilizing the
following databases: PubMed, Embase and Web of Science core
collection.

Our PubMed/MEDLINE search string consisted of the
following terms: (“Receptors, IgG”[Mesh] OR “FcγR IIA”
[Supplementary Concept] OR “FcγR IIB” [Supplementary
Concept] OR “FcγR IIC” [Supplementary Concept] OR
“FCΓR3A protein, human” [Supplementary Concept] OR
“FCΓR3B protein, human” [Supplementary Concept] OR
“FCΓR1A protein, human” [Supplementary Concept] OR
“FcγR1 protein, mouse” [Supplementary Concept] OR “FcγR3
protein, mouse” [Supplementary Concept] OR “FcγR2a protein,
rat” [Supplementary Concept] OR “Fcγ” OR “Fc gamma” OR
“Fcgamma”) AND (“Graft Rejection”[Mesh] OR [(“transplant*”
OR “graft*”) AND “reject*”)] AND (“kidney”OR “renal”). 55 hits
were found on 14/04/2021.

Our Embase search string consisted of the following terms: “Fc
receptor”/exp OR “Fc receptor”: ti, ab, kw OR “Fc receptor IIa”/
exp OR “Fc receptor Iib”/exp OR “Fc receptor Iic”: ti, ab, kw OR
“fc fragment receptor”: ti, ab, kw OR “FcγR”: ti, ab, kw OR “IgG fc
receptor”: ti, ab, kw OR “immunoglobulin fc fragment receptor”:
ti, ab, kw OR “immunoglobulin g fc receptor”: ti, ab, kw OR
“lymphocyte fc receptor”: ti, ab, kw OR “FcγR”: ti, ab, kw OR
“FCΓR1A protein, human”: ti, ab, kw OR “Fc gamma”: ti, ab, kw
OR “FCΓR3B protein, human”: ti, ab, kw OR “Fcγ”: ti, ab, kw
AND “graft rejection”/exp OR “allograft rejection”: ti, ab, kw OR
“graft reaction”: ti, ab, kw OR “allograft reaction”: ti, ab, kw OR
“transplant* rejection”: ti, ab, kw AND “kidney”/exp OR “Renal”:
ti, ab, kw. 70 hits were found on 07 March 2021.

Our Web of Science core collection search string consisted of
the following terms: TS=(“Fc receptor” OR “Fc receptor IIa”/exp
OR “Fc receptor IIb”/exp OR “Fc receptor IIc” OR “fc fragment
receptor” OR “FcγR”OR “IgG fc receptor” OR “immunoglobulin
fc fragment receptor” OR “immunoglobulin g fc receptor” OR
“lymphocyte fc receptor” OR “FcγR” OR “FCΓR1A protein,
human” OR “Fc gamma” OR “FCΓR3B protein, human” OR
“Fcγ”). TS = (“graft rejection” OR “allograft rejection” OR “graft
reaction” OR “allograft reaction” OR “transplant* rejection”).
TS = (“kidney” OR “Renal”). 47 hits were found on 07 March 2021.

Study Selection
Articles from databases were identified and selected applying
subsequent steps:

1) Identification of titles of records through database searching
2) Removal of duplicates
3) Screening and selection of abstracts. Abstracts had to contain

information regarding both FcγRs and kidney transplant
rejection (preferably AMR).

4) Judgement for eligibility through full-text articles; texts had to
contain a thorough description of an FcγR polymorphism and
AMR. They needed to report the incidence of the
polymorphism comparing kidney transplant recipients with
rejection to kidney transplant recipients without rejection.

5) Final inclusion in study.

After careful consideration, only five articles were included in
the review. Multiple reviews and other articles were used to
provide a framework and to refer to.

RESULTS

Fc-Gamma Receptor and Their
Mechanisms of Action
FcγRs are glycoproteins that can be found on the surface of
hematopoietic cells and bind to the Fc portion of IgG antibodies.
This facilitates a link between the humoral and cellular immune
systems (42). The family of FcγRs is involved in antigen
presentation, regulation of B cell activation and initiation of
intracellular signalling pathways which subsequently lead to
immune cell activation and maturation (43). Classical FcγRs
include an inhibitory receptor (FcγRIIB) and multiple
activating receptors (FcγRI, FcγRIIA, FcγRIIC, FcγRIIIA, and
FcγRIIIB).

