
cancers

Article

Radiation-Induced Fibrotic Tumor Microenvironment
Regulates Anti-Tumor Immune Response

Jae-Kyung Nam 1,2, Ji-Hee Kim 1,2, Min-Sik Park 1, Eun Ho Kim 3, Joon Kim 2,* and Yoon-Jin Lee 1,*

����������
�������

Citation: Nam, J.-K.; Kim, J.-H.;

Park, M.-S.; Kim, E.H.; Kim, J.;

Lee, Y.-J. Radiation-Induced Fibrotic

Tumor Microenvironment Regulates

Anti-Tumor Immune Response.

Cancers 2021, 13, 5232. https://

doi.org/10.3390/cancers13205232

Academic Editor: Fiona M. Lyng

Received: 8 September 2021

Accepted: 12 October 2021

Published: 19 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Radiation Biomedical Research, Korea Institute of Radiologic and Medical Sciences,
Seoul 01812, Korea; jaek100@kirams.re.kr (J.-K.N.); wlgml9054@kirams.re.kr (J.-H.K.);
bbrr0044@kirams.re.kr (M.-S.P.)

2 Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
3 Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Korea;

eh140149@cu.ac.kr
* Correspondence: joonkim@korea.ac.kr (J.K.); yjlee8@kiram.re.kr (Y.-J.L.);

Tel.: +82-2-3290-3442 (J.K.); +82-2-970-1636 (Y.-J.L.)

Simple Summary: Radiation therapy can modulate anti-tumor immune responses. In this study,
we investigated the relationship between the anti-tumor immune response and tumor fibrosis after
X-ray or neutron radiation therapy. Neutron radiation therapy resulted in lesser fibrosis and greater
anti-tumor immunity compared to X-ray irradiation. Radiation therapy-induced fibrotic changes
within the tumor environment and tumor regrowth were suppressed by specifically deleting Trp53
in endothelial cells. In particular, the upregulation of PD-L1 expression after X-ray radiation therapy
was significantly suppressed via EC-Trp53 deletion. Understanding the effects of different radiation
therapy types on the tumor microenvironment provides strategies for enhancing the efficacy of
combined radio- and immunotherapy.

Abstract: High linear energy transfer (LET) radiation, such as neutron radiation, is considered
more effective for the treatment of cancer than low LET radiation, such as X-rays. We previously re-
ported that X-ray irradiation induced endothelial-to-mesenchymal transition (EndMT) and profibrotic
changes, which contributed to the radioresistance of tumors. However, this effect was attenuated in
tumors of endothelial-specific Trp53-knockout mice. Herein, we report that compared to X-ray irradi-
ation, neutron radiation therapy reduced collagen deposition and suppressed EndMT in tumors. In
addition to the fewer fibrotic changes, more cluster of differentiation (CD8)-positive cytotoxic T cells
were observed in neutron-irradiated regrowing tumors than in X-ray-irradiated tumors. Furthermore,
lower programmed death-ligand 1 (PD-L1) expression was noted in the former. Endothelial-specific
Trp53 deletion suppressed fibrotic changes within the tumor environment following both X-ray and
neutron radiation therapy. In particular, the upregulation in PD-L1 expression after X-ray radiation
therapy was significantly dampened. Our findings suggest that compared to low LET radiation
therapy, high LET radiation therapy can efficiently suppress profibrotic changes and enhance the
anti-tumor immune response, resulting in delayed tumor regrowth.

Keywords: high linear energy transfer; programmed death-ligand 1; X-ray radiation therapy; neutron
radiation therapy; anti-tumor immune response; fibrotic tumor microenvironment

1. Introduction

Radiation therapy with high linear energy transfer (LET) radiation (alpha particles,
protons, or neutrons) is more effective at killing tumor cells than low LET radiation, such
as X-rays and γ-rays [1–3]. Unlike low LET radiation, which relies on the generation of
reactive oxygen species for cytotoxicity, neutron radiation therapy does not depend on the
presence of oxygen, and cellular damage is primarily mediated via nuclear interactions.
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However, the differences between the effects of low LET and high LET within the tumor
microenvironment (TME) remain unclear [4,5].

