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Abstract

Alzheimer’s disease (AD) is a complicated progressive neurodegeneration disorder. To con-

front AD, scientists are searching for multi-target-directed ligands (MTDLs) to delay disease

progression. The in silico prediction of chemical-protein interactions (CPI) can accelerate

target identification and drug discovery. Previously, we developed 100 binary classifiers to

predict the CPI for 25 key targets against AD using the multi-target quantitative structure-

activity relationship (mt-QSAR) method. In this investigation, we aimed to apply the mt-

QSAR method to enlarge the model library to predict CPI towards AD. Another 104 binary

classifiers were further constructed to predict the CPI for 26 preclinical AD targets based on

the naive Bayesian (NB) and recursive partitioning (RP) algorithms. The internal 5-fold

cross-validation and external test set validation were applied to evaluate the performance of

the training sets and test set, respectively. The area under the receiver operating character-

istic curve (ROC) for the test sets ranged from 0.629 to 1.0, with an average of 0.903. In

addition, we developed a web server named AlzhCPI to integrate the comprehensive infor-

mation of approximately 204 binary classifiers, which has potential applications in network

pharmacology and drug repositioning. AlzhCPI is available online at http://rcidm.org/

AlzhCPI/index.html. To illustrate the applicability of AlzhCPI, the developed system was

employed for the systems pharmacology-based investigation of shichangpu against AD to

enhance the understanding of the mechanisms of action of shichangpu from a holistic

perspective.

PLOS ONE | https://doi.org/10.1371/journal.pone.0178347 May 25, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Fang J, Wang L, Li Y, Lian W, Pang X,

Wang H, et al. (2017) AlzhCPI: A knowledge base

for predicting chemical-protein interactions

towards Alzheimer’s disease. PLoS ONE 12(5):

e0178347. https://doi.org/10.1371/journal.

pone.0178347

Editor: Jinn-Moon Yang, National Chiao Tung

University College of Biological Science and

Technology, TAIWAN

Received: October 28, 2016

Accepted: May 11, 2017

Published: May 25, 2017

Copyright: © 2017 Fang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the National

Natural Science Foundation of China (No.

81603318, No. 81673627, No. 81473740), CAMS

Initiative for Innovative Medicine (No.2016-I2M-3-

007), Guangdong Provincial Major Science and

Technology for Special Program of China

(No.2012A080202017), and South China Chinese

http://rcidm.org/AlzhCPI/index.html
http://rcidm.org/AlzhCPI/index.html
https://doi.org/10.1371/journal.pone.0178347
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178347&domain=pdf&date_stamp=2017-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178347&domain=pdf&date_stamp=2017-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178347&domain=pdf&date_stamp=2017-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178347&domain=pdf&date_stamp=2017-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178347&domain=pdf&date_stamp=2017-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178347&domain=pdf&date_stamp=2017-05-25
https://doi.org/10.1371/journal.pone.0178347
https://doi.org/10.1371/journal.pone.0178347
http://creativecommons.org/licenses/by/4.0/


Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease in elderly people,

which is accompanied by the progressive impairment of memory and cognitive function [1].

The pathological hallmarks of AD are mainly characterized by extracellular senile plaques

(SPs) and intracellular neurofibrillary tangles (NFTs), as well as selective cholinergic neuronal

loss [2]. Current drugs for AD treatment that target cholinergic and glutamatergic neurotrans-

mission, such as donepezil and memantine, show limited benefits to most AD patients [3, 4].

Therefore, there is an urgent need to develop an effective treatment that could not only

improve symptoms but also modify the disease process.

The aetiology of AD is multifactorial. Considering the complexity of AD, the classic “one

drug, one target” solution is not effective enough [5]. Indeed, many research projects in the

field have been focused on developing multi-target/multifunctional therapies to modify the

disease process [6–9]. Experimental identification of hits that interact with multiple proteins is

costly, time consuming, and labour intensive. In silico target prediction is a fast and cheap

alternative to experimental target identification approaches, which could accelerate the discov-

ery of “multi-target-directed ligands (MTDLs)” against AD.