FcγRs have binding affinity for IgG and can recognize IgG-
coated targets, such as opsonized pathogens or immune
complexes. After cross-linking of activating FcγRs, tyrosine on
the immunoreceptor tyrosine-based activationmotif (ITAM) gets
phosphorylated. Due note that cross-linking of FcγRs only occurs
with aggregated IgG, such as opsonised cells or immune
complexes, rather than monomeric IgG (44). Then both Src-
kinases Lyn and subsequent recruitment of SH2-containing
kinases are responsible for activating ITAM by
phosphorylation. ITAMs are located either on the intracellular
domain of the FcγRs (e.g., FcγRIIA) or in the associated common
γ-chain (e.g., FcγRIIIA). ITAM-P leads to key recruitment of SH2
domain containing kinases, most notably spleen tyrosine kinase
(SYK), and the subsequent activation of multiple downstream
signalling mediators, including PI3K and PLCγ. All this leads to
triggering protein kinase C (PKC) and initiating calcium flux (44,
45). The subsequent mechanisms differ between the different
types of immune cells that express FcγR (Figure 1). Differences in
these domains account for differences in function of FcyR. In
contrast to activating FcγRs, FcγRIIB (inhibitory receptor)
contains an intra-cellular immunoreceptor tyrosine-based
inhibitory motif (ITIM). Cross-linking of FcγRIIB with
activating FcγR leads to Src kinases phosphorylating ITIM and
recruiting of inositol phosphatases to neutralise the activating
signals (46). Therefore, the FcγRIIB can act as a supplementary
regulatory mechanism and suppresses IgG-mediated
inflammation (27).

Four different IgG subclasses in humans (IgG1-IgG4) are
responsible for the action mechanism of FcγRs. The four IgG
subclasses express different affinities to different receptors. IgG1
and IgG3 can efficiently activate the classical route of
complement, while IgG2 and IgG4 do this less efficiently or
only under certain conditions, as seen with IgG2. This can be
explained by the reduced binding of C1q to IgG2 and IgG4 (47).

FcγRs are broadly expressed by hematopoietic cells such as
natural killer (NK) cells, mast cells, macrophages, dendritic cells,
neutrophils, monocytes, endothelial cells and B-cells (44). Cells
can vary in the expression of different types of FcγRs and the
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levels of expression of these FcγRs, allowing them tomodulate the
activation threshold when interacting with immune complexes
(48). The activation state of FcγR-expressing cells is tightly
controlled by the balance between activating and
inhibitory FcγR, with the exception of NK cells (49). NK
cells express only FcγRIIIA and no inhibitory FcγR. The
distribution of the FcγRs across different cell types is
illustrated in Figure 1. FcγR-ligated immune cells can
directly activate the endothelium by binding to DSA and
cause AMR through ADCC without interference of the
complement-pathway.

Monocytes/Macrophages
Monocytes are innate immune cells that work as potent
phagocytes and that can further differentiate into either
macrophages or dendritic cells (50). Several studies suggest
that monocyte infiltration is a key component of AMR after
transplantation (34, 51, 52).

Macrophages express FcγRIIA, FcγRIIIA and FcγRIIB, with
the activating FcγRs being more dominantly expressed.
Activation of FcγRs leads to phagocytosis and cytokine
release (TNF, IL6, IL-1alpha and neutrophil
chemoattractants). These responses are counteracted by
the inhibiting FcγRIIB (53). In dendritic cells this
inhibiting FcγRIIB is dominantly expressed and suppresses
immune-complex-mediated pro-inflammatory cytokine
release, T-cell stimulation and migration (54–56).

Neutrophils
Human neutrophils express both FcγRI, FcγRIIA and FcγRIIIB.
Activation of FcγRs on neutrophils leads to increased neutrophil
adhesion to endothelial cells, cytokine and superoxide
production, phagocytosis and neutrophil extracellular trap
formation (NETosis) (57–61). When neutrophil infiltration in
AMR is present, they are typically found in peritubular capillary
lumens (62, 63).