Radiation therapy modulates the anti-tumor immune response [6,7]. Combinations
of immune checkpoint blockade via antibodies against programmed death 1 (PD-1) and
programmed death-ligand 1 (PD-L1) with radiotherapy have been explored in the clinic [8].
In fact, these were reported to be more effective than monotherapy [9]. Cancer-associated
fibroblasts (CAFs), a major cell type within the TME, play an important role in tumorige-
nesis and tumor progression. Recent studies have reported that CAFs can control tumor
immune escape and anti-tumor immune responses [10].

In response to low LET radiation, radio-resistant cancer cells are known to acquire
endothelial-to-mesenchymal transition (ENDMT) phenotypes, thus giving rise to CAFs.
Various target pathways, such as TGF-β, Wnt, and Notch, have been reported to drive
ENDMT-mediated radioresistance [11]. Overall, it has been established that the EndMT
promotes CAF formation in tumors [12]. Claire et al. reported that anti-PD-1 treatment
prolonged survival when administered in parallel to radiation and TGF-β blockade [13].

In our previous study, the EndMT and fibrotic changes that occurred during tumor
regrowth after radiation therapy (X-ray) were suppressed by endothelial cell-specific p53
deletion, which enhanced the efficacy of radiotherapy [14]. However, changes within the
TME following radiation therapy with high LET have rarely been reported.

Various clinical trials on CAF-targeting therapy are currently ongoing [15].
Hyaluronidase reshapes the hyaluronic-rich stroma, facilitating CD8+ T-cell infiltration,
and thus inhibiting tumor growth [16]. CAFs regulate extracellular matrix (ECM)-mediated
T-cell trapping as a phenomenon of immune-exclusion patterns [15]. Moreover, CAFs have
been reported to express PD-L1 and PD-L2, the expression levels of which are upregulated
by TLR4 or IFN-γ, thereby promoting tumor immune escape [17]. TGF-β within the TME
stimulates regulatory T cells (Tregs) and inhibits cytotoxic T cells [18]. Pirfenidone, an
FDA-approved drug for idiopathic pulmonary fibrosis, inhibits the production of TGFb1
and collagen, reduces tumor growth, and increases T-cell and NK-cell infiltration in murine
non-small-cell lung cancer (NSCLC) [19].

Herein, we studied the relationship between the anti-tumor immune response and
TME fibrosis after X-ray (low LET) and neutron radiation (high LET) therapy. To this end,
we analyzed the TME of regrowing tumors after radiation therapy, utilizing EC-Trp53- and
Tgfbr2-knockout mice. Furthermore, we investigated the effects of 2-methoxyestradiol (
2-ME), a putative EndMT inhibitor based on our previous report, on fibrosis and anti-tumor
immunity. High LET therapy suppressed fibrosis and the ENDMT to a greater extent than
low ENDMT, leading to lower tumor regrowth.

2. Materials and Methods
2.1. Mice

All animal experiments were performed according to the ARRIVE (Animal Research:
Reporting of In Vivo Experiments) guidelines [20], with the approval of the Institutional
Animal Care and Use Committee of the Korea Institute of Radiological & Medical Sciences.