The central issue of target prediction is to identify the chemical-protein interactions (CPI)

between chemicals and proteins. Two main computational methods are used to predict the

CPI for a given ligand, which were summarized by a recent review [10]. The methods are the

ligand-based target prediction (LBTP) approach [11, 12] and the structure-based target predic-

tion (SBTP) approach [13, 14]. As an LPTP approach, the multi-target quantitative structure-

activity relationship (mt-QSAR) method is highly predictive and convenient and can simulta-

neously predict activities against different targets by using large and heterogeneous chemical

datasets [15]. Cheng et al. built 200 mt-QSAR models for 100 GPCRs and 100 kinases using

the support vector machine (SVM) algorithm and found that the models performed better

than that built using the chemogenomic method [16].

Inspired by Cheng’s work [16], we built 100 binary classifiers to predict the chemical-pro-

tein interactions for 25 key targets against AD using the mt-QSAR method. The validated

models were used to explore the polypharmacology against AD, and the prediction results

were confirmed by the reported bioactivity data and our in vitro experimental validation,

resulting in several highly potent MTDLs [17]. However, there are still some pitfalls and disad-

vantages that limit their application. First, the models only include drug candidate targets that

entered into phase I clinical trials, excluding those in preclinical trials. Second, it is inconve-

nient and unscientific that no criteria for target naming and classification are defined. Further-

more, no publicly available knowledge base has been developed to integrate the binary

classifiers that we built. Thus, it is still necessary to improve and update this research to predict

CPI towards AD.

The current work aims to apply the mt-QSAR method to enlarge the model system

(AlzhCPI) to predict CPI towards AD. The schematic workflow of AlzhCPI is shown in Fig 1.

Based on the naive Bayesian (NB) and recursive partitioning (RP) algorithms, the updated

system assembled 204 binary classifiers to integrate the chemical and pharmacological infor-

mation derived from the BindingDB database. All developed classifiers were validated by

5-fold cross-validation and test set validation. To provide a free service for the scientific com-

munity, a web server named AlzhCPI was developed to integrate comprehensive information

approximately 204 binary classifiers into a web-based information system. To illustrate ex-

amples of AlzhCPI, the developed system was employed for systems pharmacology-based

investigation of shichangpu against AD, which aided in analysing the mechanisms of action of

shichangpu.
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Materials and methods

Data set construction

Following a similar procedure to the previous study, the Thomson Reuters Integrity Database

[18], the Therapeutic Target Database (TTD) [19], and text mining from references [20–22]

were used to collect targets for AD in preclinical trials, resulting in 26 preclinical targets.

Together with 25 important targets that had entered into at least phase I clinical trials, 51 tar-

gets related to AD were obtained (Fig 2). After that, the names of the targets were imported

into the UniProt database [23] to acquire the corresponding encoding gene, UniProt ID, entry

name, and standardized protein name (S1 Table). The chemical structures and bioactivity data

of the ligands for the 26 preclinical targets were downloaded from the Binding Database

(http://www.bindingdb.org, accessed July 2015) [24].

The ligands were standardized using the following criteria: (i) duplicate molecules were

deleted; (ii) salts were converted to the corresponding acid or base and solvent molecules were

removed from hydrates; and (iii) the molecule was considered to be positive (designated +1) if

its Ki, EC50 or IC50� 10 μM. After filtering, 21,468 active ligands were got. The decoy com-

pounds (designated -1) for 26 targets were mainly generated through three ways (S2 Table): (i)

randomly extracted from the specs database; (ii) directly extracted from DUD subsets; and (iii)

generated in the DUD online database with known active compounds. The ratio of decoys to

active ligands is 3. Both the active and decoy compounds were randomly divided into two

groups (training set and test set at a ratio of 3).

Chemical descriptors calculation

Two kinds of fingerprints were calculated for the description of the small molecules. The first

was the ECFP_6 fingerprint, which was calculated by the Discovery Studio 4.0 software [25].

Extended connectivity fingerprints (ECFP) represents a much larger set of features than a set

of predefined substructures. The other was the MACCS fingerprint computed by PaDEL-De-

scriptor 2.18 [26]. MACCS used a dictionary of MDL Public Keys, which contains the 166

most common substructure patterns. A detailed description of these fingerprints can be found

in the original literature [27, 28].

