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Abstract: The dysregulation of cellular metabolism is a hallmark of ageing. To understand the
metabolic changes that occur as a consequence of the ageing process and to find biomarkers for
age-related diseases, we conducted metabolomic analyses of the brain, heart, kidney, liver, lung and
spleen in young (9–10 weeks) and old (96–104 weeks) wild-type mice [mixed genetic background of
129/J and C57BL/6] using NMR spectroscopy. We found differences in the metabolic fingerprints
of all tissues and distinguished several metabolites to be altered in most tissues, suggesting that
they may be universal biomarkers of ageing. In addition, we found distinct tissue-clustered sets of
metabolites throughout the organism. The associated metabolic changes may reveal novel therapeutic
targets for the treatment of ageing and age-related diseases. Moreover, the identified metabolite
biomarkers could provide a sensitive molecular read-out to determine the age of biologic tissues and
organs and to validate the effectiveness and potential off-target effects of senolytic drug candidates
on both a systemic and tissue-specific level.

Keywords: ageing; tissue-specific; metabolomics; biomarker

1. Introduction

Ageing might be defined as the process by which structural and functional changes
accumulate in an organism over time. Overall, ageing is characterized by a reduction in
the ability to maintain metabolic and functional homeostasis in multiple tissues [1]. This
can occur in vastly different compartments within the cell, implying that ageing proceeds
as a consequence of the interplay between a multitude of pathways, rather than from a
single cause. Altogether, the following nine hallmarks are most frequently proposed to
be epiphenomena of ageing: genomic instability, telomere attrition, epigenetic alterations,
loss of proteostasis, deregulated nutrient-sensing, mitochondrial dysfunction, stem-cell
exhaustion, altered intercellular communication and cellular senescence [1]. In particular,
senescence has been suggested to contribute to the course of ageing and age-related
diseases [2] through imbalanced cellular function, leading to increased DNA damage,
generation of reactive metabolites, oxidative stress and inflammation [3–5]. These changes
can lead to pathophysiological manifestations like tissue atrophy and nerve loss, both of
which are common in ageing tissues. In addition, they are associated with age-related
pathologies, such as geriatric syndromes, Parkinson’s and Alzheimer’s disease, diabetes
mellitus type 2, and atherosclerosis [6–13]. While these conditions differ greatly in their
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clinical manifestations, they share a common trait of a dysregulated metabolism [13–18].
As an example, blood concentrations of branched-chain amino acids (BCAAs), lipids with
low carbon numbers, or sugar metabolites are increased in diabetes mellitus type 2 [16,17],
whereas methionine, histidine, lysine and phosphatidylethanolamine are increased in
patients suffering from Alzheimer’s disease [18]. Moreover, there is increasing evidence
that metabolic changes do not only occur as a consequence of ageing processes, but, vice
versa, might be drivers thereof [14].

In each organism, tissues are combined in structural and functional units to form
organs. Different organs are integrated and connected by blood and lymph vessels to
form a whole organism. The tissue conditions may affect basic vital functions and the
health status of the entire organism, and vice versa. With respect to age-related alterations
in the metabolome at the tissue level, few studies have been performed so far in mice,
and even fewer in humans [19–22]. Mice are a key tool for ageing research due to their
relatively short lifespan, which allows monitoring of the ageing process within a reasonable
time frame, and due to the ability to manipulate their genes. Ageing research has so far
mostly focused on genetically modified mice that mimic progeroid syndromes, and not
on animals that age on their own. Therefore, ageing mice, under normal physiological
conditions, are a highly valuable model to investigate the changes in metabolites and
metabolic pathways as a consequence of the spontaneous deterioration of homeostatic
balance over time. Metabolomics enables the capturing of the entire metabolic state of an
organism, allows its temporal resolution at distinct time points during the ageing process,
and helps to identify altered pathways and biomarkers during ageing and in disease [23,24].
Today’s biomarkers of ageing mainly include phenotypical read-outs such as frailty or
grip-strength [25], as well as a small set of molecular markers that need further evaluation,
which provide a more general assessment of the physiological age [26]. These biomarkers
are an important tool to describe the physiological changes that occur with age, the process
of ageing and the occurrence of age-related diseases.