Natural Killer Cells
NK cells primarily express activating FcγRIIIA and in some
individuals a small fraction of NK cells may express FcγRIIC
(64). As they do not express inhibitory FcγR, they could be the
dominant effector cell in ADCC (65). When stimulated through
their FcγR, they produce monocyte chemo-attractants CCL3,
CCL4 and three effector cytokines; IFN-y, TNF and CSF2 (66).

B-Cells
The inhibitory FcγRIIB is the only FcγR expressed by B-cells.
After crosslinking with B-cell receptors, the B-cell activation
threshold will increase and suppress further antibody
production (27).

Other Cell Types
Eosinophils express FcγRI, FcγRIIA, FcγRIIB and FcγRIIIB.
Binding to antibodies induces degranulation. Platelets express
FcγRIIA. Mast cells express FcγRIIB and FcγRIIIB. The role of
eosinophils, platelets and mast cells seems limited in the process
of AMR.

Different Fc-Gamma Receptor
Polymorphisms Associated With
Antibody-Mediated Rejection
Genetic variation in the genes of human FcγRs can alter receptor
expression, function and affinity to IgG (27, 67). FcγR single
nucleotide polymorphisms (SNPs) are now considered a
hereditary risk factor for infectious and autoimmune diseases
(68, 69). Also in allo-immune processes, genetic variations in
FcγR genes could lead to different susceptibility to AMR. FcγRI
has three non-synonymous SNP mutations (rs7531523,
rs12078005, and rs142350980) but no studies investigating the
association of these polymorphisms with AMR have been
published (70). Furthermore, FcγRIIC has one SNP in intron
7 which has an effect on clearance of parasitaemia, but no studies
have been published regarding the link with AMR (71). As there is
currently no literature available on their association with AMR,
they are not further discussed in this literature review.

FcγRIIA
FcγRIIA is a key FcγR for IgG-mediated responses in
macrophages, monocytes or monocyte-derived dendritic cells
(3, 72). FcγRIIA can also be found on the surface of
neutrophils, platelets, basophils, eosinophils and other cells
(73). The FcγRII gene is located on chromosome 1q23.
Genetic variation in this gene locus is linked with several
autoimmune and inflammatory diseases (68). The best-studied
functionally relevant SNP, rs1801274, has been described in the
extracellular domain of FcγRIIA, and exchanges adenine (A) to
guanine (G) in the coding region in exon 4 of chromosome 1
(q23-24). As a result, histidine (H) is switched into an arginine
(R) amino acid at position 131 in the immunoglobulin-like
domain (H/R131), leading to altered receptor affinity and
specificity (29). In contrast to FcγRIIIA, FcγRIIA
polymorphisms seems to have less effect on AMR outcomes.
This difference could be explained by the higher affinity of
FcγRIIA for IgG1 instead of IgG3, opposite to the affinity
observed in FcγRIIIA polymorphisms (74). The lack of
inhibitory receptors on NK cells, who primarily express
FcγRIIIA and lack inhibitory FcγRIIB expression, could
contribute further to this observation (75).

Three studies investigated the association between the allelic
frequency of this FcγRIIA H/R131 polymorphism in recipients
with stable graft function compared to kidney transplant
recipients with rejection (Table 1). First, Pawlik et al.
conducted a case-control study in a population of 82 renal
transplant recipients and found that the R/R131 genotype was
associated with longer graft survival, which they hypothesized to
be mechanistically explained by a lower affinity of this FcyR and
less cytokine release, leading to a decreased immune response
(39). The probability of graft survival over 7 years was 1.74-fold
greater among subjects with the R/R131 polymorphism,
compared to the H/H131 polymorphism. Next, and in
contrast with their previous results, Pawlik et al. conducted
another case-control study of 121 renal transplant recipients
and found no significant differences in allele frequency
between recipients with chronic rejection and recipients with
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stable graft function (28). However, Yuan et al., showed a
significant positive association of the R/R131 genotype with
acute kidney rejection (29). When homozygous, higher trends
towards acute rejection were also observed. They noted that only
9 out of 46 (20%) non-rejectors had the FcγRIIA homozygote
R/R131 polymorphism, compared to 24 out of 53 (45%) rejectors
having the R/R131 polymorphism. The frequency of the R/R131
polymorphism was thus significantly higher in the rejector group
compared to the non-rejector group. Finally, a recent large
multicentre retrospective study with 1,940 kidney transplant
recipients, found no association between the FcγRIIA H/R131
polymorphism and death-censored graft survival, graft function
or requirement of rejection treatment (76). This study comprised
an unselected cohort analysis with a patient cohort derived from
the Collaborative Transplant Study (CTS, www.
ctstransplant.org).