Fig 1. The schematic workflow of AlzhCPI to predict cheimical-protein interactions toward

Alzheimer’s disease based on the multitarget quantitative structure-activity relationships (mt-QSAR).

https://doi.org/10.1371/journal.pone.0178347.g001
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mt-QSAR method

In traditional QSAR studies, one binary classifier can only predict the activity of a compound

against one specific target. The essence of mt-QSAR is to decompose the multi-label problem

into multiple binary classification problems. As a consequence, to predict one molecule against

26 preclinical targets related to AD, 104 mt-QSAR classifiers were constructed based on two

fingerprints (ECFP_6 and MACCS) and two machine learning algorithms (naive Bayesian and

recursive partitioning). For each target, four classifiers (NB_ECFP6, NB_MACCS, RP_ECFP6

and RP_MACCS) can be used to predict the activity of a given molecule.

Naive Bayesian. The naive Bayesian (NB) models were developed using Discovery Studio

4.1 [25]. An advantage of NB classifiers is that they can process an abundance of data, can

learn fast and are tolerant of random noise. A more detailed introduction can be found in the

following references [29, 30]. In general, NB is a simple probabilistic classifier based on apply-

ing Bayesian theory with strong (naive) independence assumptions, which relates the condi-

tional and marginal probabilities of two events. It generates the posterior probabilities based

on the core of the function, given by Eq 1. The specific meaning of each parameter can be

Fig 2. Summary of 51 key targets in AlzhCPI.

https://doi.org/10.1371/journal.pone.0178347.g002
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found in our previous study.

PðþjA1; . . . ;AnÞ ¼
PðA1; . . . ;AnjþÞPðþÞ

PðA1; . . . ;AnÞ
ð1Þ

Recursive partition. Recursive partitioning (RP), using Discovery Studio 4.1 [25], was

applied to develop decision trees to categorize the data set into active compounds and decoys.

RP is a statistical method for multivariable analysis that operates by developing a decision tree

to classify the members. Models are constructed by successively splitting a data set into smaller

and smaller subsets using a set of hierarchical rules. The result of an RP model is more intuitive

than other algorithms because it can be demonstrated by a “decision tree” or “graph” [31, 32].

In this study, 5-fold cross-validation was adopted to determine the degree of pruning to

obtain the best predictive accuracy. The specific parameters were set as follows: minimum

number of samples at each node and maximum tree depth, where the maximum tree depth

was 10, 20 and 20.

Measurement of prediction quality

The internal 5-fold cross-validation and external test set validation were applied to evaluate

the training sets and test set, respectively. In a 5-fold cross-validation, the entire data set was

equally divided into 80% samples for training the model and 20% data samples for an internal

validation set.

The quality of all Bayesian and RP classifiers was evaluated based on the quantity of true

positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). The sensitivity

(SE), specificity (SP), overall prediction accuracy (Q), and Matthews correlation coefficient

(MCC) were further calculated using Eqs 2–5, respectively.

SE ¼
TP

TPþ FN
ð2Þ

P ¼
TN

TNþ FP
ð3Þ

Q ¼
TPþ TN

TPþ TNþ FPþ FN
ð4Þ

MCC ¼
TP� TN � FN� FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞðTPþ FPÞðTNþ FNÞðTNþ FPÞ

p ð5Þ

In addition, the area under the receiver operating characteristic (ROC) curve (AUC) was

also calculated. The ROC curve shows the separation ability of a binary classifier by iteratively

setting the possible classifier threshold [33]. The AUC value falls in the range of 0.5�AUC�1.

AUC = 1.0 means a perfect classifier, whereas AUC = 0.5 indicates the classifier has no dis-

criminative power.

Compound filtering in the case study

A total of 132 chemical structures in the herb Acorus tatarinowii Schott (shichangpu) were

obtained from the Traditional Chinese Medicine System Pharmacology Database [34]

(TCMSP, http://tcmspnw.com), the potential target database of TCM [35] (TCM-PTD, http://

tcm.zju.edu.cn/ptd), the Traditional Chinese Medicine Integrated Database [36] (TCMID,
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http://www.megabionet.org/tcmid/) and relevant references [37, 38]. Given that the content of

most chemicals was very low, 22 typical ingredients with contents in the volatile oil higher

than 0.1% were kept for further study, according to previous publications [39, 40]. The

SMILES structure of the 22 compounds are given in S3 Table.

Target prediction for approved drugs and shichangpu against AD

The putative targets for approved drugs and shichangpu against AD were predicted by AlzhCPI.

Considering that each classifier has its strengths and weaknesses, it is more reasonable to predict

the activity of one given compound by combining the results from the four classifiers. Herein, a

chemical-protein interaction is defined as a potential interaction if the molecule is predicted to

be active by at least two out of the four single classifiers within one target.