The loxp-cre system was used to produce transgenic mice by crossing individuals
homozygous for the target gene with those homozygous for the loxP flank and mice
hemizygous for the Cre transgene. The desired transgenic mice were produced by crossing
loxp homozygous for the p53 or Tgfbr2 gene with Cre recombinase at the Tie2 promoter
region that is specifically expressed in endothelial cells. Specific pathogen-free Tie2-Cre,
Trp53flox/flox, and Tgfbr2flox/flox mice of a C57BL/6 background were purchased from the
Jackson Laboratory. Tie2-Cre;Trp53flox/flox mice were obtained by crossing male Tie2-Cre mice
with second-generation female Trp53flox/flox mice. Tie2-Cre;Tgfbr2+/flox mice were obtained
by crossing first-generation male Tie2-Cre mice with female Tgfbr2flox/flox mice. Tie2-Cre–/–

littermates were used as controls. C57BL/6 mice that were used as tumor models for
2-ME treatment were purchased from Orient Bio. All experiments were conducted using
6–8-week-old mice.
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2.2. Syngeneic Tumor Models

Tumor cells (KP cells) were previously isolated from the lung adenocarcinoma tumors
of LSL-KrasG12D;Trp53flox/flox mice [21]. Tumor cells (5 × 105) were subcutaneously injected
into the right thigh of Tie2-Cre;Trp53flox/flox and Tie2-Cre;Tgfbr2+/flox mice. Tie2-Cre–/– litter-
mates were used as controls. The tumor (150–200 mm3) was irradiated using the X-RAD
320 platform (Precision X-ray, North Branford, CT) or fast neutron (MC-50; Scanditronix,
Uppsala, Sweden). The tumor length (L), width (W), and height (H) were measured us-
ing calipers, and the tumor volume was calculated using the following formula: tumor
volume = (L × W × H)/2. Fibrosis inhibitor 2-ME (Selleckchem, Houston, TX, USA;
#S1233) was dissolved in DMSO and diluted in 30% PEG-400 with 1% Tween 80 solution.
KP tumor-injected C57BL/6 mice were treated with 2-ME (60 mg/kg, intraperitoneally)
1 h before irradiation for a total of six times over 2 weeks.

2.3. Irradiation

A single dose of X-ray radiation (20 Gy) was delivered using the X-RAD 320 platform
(Precision X-rays). Fast neutrons (20 GyE, 9.8 MeV, 30–40 keV/µm) were generated through
the bombardment of protons with beryllium in a nuclear reaction within the MC-50 cy-
clotron (Scanditronix, Uppsala, Sweden). The absorbed dose and dose distribution of
fast neutrons or X-rays were measured using a paired ionization chamber [22]. The gray
equivalent (GyE) unit for neutron irradiation states the equivalent biological dose com-
pared to X-ray therapy [23,24]. A neutron dose of 2.2 was calculated to have an equivalent
cell-killing efficacy as X-rays, as determined via in vitro clonogenic assays based on relative
biological effectiveness (RBE) [25].

2.4. Immunofluorescence and Immunohistochemistry

Tissues were fixed in 10% (v/v) neutral-buffered formalin, embedded in paraffin
(FFPE), and sectioned. The sections were then deparaffinized and stained [26]. Sections
were treated with antigen retrieval citrate buffer (Sigma, Burlington, MA, USA; #C9999)
at 95 ◦C for 30 min and then in 0.3% H2O2 for 15 min. The cells were then permeabilized
with PBS containing 0.1% Triton X-100 (PBST) for 15 min and blocked for 30 min with
PBST containing normal horse serum. Immunofluorescence staining was performed in
the same manner as immunohistochemistry, except for the 0.3% H2O2 step. We used pri-
mary antibodies against CD31 (endothelial cell marker; 1:200; R&D Systems, Minneapolis,
MN, USA; #AF3628), αSMA (fibroblast marker; 1:1000; Sigma-Aldrich; #A5228), F4/80
(macrophage marker; 1:200; Abcam, Waltham, MA, USA; #ab6640), CD8 (cytotoxic T-cell
marker; 1:200; Abcam; #ab22378), Granzyme B (activated cytotoxic T-cell marker; 1:200;
Abcam; #ab4059), PD-1 (1:200; Abcam; #214421), PD-L1 (1:200; Abcam, #233482), and
γH2AX (DNA damage marker; 1:200; Millipore, Rte Industrielle de la Hardt, Molsheim,
FRA; #05–636). For immunohistochemistry, an ABC kit (Vector, Burlingame, CA, USA;
#PK-6100) and DAB kit (Vector; #PK-4100) were used for staining, and the nuclei were
stained with hematoxylin. For immunofluorescence, a secondary fluorescent antibody was
used, and the nuclei were stained with DAPI (Sigma; #D9542).