FcγRIIIA
FcγIIIA (CD16) is expressed on monocytes/macrophages,
dendritic cells, and NK-cells. FcγRIIIA is the only human
activating FcγR that has a preferential binding to IgG3. In
kidney transplantation, it is suggested that IgG3- DSA positive
recipients show more intense microvascular inflammation (77).
These findings further suggest the key role of NK cells, monocytes
and macrophages in orchestrating the inflammation observed in
AMR and may also be, at least in part, the culprits behind the
more damaging effects seen with complement-fixing HLA
antibodies (15). This further contributes to our hypothesis that
different effector mechanisms together lead to graft loss, and not
complement-activation alone.

A functional SNP (rs396991) in the gene of FcγRIIIA
substitutes a valine (V) to phenylalanine (P) amino acid at
position 158 (V/F158), alters the affinity to IgG1 and IgG3
and thus influences immune cell activation (74, 78). For
example, Arnold et al. described greater frequency of
peritubular capillaritis when the FcγIIIA V158 allele was
present due to greater immune cell recruitment in peritubular

capillaries (79). Two studies discussed the association between the
FcγRIIIA V/F158 polymorphism and AMR after kidney
transplantation (Table 2). A case-control study by Litjens
et al. linked the V-allele to an increased expression of
FcγRIIIA on NK cells and to an increased glomerulitis score
in a study of 141 kidney transplant patients (40). Confirming the
earlier associations seen in Arnold et al. (79), they observed an
association between V-allele and decreased kidney allograft
survival after diagnosis of chronic AMR, but the 158V/V
genotype itself did not appear to be a risk factor for the
development of chronic AMR. Other than the positive
association of this polymorphism and increased risk of graft
failure after diagnosis of chronic AMR (40), also in heart and
lung transplantation clinical associations of cardiac allograft
vasculopathy and acute lung transplant rejection with
FcγRIIIA polymorphisms have been observed (80, 81). This
association between the V/F158 SNP in FcγRIIIA and
increased risk of graft failure could be mediated by target cells
opsonizing IgG antibodies to bind to FcγRIIIA on immune cells,
followed by the release of cytotoxic granules which trigger
apoptosis of the target cells. FCGR3A gene expression is also
increased in biopsies diagnosed with AMR (36–38). Especially
NK cells, which do not express the inhibitory FcγRIIB and thus
cannot compensate for overactive FcγRIIIA signalling, could be
major contributors to the deleterious effect of this polymorphism.

Despite these first suggestions of a significant association
between the FcγRIIIA V/F158 polymorphism and AMR and
outcome after kidney transplantation, a more recent and larger
study included 1940 kidney transplant recipients (76). This study
could however not confirm any association of the FcγRIIIA
V/F158 polymorphism and impaired allograft function or
increased need for rejection treatment within the first year
after transplantation. Also in a subanalysis in 438 patients
with higher risk of AMR, there was no association of
FcγRIIIA polymorphisms with 10-year death-censored graft
survival in this subgroup. We do note that Wahrmann et al.
didn’t specifically investigate different mechanisms responsible

TABLE 1 | Distribution of the FcγRIIA genotypes and allele frequencies in patients with vs. without rejection. Numbers are noted as follows: X/Y (%). X = the number of
patients with the specific polymorphism; Y = the total number of patients (study recipients or control population); % = the fraction is calculated to the percentage of
people who carry the polymorphism; NS = not significant, X = the number of patients with the specific polymorphism. The p-value reflects the significance in differences of the
allele frequencies between cases and controls.