Network construction and analysis

To reveal the underlying mode of action between compounds and targets, compound-target

networks were constructed. The networks were generated and analysed using Cytoscape 3.2.0

[41]. The degree of a node was calculated by the network analysis plugin in Cytoscape, which

defines the number of edges connected to a node, implying the significance of the node in a

network.

Results and discussion

Data set analysis

To explore the chemical diversity of the data set used in the training set and test set, the Tani-

moto similarity index was calculated using the ECFP_2 fingerprint in Discovery Studio 4.1

[25]. Tanimoto similarity index is an indicator to reflect chemical diversity within a data set,

and a smaller value indicates that compounds within the data set have better diversity. As

given in Table 1, similar to previous results for 25 targets, the Tanimoto indexes range from

0.054 to 0.338 for 26 training sets and 0.013 to 0.270 for 26 test sets, which indicates that the

entire data set of 51 targets is diverse enough.

The distribution of the target and ligand space in AlzhCPI was also investigated. As pre-

sented in Fig 3A, the target space (n = 51) can be divided into seven subfamilies according to

multiple mechanisms involved in the pathogenesis of AD [20], namely modulating neuro-

transmission (n = 23), the tau pathology approach (n = 10), Aβ-related treatment approaches

(n = 4), targeting intracellular signalling cascades (n = 3), the anti-inflammatory approach

(n = 7), the mitochondrial dysfunction approach (n = 2), and the metabolic dysfunction

approach (n = 3). Detailed information on the target classification is given in S4 Table. The

number of corresponding ligands for seven subfamilies was 20,473, 4,762, 2,995, 1,169, 5,047,

2,262 and 3,501, respectively (Fig 3B). The above analysis demonstrates that the entire data set

has diverse ligand and target coverage.

The prediction quality for each sub-family were also evaluated by calculating the average

MCC and AUC values in the 5-fold cross-validation (S5 Table). The high performance was

obtained for each sub-family. For example, the average MCC value of NB_ECFP6 models for

each sub-family ranges from 0.952 to 0.990, while their average AUC value falls in the range of

0.994 to 0.999.

Model evaluation and comparison

The classification performance of 104 classifiers for 26 preclinical targets was evaluated, and

the results are given in Tables 2 and 3. In Table 2, the statistical results for the training sets
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were achieved using 5-fold cross-validation. Among the 104 models, 80 classifiers out of 104

(77%) obtain an MCC value higher than 0.8, whereas 98 models out of 104 (94%) give an AUC

value higher than 0.9. In general, the values of MCC range from 0.564 to 1, with an average of

0.887, whereas the values of AUC fall in the range of 0.815 to 1, with an average of 0.968. The

more detailed performance of the training sets can be found in S6 Table. Furthermore, 90 out

of 104 models (87%) have the values of Q higher than 0.9, with an average of 0.954. The results

above indicate that the overall predictive accuracies of the mt-QSAR models are desirable.

To further evaluate the built mt-QSAR models, external test set validation was also performed

to control the quality of the computational model. As shown in Table 3, the test sets of 104 mt-

QSAR classifiers achieve an overall acceptable performance. The MCC values range from 0.114 to

0.965, with an average value of 0.724. The AUC values range from 0.629 to 1.0, with an average of

0.903. Among the 26 preclinical targets, the four models from the insulin-degrading enzyme

(IDE_HUMAN) perform the worst, with average MCC and AUC values of 0.501 and 0.777,

respectively. The main reason for this is that few active compounds are included in the training

set (n = 60), resulting in a narrow application domain of the generated classifiers, which fails to

predict the test set (n = 20). The detailed performance of the test sets is given in S7 Table.

The updated AlzhCPI was composed of 204 binary classifiers towards 54 important tar-

gets related to AD. To compare the performance of four types of classifiers (NB_ECFP6,

NB_MACCS, RP_ECFP6 and RP_MACCS), a boxplot graph (Fig 4A) was plotted to show the

Table 1. Detailed statistical description of the entire data set based on the multi-label classification strategy.