Here, we aimed to provide a comprehensive set of ageing-related metabolic biomark-
ers in mouse tissues for the identification of tissue-specific and systemic metabolic changes
in an ageing organism. To this end, we employed untargeted nuclear magnetic resonance
(NMR) spectroscopy and determined changes in polar metabolites in the brain, heart, kid-
ney, liver, lung and spleen of young (9–10 weeks) and aged (96–104 weeks) wild-type mice
(mixed genetic background of 129/J and C57BL/6J). We found alterations in the metabolic
phenotypes of all tissues, and identified sets of both tissue-specific and systemic metabolite
biomarkers of ageing. We identified the following organ-specific biomarkers: (i) BCAAs,
uracil and glutamine in the brain, (ii) leucine, isoleucine, valine and 4-aminobutyrate
(GABA) in the heart, (iii) succinate and choline in the kidney, (iv) nicotinamide, glycerol
and inosine in the liver, (v) lysine, nicotinamide, aspartate and fumarate in the lung, and
(vi) taurine and uridine in the spleen. Uridine changed systemically in most tissues, indi-
cating conserved mechanisms of ageing. Our comprehensive metabolic profiling of the key
mouse tissues at different ages provides a robust set of metabolic biomarker candidates to
study the mechanisms of metabolic reprograming associated with ageing. A deeper under-
standing of the underlying processes might not only shed light on the causes of age-related
pathologies, but also help to discover novel targets for pharmacological interventions.
These biomarker candidates could serve as a read-out of the biological age of tissues, and
may be utilized to validate the effectiveness of proposed senolytic therapies. Taken together,
comprehensive analyses and utilization of metabolomics provide a useful tool to monitor
changes of metabolites during the ageing and degenerative process, and may eventually
help to increase health span and, thus, the life quality of the aged population.

2. Materials and Methods
2.1. Animals and Diets

For all experiments, organs were isolated from young (9–10 weeks) and old (96–
104 weeks) female wild-type mice (mixed genetic background of 129/J and C57BL/6J)
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were used (n = 5). Mice were maintained in a clean, temperature-controlled (22 ± 1 ◦C)
environment with a regular light–dark cycle (12 h/12 h) and unlimited access to a chow diet
(Altromin 1324, Altromin Spezialfutter GmbH, Lage, Germany) and water. All experiments
were performed in accordance with the European Directive 2010/63/EU and approved by
the Austrian Federal Ministry of Education, Science and Research.

2.2. NMR Sample Preparation, Data Acquisition and Analysis

Organ samples were snap-frozen in liquid nitrogen and stored at −80 ◦C until analysis.
For the NMR metabolomics analysis, 30–50 mg of each organ was resected. To extract
metabolites, 400 µL of ice-cold methanol and 200 µL MilliQ H2O were added, and the
samples were transferred to a tube containing Precellys beads (1.4 mm zirconium oxide
beads, Bertin Technologies, Villeurbanne, France) for homogenization by Precellys24 tissue
homogenizer (Bertin Technologies, Montigny-le-Bretonneux, France). After centrifugation
at 13,000 rpm for 45 min (4 ◦C), the supernatant was transferred to a fresh tube, and the
samples were lyophilized at <1 Torr, 850 rpm, 25 ◦C for 10 h in a vacuum-drying chamber
(Savant Speedvac SPD210 vacuum concentrator), with an attached cooling trap (Savant
RVT450 refrigerated vapor trap) and vacuum pump (VLP120) (Thermo Scientific, Waltham,
MA, USA). For the NMR experiments, samples were re-dissolved in 500 µL of NMR buffer
(0.08 M Na2HPO4, 5 mM TSP (3-(trimethylsilyl) propionic acid-2,2,3,3-d4 sodium salt),
0.04 (w/v)% NaN3 in D2O, pH adjusted to 7.4 with 8 M HCl and 5 M NaOH).

The metabolic-profiling analysis was conducted at 310 K using a 600 MHz Bruker
Avance Neo NMR spectrometer equipped with a TXI 600S3 probe head. The Carr–Purcell–
Meiboom–Gill (CPMG) pulse sequence was used to acquire 1H 1D NMR spectra with a
pre-saturation for water suppression (cpmgpr1d, 512 scans, 73728 points in F1, 12019.230 Hz
spectral width, 1024 transients, recycle delay 4 s) [27,28]. The 1H,13C heteronuclear single-
quantum correlation (HSQC) spectra were recorded with a recycle delay of 1.0 s, spectral
widths of 20.8/83.9 ppm, centered at 3.9/50.0 ppm in 1H/13C, with 2048 and 256 points,
respectively, and 8 scans per increment. NMR spectral data were processed as previously
described [29]. Briefly, data were processed in Bruker Topspin version 4.0.2 using one-
dimensional exponential window multiplication of the FID, Fourier transformation and
phase correction. The NMR data were then imported into Matlab2014b; TSP was used
as the internal standard for chemical-shift referencing (set to 0 ppm); regions around the
water, TSP and methanol signals were excluded; the NMR spectra were aligned; and
a probabilistic quotient normalization was performed. Principal component analysis
(PCA), orthogonal partial least squares discriminant analysis (O-PLS-DA) and partial least
squares-discriminant analysis (PLS-DA) were performed in Matlab2014b and Metabo-
Analyst 4.0 [30], as well as all associated data consistency checks and cross-validation.
The statistical significance of the determined differences was validated by the quality
assessment statistic Q2. This measure provides information about cross-validation and
is a qualitative measure of consistency between the predicted and original data with a
maximum value of 1. Metabolite identification was carried out using Chenomx NMR
Suite 8.4 (Chenomx Inc., Edmonton, AB, Canada) and reference compounds. Quantifica-
tion of metabolites was carried out by signal integration of normalized spectra. For each
metabolite, a representative peak with no overlapping signals was identified, the start and
end points of the integration were chosen to revolve around that peak, and the area of
the peak was integrated by summing up the value for each point. For visualization of
our integration approach, the characteristic peaks of selected metabolites are shown in
Figure S1, with the area of integration indicated by the black bars. A univariate statistical
analysis was carried out using GraphPad Prism 5.01 (GraphPad Software, La Jolla, CA).
Data were represented as mean ± standard deviation (SD). The p-values were calculated
using a two-tailed Student’s t-test for pairwise comparison of variables, and are only given
for metabolites with p < 0.05.
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3. Results