H/H131 H/R131 R/R131 p-value Type of rejection

Cases Controls Cases Controls Cases Controls

Yuan et al. (29)
(Case-control
study)

7/53 (13%) kidney
transplant recipients
with acute rejection

13/46 (28%) recipient
non-rejectors

22/53 (42%) 24/46 (52%) 24/53 (45%) 9/46 (20%) p < 0.005 Acute kidney rejection
No DSA information
present

Pawlik et al. (28)
(Case-control
study)

19/68 (27.9%) kidney
transplant recipients
with chronic allograft
rejection

16/53 (30.2%)
recipient non-rejectors

35/68 (51.5%) 26/53 (49.1%) 14/68 (20.6%) 11/53 (20.7%) NS Chronic kidney graft
rejection
No DSA information
present

Wahrmann
et al. (76)
(Unselected
cohort study)

55/229 (24%) kidney
transplant recipients
showing need of
rejection treatment
during 1 year in a
cohort of 1010 kidney
transplant recipients

206/781 (26.4%)
kidney transplant
recipients showing no
need of rejection
treatment during
1 year in a cohort of
1010 kidney transplant
recipients

127/229 (55.5%) 412/781 (52.8%) 47/229 (20.5%) 163/781 (20.9%) p = 0.69 Recipients treated for
rejection within the first
year after
transplantation
No DSA information
present
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for allograft loss, like microvascular inflammation, whereas
Litjens et al. did (40, 76).

FcγRIIIB
FcγRIIIB is expressed on neutrophils and eosinophils. The
main function of FcγRIIIB is immune cell clearance of
all cells that contain immunoglobulins recognized by
FcγRIIIB. By triggering internalisation of captured immune
complexes, degradation of antigen-antibody complexes
can occur (44). Four amino acid substitutions lead to
differences in glycosylation resulting in a FcγRIIIB NA1/NA2
polymorphism. NA1 is more efficient in binding to immune
complexes containing IgG1 and IgG3 than NA2 and reduced
binding affinity of NA2 genotype could potentially mean that
clearance of immune complexes may be reduced (82–85).
Furthermore, NA2/NA2 homozygotes show a lower capacity
to mediate phagocytosis (86, 87). Because the expression of
FcγRIIIB is limited to neutrophils and eosinophils, an
association with FcγRIIIB polymorphisms and AMR is not
expected. This is due to the fact that neutrophils are rarely
observed in late AMR (79). Two studies investigated the
difference in incidence of this polymorphism in FcγRIIIB
between kidney transplant recipients with stable graft
function and kidney transplant recipients with rejection (76,
88) (Table 3). First, a case-control study by Xu et al. showed that
NA1/NA2 genotype frequency and allele frequency were not
related to acute rejection vs. well-functional grafts in kidney
transplant recipients. More recently, Wahrmann et al.
confirmed the lack of association between the FcγRIIIB NA1/
NA2 polymorphism and death-censored kidney graft survival,
graft function or requirement of rejection treatment, in a large
cohort of 1,940 kidney transplant recipients.

FcγRIIB
FcγRIIB is the only inhibitory FcγR and can be found on B cells,
mast cells, macrophages, neutrophils, and eosinophils. The
rs1050501 SNP induces a threonine to isoleucine substitution
at position 232. Because this occurs within the transmembrane
domain of the receptor, FcγRIIB I/T232 is responsible for the
dysfunction of the receptor (89, 90). Dysfunction of this

inhibitory receptor could theoretically lead to increased
immune activation and associations with several autoimmune
diseases have been found such as systemic lupus erythematosus,
MS and ITP (87, 91–94). Murine studies previously showed
associations between FcγRIIB I/T232 and outcomes on kidney
allograft by raising the susceptibility to develop chronic AMR
(95), but these results could not be replicated in a large human
study by Clatworthy et al. (96). They conducted an analysis of
three cohorts of 2,851 Caucasian transplant recipients, 570 Afro-
Caribbean transplant recipients and 236 patients with a diagnosis
of SLE derived from the CTS (96). No association could be found
between presence of the FcγRIIB I/T232 polymorphism and
differences in 10-year transplant survival. This contradiction
could be explained by the observation that expression,
structure, associated signalling molecules and most
importantly, affinity for different IgG subclasses differ between
murine and human FcγRs (97–99). They do however note that
their failure to detect an association could be because their effect
size of this SNP is smaller than estimated by their power
calculations (96). An increased number of patients in a follow-
up study could more accurately detect differences or further
prove that no associations can be found.