Encoding Gene Training set (ECFP2) Test set (ECFP2)

Inhibitors decoys Total Tanimoto index Inhibitors decoys Total Tanimoto index

HTR2A 2200 6600 8800 0.288 742 2226 2968 0.198

ADORA2A 2360 7080 9440 0.279 783 2349 3132 0.179

CHRM2 380 1140 1520 0.249 128 384 512 0.15

PDE9A 110 330 440 0.114 33 99 132 0.046

GRM2 310 930 1240 0.28 106 318 424 0.234

GRM3 50 150 200 0.305 16 48 64 0.203

MAPK8 780 2340 3120 0.192 266 798 1064 0.091

MAPK9 330 990 1320 0.13 108 324 432 0.06

MAPK10 510 1530 2040 0.183 174 522 696 0.056

MAPK14 40 120 160 0.181 19 57 76 0.171

HS90AA1 750 2250 3000 0.215 248 744 992 0.1361

PIN1 60 180 240 0.125 23 69 92 0.0544

MAPT 40 120 160 0.1125 12 36 48 0.0209

PTGS2 1760 5280 7040 0.542 583 1749 2332 0.164

NOS2 570 1710 2280 0.33 184 552 736 0.288

MPO 60 180 240 0.338 19 57 76 0.211

CHUK 120 360 480 0.173 41 123 164 0.098

IKBKB 600 1800 2400 0.22 198 594 792 0.123

TNF 560 1680 2240 0.184 192 576 768 0.083

ALOX12 120 360 480 0.2 40 120 160 0.119

CTSD 1250 3750 5000 0.246 423 1269 1692 0.093

PDK1 440 1320 1760 0.261 149 447 596 0.2

HMGCR 600 1800 2400 0.233 199 597 796 0.136

IDE 60 180 240 0.054 20 60 80 0.013

PPARG 1730 5190 6920 0.264 582 1746 2328 0.171

CES1 290 870 1160 0.305 100 300 400 0.27

https://doi.org/10.1371/journal.pone.0178347.t001
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minimum, lower quartile (Q1), median quartile (Q2), upper quartile (Q3), and maximum of

MCC values of test sets. As shown in Fig 4A, among the four types of classifiers, the NB_

ECFP6 models (Q2 = 0.953) outperform the other three, and the NB_MACCS classifiers

(Q2 = 0.651) perform the worst. However, there are no obvious differences between the perfor-

mance of RP_ECFP6 (Q2 = 0.816) and RP_MACCS (Q2 = 0.757). As they are based on the

same fingerprint, it is interesting that the NB_ECFP6 (Q2 = 0.953) models outperform RP_

ECFP6 (Q2 = 0.816), whereas the RP_MACCS (Q2 = 0.757) models outperform than NB_

MACCS (Q2 = 0.651). This indicates that the performance of the models derived from the dif-

ferent algorithms depends on which fingerprint is used.

Fig 3. Targets (A) and active compounds (B) classification within the entire data set in AlzhCPI.

https://doi.org/10.1371/journal.pone.0178347.g003
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Similarly, Fig 4B depicts the distributions of the MCC values based on the different finger-

prints and algorithms. The boxplot result indicates that the classifiers (Q2 = 0.879) derived

from the ECFP6 fingerprint outperform those (Q2 = 0.708) derived from the MACCS finger-

print. In addition, there is a significant difference in the performance of the NB (Q2 = 0.832)

and RP (Q2 = 0.798) models. Thus, the same conclusion can be drawn that both algorithms

have their respective advantages. More detailed data for the boxplot can be found in S8 Table.

As discussed above, it is necessary to integrate the results of the four single classifiers to pre-

dict CPIs. In fact, the advantage of integrated model to identify CPI has been displayed in our

previous study, resulting in several highly active MTDLs against AD. In this study, the same

integrated criteria is adopted. We defined CPI as a potential interaction if the molecule was

forecast to be active by at least two out of the four single classifiers within one target [17].

Implementation of AlzhCPI

In the present study, the multi-target quantitative structure-activity relationship (mt-QSAR)

method using naive Bayesian (NB) and recursive partitioning (RP) algorithms was conducted.

A web server, namely AlzhCPI, was designed using HTML and CSS technology to provide all

the results of our models. In this web server, users can find important fragments for multi-tar-

gets against AD given by the naive Bayesian classifier, the case study of the prediction of

Table 2. Performance of the 5-fold cross-validation for 26 targets towards Alzheimer disease using NB and RP classifiers.