Collagen deposition was assessed using Masson’s trichrome stain (Polyscience, War-
rington, PA, USA; #25088-100). For quantification, a minimum of five images per tissue
section were acquired, and positively stained areas were evaluated using ImageJ software (
http://imagej.net/, accessed on 29 July 2021).

2.5. Statistical Analysis

The data are expressed as the mean ± standard deviation (SD) or mean ± standard
error of the mean (SEM). One-way analysis of variance (ANOVA) with Tukey’s multiple
comparisons test was used for multiple comparisons (for all others) in GraphPad Prism
version 7.0. A p-value < 0.05 was considered to indicate statistical significance. The
experimenters were blinded to group assignments and outcome assessment. We used
Image J 1.49v (NIH), R 4.0.4, and Zen 3.2 (Zeiss) for data and image analyses.

http://imagej.net/
http://imagej.net/


Cancers 2021, 13, 5232 4 of 13

3. Results
3.1. Neutron Radiation Therapy Efficiently Inhibits Tumor Regrowth and Fibrotic Changes under
EC-Trp53 Knockout Conditions

We previously reported that X-ray radiation-induced EndMT enhanced vascular
fibrosis and collagen deposition, especially around tumor vessels within the TME. Further,
endothelial Trp53 deletion inhibited the radiation-induced EndMT and subsequent fibrotic
changes within the TME, as observed in an EC-specific Trp53-knockout (EC-p53KO) mouse
model [14]. To explore the effects of neutron irradiation on the TME, we examined tumor
regrowth, collagen deposition, and EndMT after radiation therapy in EC-p53KO mice
(Figures 1 and 2). We generated a syngeneic tumor model using tumor cells (referred to as
KP cells) from a spontaneous NSCLC tumor isolated from conditional KrasG12D;Trp53flox/flox

mice (Figure 1a) [21].

Figure 1. Endothelial-specific Trp53 deletion inhibits KP tumor regrowth after neutron irradiation or
X-ray irradiation. (a) Schematic diagram of the endothelial-specific Trp53 exon2 deletion. Trp53flox/flox

(WT) and Tie2-Cre;Trp53flox/flox (EC-p53KO) mice were subcutaneously injected with KP cells in the
right thigh. (b) Tumor growth in WT and EC-p53KO mice after no irradiation, X-ray irradiation
(20 Gy), and neutron irradiation (20 GyE). Irradiation was performed when tumor tissues reached
a volume of 150–200 mm3. Non-irradiated tumor tissues were obtained on days 0 and 11, and
X-ray- or neutron-irradiated tumor tissues were obtained on day 15 after irradiation (n = 6–7 animals
per group). For (b), error bars indicate the standard deviation (SD); two-way analysis of variance
(ANOVA) was used for multiple comparisons. * p < 0.05, ** p < 0.01, and *** p < 0.001.
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Figure 2. Lower collagen deposition is observed after neutron irradiation compared to X-ray irradiation, in addition to
ENDMT suppression, in both WT and EC-p53KO mouse tumor models. Non-irradiated tumor tissues obtained on day 0
and tumor tissues obtained on day 15 after irradiation were used for staining. (a) Trichrome staining of irradiated or
non-irradiated KP tumors from WT and EC-p53KO mice. Scale bar = 40 µm. Quantification of collagen deposition area
per field as an average of five fields (magnification, 200×, n > 5). (b) Immunofluorescence staining of CD31 (green) and
αSMA (red) expression in irradiated or non-irradiated KP tumors from WT and EC-p53KO mice. Scale bar = 20 µm;
scale bar of cropped images = 5 µm. Quantification of the αSMA+CD31+ colocalization area relative to CD31+ area as an
average of 5 fields (magnification, 200×, n > 5). For all graphs, error bars indicate the SEM (one-way ANOVA for multiple
comparisons). * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.
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Tumor growth in WT mice was delayed after treatment with 20 GyE neutron irradi-
ation, compared to that after 20 Gy X-ray irradiation; however, there was no statistically
significant difference in tumor growth between the two irradiation groups. EC-p53KO
mice exhibited significantly delayed tumor growth compared to their WT counterparts
after both X-ray and neutron radiation therapy (Figure 1b).