DISCUSSION

Antibody-dependent cellular cytotoxicity is considered to play
a major role in the pathophysiology of AMR after kidney
transplantation, through the involvement of FcγRs. The
mechanism of action and cellular expression of these
receptors is well known. Several functional SNPs have been
described in these FcγRs and could theoretically impact the
risk of AMR after kidney transplantation. Although several
studies have addressed this question, it remains however
difficult to make conclusions about the role of FcγRs
polymorphisms in the risk of AMR. Earlier and smaller
studies (28, 30, 40, 88) described associations between FcγR
polymorphisms and microcirculation inflammation. However,
Wahrmann et al. did not confirm associations between these
FcγR gene variants and early rejection, graft function, or long-

TABLE 2 | Distribution of the FcγRIIIA genotypes and allele frequencies in patients with vs. without rejection. Numbers are noted as follows: X/Y (%). X = the number of
patients with the specific polymorphism; Y = the total number of patients (study recipients or control population); % = the fraction is calculated to the percentage of
people who carry the polymorphism; NS = not significant, X = the number of patients with the specific polymorphism. The p-value reflects the significance in differences of the
allele frequencies between cases and controls.

V/V158 V/F158 F/F158 p-value Type of rejection

Cases Controls Cases Controls Cases Controls

Litjens et al. (40)
(Case-control
study)

21/133 (15.8%) kidney
transplant recipients with
c-aAMR

17/116 (14.7%) recipient
non-rejectors

59/133 (44.4%) 46/116 (48.7%) 53/133 (39.8%) 53/116 (45.7%) p = 0.65 Chronic active AMR.
DSA information
present

Wahrmann et al.
(76) (Unselected
cohort study)

29/229 (12.7%) kidney
transplant recipients
showing need of rejection
treatment during 1 year in
a cohort of 1010 kidney
transplant recipients

105/781 (13.4%) kidney
transplant recipients
showing no need of
rejection treatment during
1 year in a cohort of 1010
kidney transplant
recipients

104/229 (45.4%) 350/781 (44.8%) 96/229 (41.9%) 326/781 (37.4%) p = 0.85 Recipients treated for
rejection within the
first year after
transplantation
No DSA information
present
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term allograft failure (76). Even in patients who were sensitised
and thus at higher risk for AMR, no associations were found
with transplant outcomes.

The discrepancy between the studies are primarily explained
by the wide heterogeneity in the choice and definition of the
primary endpoints (graft dysfunction, acute and chronic
rejection, graft survival time, . . .), which make comparisons
between the studies complex. If for instance the rejection
subtype is not evaluated, as was the case for Wahrmann et al.
(76), it could be that potential associations between
polymorphisms and subtypes of rejection are missed. Other
sources of heterogeneity include demographic differences
between the cohorts, differences in study design, different
background immunological risk of the included patients,
numbers of centres, era, etc. Study populations were overall
rather small with the exception of the studies by Clatworthy
et al. and Wahrmann et al. (76, 96). Also, when AMR is studied,
detailed information on DSA is necessary, which is often
not available (100). This is a major limitation of the
literature on this topic, which importantly hampers
making strong conclusions on the association of FcγR
polymorphisms and AMR. This could explain why most
studies, including Wahrmann et al., have failed to find any
associations, while studies where detailed DSA information
was available described significant associations between FcγR
polymorphisms and the risk of prognosis of AMR. More
systematic research on larger-scale collaborative cohorts,
and detailed phenotyping of the cases are needed.

In conclusion, our literature review indicates a role of FcγRs in
kidney transplant rejection, and the theoretical relevance of the

FcγRs polymorphisms in AMR after kidney transplantation.
However, in the absence of robust and sufficiently detailed
and large-scale studies assessing the actual association of the
polymorphisms with well-defined clinical events, we cannot make
any robust conclusion on the clinical relevance of these
polymorphisms. Furthermore, the two largest, multicenter
studies, could not provide evidence for functional FcγR
polymorphisms and therefore no impact on incidence of
AMR. More systematic large and multi-center studies are
needed to robustly determine the potential role of FcγR
polymorphisms in the risk of AMR after kidney
transplantation, independent of clinical risk factors and the
donor-recipient genetic mismatch and in presence of potent
immunosuppressive agents, but most importantly, with notion
of DSA present.
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