Encoding Gene ECFP6 MACCS

NB RP NB RP

MCC AUC MCC AUC MCC AUC MCC AUC

HTR2A 0.992 1 0.944 0.988 0.732 0.948 0.938 0.989

ADORA2A 0.989 1 0.947 0.989 0.89 0.981 0.984 0.995

CHRM2 0.984 0.999 0.877 0.976 0.779 0.963 0.928 0.978

PDE9A 0.994 0.999 0.913 0.97 0.939 0.993 0.947 0.971

GRM2 0.989 1 0.955 0.987 0.754 0.962 0.892 0.979

GRM3 1 1 0.882 0.968 0.906 0.984 0.889 0.961

MAPK8 0.991 1 0.916 0.973 0.707 0.941 0.893 0.966

MAPK9 0.98 0.996 0.852 0.961 0.763 0.945 0.822 0.939

MAPK10 0.952 0.993 0.866 0.956 0.65 0.915 0.849 0.943

MAPK14 1 1 0.905 0.935 0.916 0.98 0.795 0.897

HS90AA1 0.975 0.997 0.928 0.984 0.689 0.941 0.911 0.97

PIN1 0.978 0.999 0.914 0.964 0.978 0.998 0.812 0.922

MAPT 0.937 0.998 0.725 0.886 0.794 0.904 0.724 0.815

PTGS2 0.956 0.997 0.93 0.982 0.698 0.935 0.965 0.991

NOS2 0.976 0.999 0.886 0.968 0.702 0.929 0.887 0.97

MPO 0.956 0.996 0.914 0.963 0.781 0.956 0.918 0.953

CHUK 0.983 0.992 0.955 0.961 0.729 0.971 0.882 0.947

IKBKB 0.993 1 0.932 0.983 0.775 0.954 0.905 0.967

TNF 0.867 0.985 0.814 0.933 0.564 0.854 0.798 0.938

ALOX12 0.989 1 0.924 0.98 0.88 0.986 0.936 0.989

CTSD 0.961 0.994 0.976 0.994 0.729 0.949 0.942 0.992

PDK1 0.995 0.997 0.981 0.996 0.985 0.994 0.983 0.991

HMGCR 0.991 1 0.974 0.996 0.935 0.998 0.97 0.995

IDE 0.851 0.988 0.679 0.881 0.68 0.923 0.753 0.829

PPARG 0.981 0.998 0.955 0.991 0.745 0.947 0.934 0.988

CES1 0.956 0.999 0.934 0.972 0.676 0.913 0.89 0.969

https://doi.org/10.1371/journal.pone.0178347.t002
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polypharmacology for known AD drugs, and the detailed 204 binary classifiers towards 54

important targets related to AD. In addition, the users can also download the XML files of 204

models and import them to the PipelinePilot/Discovery Studio software to predict the activi-

ties of a given molecule. We anticipate that this server will facilitate the target identification

and virtual screening of active compounds for the treatment of AD.

Case study based on AlzhCPI: Systematic analysis of the multiple

bioactivities of shichangpu through a network pharmacology approach

AD is caused by multiple genes or their products. Single-target therapy has been found ineffec-

tive due to insufficient understanding of the complex disease. Traditional Chinese medicine

(TCM), which treats disease based on the concept of “multiple components and multiple tar-

gets”, has accumulated rich theories and a great deal of valuable experience in the prevention

and treatment of AD [42]. Shichangpu is the most frequently used herbal medicine among

anti-AD TCM prescriptions [43–45]. Thus, it is urgently needed to systematically analyse the

mechanisms of action of shichangpu from a holistic perspective.

Based on AlzhCPI, the potential targets of 22 key compounds of shichangpu against AD

were identified, and the associations between the molecules and target proteins are listed in S9

Table 3. Performance of the test set validation for 25 targets towards Alzheimer disease using NB and RP classifiers.