Increased collagen deposition was observed in WT tumors after X-ray irradiation,
which was significantly attenuated in EC-p53KO tumors (Figure 2a). Neutron irradiation
significantly decreased collagen deposition in WT tumors compared to X-ray-irradiated
WT tumors, with an even greater decrease observed in EC-p53KO tumors (Figure 2a).
In parallel to collagen composition, the EndMT, indicated by the co-localization of CD31
(EC marker) and αSMA (fibroblastic marker), was significantly suppressed after neutron
irradiation compared to X-ray irradiation in WT tumors (Figure 2b).

The results indicate that neutron radiation therapy causes fewer fibrotic changes
compared to X-ray radiation therapy, as indicated by collagen deposition and EndMT
occurrence within the irradiated TME. Consequently, lower tumor regrowth was observed.

3.2. Neutron Radiation Therapy Enhanced the Tumor Infiltration of CD8+ Cytotoxic T Cells

We previously reported that the radiation-induced EndMT can promote the polariza-
tion of tumor-associated macrophages and the tumor infiltration of cytotoxic T cells [14].
Herein, we hypothesized that low LET and high LET would have distinct effects on tumor
immunity.

To assess this, we compared the effects of neutron and X-ray irradiation on immune cell
composition within the TME. Immunohistochemical analysis revealed that the population
of F4/80+ macrophages within irradiated tumors of WT mice increased significantly after
both X-ray and neutron irradiation compared to their populations in non-irradiated WT
tumors. No such significant difference was observed in the tumors of EC-p53KO mice
(Figure 3a). Granzyme B+CD8+ cytotoxic T cells were significantly increased following
neutron irradiation compared to X-ray irradiation in WT tumor models. This effect was
further enhanced in EC-p53KO mice (Figure 3b,c).

These results suggest that neutron radiation therapy combined with ENDMT inhi-
bition could enhance anti-tumor immunity by increasing cytotoxic T-cell infiltration into
tumors. Moreover, we suggest that the population of CD8+ cytotoxic T cells increased in
neutron radiation therapy, which was further enhanced by EC-p53 deletion, leading to
fibrotic changes in the TME.

3.3. PD-L1 Expression Is Upregulated after X-ray Irradiation but Not after Neutron Irradiation

As radiation is known to regulate immunity within the TME, in part by enhancing
antigen presentation and PD-L1 expression [27], we examined tumor PD-L1 expression
after X-ray and neutron irradiation. Immunohistochemical analysis revealed that the
population of PD-1+ immune cells was higher in neuron-irradiated tumors than in X-ray-
irradiated tumors, whereas no significant difference was observed in EC-p53KO tumors
(Figure 4a). Furthermore, PD-L1 expression was lower in neutron-irradiated tumors than in
X-ray irradiated tumors. EC-p53-KO tumors exhibited lower PD-L1 expression compared
to WT following both X-ray and neutron irradiation (Figure 4b).

Thus, tumor PD-L1 expression was upregulated following X-ray radiation therapy
and neutron radiation therapy compared to that in non-irradiated tumors, suggesting
that anti-PD-L1 immune therapy may be effective in combination with X-ray or neutron
irradiation for the treatment of NSCLC.