Encoding Gene ECFP6 MACCS

NB RP NB RP

MCC AUC MCC AUC MCC AUC MCC AUC

HTR2A 0.953 0.997 0.884 0.967 0.678 0.931 0.838 0.959

ADORA2A 0.653 0.949 0.681 0.911 0.553 0.868 0.26 0.714

CHRM2 0.797 0.961 0.738 0.889 0.664 0.915 0.651 0.939

PDE9A 0.96 0.994 0.836 0.954 0.643 0.982 0.771 0.855

GRM2 0.956 0.989 0.893 0.955 0.544 0.876 0.687 0.917

GRM3 0.832 0.897 0.797 0.911 0.785 0.874 0.788 0.847

MAPK8 0.927 0.991 0.801 0.928 0.651 0.903 0.746 0.898

MAPK9 0.829 0.956 0.681 0.869 0.633 0.901 0.615 0.874

MAPK10 0.787 0.937 0.695 0.879 0.541 0.852 0.594 0.84

MAPK14 0.965 0.984 0.894 0.921 0.75 0.935 0.393 0.7

HS90AA1 0.821 0.935 0.807 0.897 0.585 0.88 0.745 0.857

PIN1 0.854 0.964 0.791 0.906 0.728 0.899 0.698 0.887

MAPT 0.832 0.97 0.408 0.748 0.591 0.854 0.415 0.779

PTGS2 0.854 0.983 0.756 0.919 0.587 0.874 0.898 0.976

NOS2 0.893 0.983 0.752 0.901 0.543 0.841 0.668 0.894

MPO 0.787 0.994 0.666 0.865 0.383 0.629 0.492 0.752

CHUK 0.735 0.939 0.731 0.856 0.726 0.928 0.677 0.921

IKBKB 0.895 0.973 0.832 0.911 0.696 0.907 0.718 0.915

TNF 0.697 0.915 0.501 0.791 0.171 0.722 0.502 0.814

ALOX12 0.849 0.97 0.752 0.906 0.718 0.901 0.804 0.932

CTSD 0.885 0.974 0.92 0.95 0.647 0.913 0.867 0.941

PDK1 0.946 0.959 0.955 0.976 0.923 0.961 0.937 0.955

HMGCR 0.964 1 0.963 0.987 0.913 0.995 0.929 0.984

IDE 0.864 0.983 0.321 0.729 0.114 0.69 0.401 0.704

PPARG 0.897 0.965 0.884 0.948 0.661 0.916 0.803 0.928

CES1 0.683 0.929 0.809 0.919 0.472 0.792 0.662 0.861

https://doi.org/10.1371/journal.pone.0178347.t003
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Table. The predicted results were also integrated to construct the compound–target–mecha-

nism network. As shown in Fig 5, shichangpu can target 20 targets from a holistic perspective,

which includes six mechanisms involved in the pathogenesis of AD. This means that shi-

changpu can treat AD through modulating neurotransmission, the tau pathology approach,

the metabolic dysfunction approach, Aβ-related treatment, the anti-inflammatory approach

and intracellular signalling cascade approach.

The degree analysis revealed that the target could interact with multiple molecules (5.75

compounds per target on average), and one compound could also target several proteins

related to AD (5.23 targets per compound on average). There were 13 compounds out of 22

that could target at least 5 proteins, which may imply that these compounds are the main

Fig 4. Boxplot shows the minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), and maximum of

Matthews correlation coefficient (MCC) on test sets based on four types of classifiers (A) and different

fingerprints and algorithms (B).

https://doi.org/10.1371/journal.pone.0178347.g004
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pharmacological active ingredients. Among the 13 compounds, both methyl eugenol and asar-

aldehyde were predicted to ne active against 10 targets. In addition, 10 targets out of 20 could

simultaneously interact with at least 5 compounds. Among the 10 proteins, ACHE and PTGS2

achieved the highest degree (n = 21 and 18, respectively) of linking to molecular nodes, indi-

cating that they would have key pharmacological functions in shichangpu.

Conclusion

In this paper, based on the naive Bayesian (NB) and recursive partitioning (RP) algorithms, a

model library first built in a previous study was updated by constructing 104 binary classifiers

against 26 preclinical AD targets using the mt-QSAR method. The internal 5-fold cross-valida-

tion and external test set validation confirmed the prediction reliability of the models.

In addition, a web server entitled AlzhCPI was implemented to provide comprehensive

information on the approximately 204 binary classifiers and is available free to the scientific

community. A case for AlzhCPI was illustrated to systematically analyse the multiple bioactivi-

ties of shichangpu through a network pharmacology approach. The results showed that shi-

changpu could target 20 targets related to AD, which were involved in multiple mechanisms,

supporting the TCM theme of “multiple components and multiple targets”.

AlzhCPI has potential applications in network pharmacology, drug repositioning, and vir-

tual screening for MTDLs towards AD. The methodology and tools here may provide guid-

ance for constructing similar platforms for other complex diseases.

Fig 5. The compound–target–mechanism network of shichangpu based on AlzhCPI. Ellipse, hexagon

and triangle represent drug nodes, protein nodes and mechanism nodes, respectively.

https://doi.org/10.1371/journal.pone.0178347.g005
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