Cancers 2021, 13, 5232 7 of 13

Figure 3. Neutron irradiation upregulates the infiltration of cytotoxic T cells to a greater extent compared to X-ray irradiation
in both WT mice and EC-p53KO mice. Non-irradiated tumor tissues obtained on day 0 and tumor tissues obtained on day
15 after irradiation were subjected to staining. (a) Immunohistochemistry of F4/80 (brown color) in KP tumors from WT
and EC-p53KO mice, irradiated or non-irradiated. Scale bar = 40 µm. Quantification of F4/80+ (macrophages) cells per field
as an average of five fields (magnification, 200×, n > 5). (b) Immunohistochemistry of CD8+ (brown color) in irradiated
and non-irradiated KP tumors from WT and EC-p53KO mice. Scale bar = 40 µm. uantification of an average of five fields
with a prominent CD8+ cell population (cytotoxic T cells) per field (magnification, 200×, n > 5). (c) Immunofluorescence
staining of CD8+ (green) and granzyme B+ (red) cells in irradiated or non-irradiated KP tumors from WT and EC-p53KO
mice. Scale bar = 20 µm. Quantification of an average of five fields with a prominent CD8+ granzyme B+ (active cytotoxic T
cells) cell population per field. (magnification: 200×; n > 5). For all graphs, error bars indicate the SEM (one-way ANOVA
for multiple comparisons). * p < 0.01 and **** p < 0.0001.
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Figure 4. Neutron irradiation induces lower PDL-1 expression than X-ray irradiation in the KP tumors of WT mice and
EC-p53KO mice. Non-irradiated tumor tissues obtained on day 0 and tumor tissues obtained on day 15 after irradiation
were used for staining. (a,b) Immunohistochemistry of PD-1 (brown color) and PD-L1 (brown color) in irradiated and
non-irradiated KP tumors from WT and EC-p53KO mice. (a) Scale bar = 20 µm; (b) Scale bar = 40 µm. Quantification of
an average of five fields with a prominent PD-1+ cell population and a high PD-L1-positive area per field (magnification,
200×, n > 5). For all graphs, error bars indicate the SEM (one-way ANOVA for multiple comparisons). * p < 0.05, ** p < 0.01,
*** p < 0.001.

3.4. PD-L1 Expression Was Upregulated by EC-Tgfbr2 Knockdown, with Increased Fibrosis
Observed after X-ray Irradiation

TGF-β signaling is important in ENDMT regulation and the tumor response to ra-
diation [28–30]. Previously, we reported that EC-Tgfbr2 knockdown promotes the tumor
EndMT and subsequent collagen deposition within TME, especially around tumor vessels,
thus promoting tumor growth [14]. To examine the potential relationship between tumor
radiation-induced collagen deposition and PD-L1 expression, we generated EC-specific
Tgfbr2 knockdown (EC-TGFβR2KD) mice (Tie2-Cre;Tgfbr2flox/+) (Figure 5a). Enhanced
tumor regrowth was observed after X-ray irradiation in the Tgfbr2 knockdown mice com-
pared to the WT mice, in agreement with the patterns of collagen deposition and EndMT
(Figure 5b–d). Furthermore, the radiation-induced upregulation of PD-L1 was more promi-
nent in Tgfbr2 knockdown mice than in WT mice (Figure 5e). However, no significant
increase in activated cytotoxic T cells was observed (Figure 5f). These results suggest that
PD-L1 upregulation after radiation therapy correlates with TME fibrosis after radiation
therapy.
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Figure 5. Endothelial-specific TGFβR2 knockdown enhances KP tumor regrowth, collagen deposition, EndMT, and PD-L1
expression, but not cytotoxic T-cell infiltration, after X-ray irradiation. (a) Schematic diagram of the endothelial-specific
TGFβR2 exon4 knockdown. Tgfbr+/flox (WT) and Tie2-Cre; Tgfbr2+/flox (EC-TGFβR2KD) mice were subcutaneously injected
with KP cells in the right thigh. Non-irradiated tumor tissues obtained on day 0 and irradiated tumor tissues obtained on
day 15 after irradiation were used for staining. (b) WT and EC-TGFβR2KD tumor growth in irradiated and non-irradiated
mice. Irradiation was performed when tumor tissues reached 150–200 mm3. Non-irradiated tumor tissues were obtained on
days 0 and 11 after irradiation, and irradiated tumor tissues were obtained on day 15 after irradiation (n = 5–6 animals per
group). Error bars indicate the SD (two-way ANOVA for multiple comparison). (c) Trichrome staining of KP tumors from
irradiated or non-irradiated WT and EC-TGFβR2KD mice. Scale bar = 20 µm. Quantification of collagen deposition area per
field as an average of five fields (magnification, 200×, n > 5). (d) Immunofluorescence staining of CD31 (green) and αSMA
(red) expression in irradiated or non-irradiated KP tumors from WT and EC-TGFβR2KD mice. Scale bar = 20 µm; scale
bar of cropped images = 5 µm. Quantification of the αSMA+CD31+ colocalization area per CD31+ area as an average of
five fields (magnification, 200×, n > 5). (e) Immunohistochemistry of PD-L1 (brown color) in irradiated or non-irradiated
KP tumors from WT and EC-TGFβR2KD mice. Scale bar = 20 µm. Quantification of PD-L1 area per field as an average
of five fields (magnification, 200×, n > 5). (f) Immunofluorescence staining of CD8 (green) and granzyme B (red) cells in
irradiated and non-irradiated KP tumors from WT and EC-specific TGFβR2KD mice. Scale bar = 20 µm. Quantification
of an average of five fields with a prominent CD8+ granzyme B+ cell population per field (magnification, 200×, n >
5). For graphs (c–f), error bars indicate the SEM (one-way ANOVA for multiple comparisons). * p < 0.05, *** p < 0.001,
and **** p < 0.0001.
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3.5. 2-ME Reduces Radiation-Induced PD-L1 Expression

We previously reported that 2-ME inhibits radiation-induced fibrosis and EndMT in
spontaneous lung adenocarcinoma mouse models [31]. To further explore the potential
relationship between TME fibrosis and PD-L1 upregulation, we examined the effects of
2-ME on radiation-induced PD-L1 expression in syngeneic KP tumor mouse models.

2-ME (60 mg/kg) was intraperitoneally administered 1 h before X-ray irradiation for a
total of six times over 2 weeks. 2-ME treatment significantly inhibited tumor size at 15 days
after irradiation (Figure 6a). Trichrome staining revealed that collagen deposition was
reduced in irradiated tumors with 2-ME treatment compared to irradiated tumors without
it (Figure 6b). Consistently, the expression of PD-L1 was also reduced in 2ME-treated
irradiated tumors (Figure 6c). These results suggest that the expression of PD-L1 depends,
in part, on the extent of collagen deposition during tumor regrowth after X-ray radiation
therapy.

Figure 6. 2-ME inhibits KP tumor regrowth, collagen deposition, and PD-L1 expression after X-ray irradiation. C57BL/6
mice were subcutaneously injected with KP cells in the right thigh. Irradiation and 2-ME (60 mg/kg) injections were
performed when tumor tissues reached a volume of 150–200 mm3. Mice were intraperitoneally (i.p.) injected with 2-ME
1 h before irradiation for a total of six times over 2 weeks. Non-irradiated tumor tissues obtained on day 0 and irradiated
tumor tissues obtained on day 15 were used for staining. (a) KP tumor growth with or without X-ray irradiation and with
or without 2-ME (n = 3–6 animals per group). Error bars indicate the SD (two-way ANOVA for multiple comparisons).
(b) Trichrome staining of collagen deposition in irradiated or non-irradiated KP tumors, with or without 2-ME. Scale
bar = 20 µm. Quantification of collagen deposition area per field as an average of five fields (magnification, 200×, n > 5).
(c) Immunohistochemistry of PD-L1 (brown color) in irradiated or non-irradiated KP tumors, with or without 2-ME. Scale
bar = 20 µm. Quantification of PD-L1 area per field as an average of five fields (magnification, 200×, n > 5). For graphs (c–f),
error bars indicate the SEM (one-way ANOVA for multiple comparisons). * p < 0.05, ** p < 0.01, and *** p < 0.001.
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4. Discussion

The current findings support the differential effects of neutron and X-ray radiation
therapy on the TME in lung adenocarcinoma syngeneic tumor models. Neutron radiation
therapy delayed tumor regrowth, inducing lower collagen deposition, greater cytotoxic
T-cell infiltration, and lower PD-L1 expression compared to X-ray irradiation. Based on
these findings, we concluded that high LET treatment had more favorable effects on TME
fibrosis and anti-tumor immunity. Nevertheless, a limitation of the current study was
that the anti-tumor immune response in irradiated tumors was evaluated only based on
immune cell composition. We are currently carrying out a study on anti-PD-L1/PD-1 in
combination with high LET/low LET radiation therapy.

Several previous works have suggested that high and low LET irradiation produce
distinct effects [32–34]. However, the specific molecular changes within the TME following
high and low LET radiation therapy have remained unclear. In the present study, we
confirmed the differential effects of high and low LET radiation therapy on the EndMT
and subsequent collagen deposition within the TME. Future studies on changes in EndMT-
related gene expression are required to validate the present findings.

Radiation therapy is known to immunologically regulate the TME, in part through
changes in PD-L1 expression [35]. It was recently reported that anti-PD-L1 antibody
treatment following radiation therapy improved progression-free survival in NSCLC
patients [36].

In the present study, EC-p53 deletion inhibited X-ray radiation-induced EndMT and
subsequent tumor fibrosis, as indicated by the greater infiltration of cytotoxic T cells and
the lower PD-L1 expression. In contrast, enhanced fibrosis and PD-L1 expression were
observed in EC-TGFR2 knockdown tumors after X-ray irradiation. Furthermore, 2-ME, an
EndMT inhibitor, can effectively inhibit X-ray radiation-induced PD-L1 expression. Thus,
we suggest that regulating the radiation-induced EndMT and subsequent fibrosis can affect
the infiltration of cytotoxic T cells and PD-L1 expression in tumors. It has been reported
that collagen upregulation correlates with PD-l/PD-L1 blockade resistance in lung tumors,
in parallel to a reduction in infiltrating cytotoxic T cells. Furthermore, TGF-β signaling- and
ECM-related gene expression, including that of collagen, have been reported to correlate
with PD-1/PD-L1 resistance [37]. We are currently exploring whether 2-ME treatment
and EC-Tgfbr2 knockdown affect tumor regrowth following neutron radiation therapy. In
addition, we suggest that the effectiveness of strategies targeting TME fibrosis may increase
when combined with X-ray radiation therapy, as the latter promotes TME fibrosis.

Compared to X-ray irradiation, neutron radiation therapy leads to a lesser upreg-
ulation in PD-L1 expression and an increase in the population of PD-1+ and cytotoxic
T cells. Since PD-1 plays a major role in CD8+ T-cell exhaustion, anti-PD-1 therapy can
enhance anti-immune response in neutron therapy. Moreover, anti-PD-L1/PD-1 therapy
may exert its effect systemically via PD-L1-overexpressing circulating mononuclear cells or
lymphocytes in neutron radiation therapy. The present elucidated the effects of immune
therapy combined with low LET and high LET radiation therapy.

5. Conclusions

The present study demonstrated that neutron irradiation induces fewer fibrotic
changes and lower PD-L1 expression within the TME than X-ray irradiation, in addi-
tion to a greater cytotoxic T-cell infiltration. Thus, the suppression of fibrosis and EndMT
within the TME enhance anti-tumor immunity after radiation therapy. Understanding
the differential immunological changes following high and low LET radiation therapy
provides insights into enhancing the efficacy of radiation and immunotherapy combination
regimens.
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