Our goal was to establish both tissue-specific profiles and systemic metabolic signa-
tures of ageing, which could serve as a basis for understanding the overall ageing process.
1H-NMR spectroscopy is a powerful technique capable of simultaneous identification and
quantification of multiple metabolites in complex biological matrices [31]. To better under-
stand the systemic and tissue-specific ageing process and to identify metabolites influenced
by age, we carried out metabolic profiling of the brain, heart, kidney, liver, lung and spleen
from young and aged mice using an untargeted NMR spectroscopy approach. Using this
approach, we were able to identify NMR signals associated with metabolic differences,
and assigned the particular peaks to the respective metabolites using metabolite reference
databases [32]. The identified respective biomarker candidates will provide a valuable
resource for a variety of applications in ageing research and drug discovery.

Using this method, we first determined the metabolic fingerprints of brain samples
in young (9–10 weeks) and aged (96–104 weeks) mice. Neurocognitive ageing is char-
acterized by a reduction in the information-processing time and an impaired long-term
memory [33], both of which are related to an imbalance in energy metabolism and redox
homeostasis [34].The discriminant clustering between brains from young and old mice
shown in the orthogonal-partial least squares-discriminant analysis (O-PLS-DA) plot in
Figure 1A indicates the underlying differences in the metabolome, supported by the corre-
lation coefficients R2Y up to 0.997 (p = 0.02) and a positive Q2 of 0.727 (p = 0.03), validating
the significance of these results. The reduced NMR spectra revealed alterations in the levels
of metabolites in mouse brains of different ages (Figure 1B), with decreased concentrations
of lactate, methionine, N-acetylaspartate, uridine and inosine. In contrast, concentrations
of leucine, isoleucine, valine, glutamine, allantoin, uracil, tyrosine and phenylalanine were
increased in the aged mice (Figure 1B,C). The 2D NMR further confirmed the assigned
metabolites (Figure S2A).

Impaired metabolic flexibility is a hallmark of the ageing heart, with decreased ca-
pacity to oxidize fatty acids and increased glucose metabolism [35]. When comparing
the metabolic fingerprints between heart samples isolated from young and aged mice,
the O-PLS-DA revealed distinct clustering of respective heart samples with correlation
coefficients R2Y of up to 0.999 (p = 0.19) and a Q2 of 0.786 (p = 0.02) (Figure 2A). Reduced
NMR spectra demonstrated altered abundance of metabolites in normalized heart samples
(Figure 2B) and indicated decreased uridine concentrations in the hearts of aged mice,
whereas the levels of leucine, isoleucine, valine, acetate, GABA, creatine, uracil, tyrosine
and phenylalanine were increased (Figure 2C). The 2D HSQC NMR was consistent with
the assigned metabolites in Figure S2B.

A plethora of abnormalities in kidney structure and function are positively correlated
with advancing age [36]. In the kidney, local immune responses induce cellular metabolic
reprogramming that changes with ageing [37]. The distinct clustering of kidney samples
from young and old mice is shown in the score and validation plots of the O-PLS-DA
(Figure 3A). The two clusters show correlation coefficients R2Y of up to 0.997 (p = 0.03) and
Q2 values of 0.898 (p = 0.01) (Figure 3A). In the reduced NMR spectra, we found differences
in the abundance of 23 age-dependent metabolites (Figure 3B). Leucine, isoleucine, valine,
alanine, methionine, glutamate, succinate, aspartate, asparagine, lysine, ethanolamine,
choline, glycerol, creatine, serine, uridine, inosine, tyrosine and nicotinamide were de-
creased in the cohort representing the older mice, whereas the levels of allantoin and uracil
were increased (Figure 3C). The 2D HSQC NMR of a representative kidney sample in
Figure S2C also matched the metabolites assigned based on 1D spectra.
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Figure 1. NMR metabolomic analysis of mouse brain samples. (A) O-PLS-DA plot of brain samples, including cross
validation. (B) The reduced NMR spectrum revealed altered components in normalized brain samples. Positive covariance
corresponds to components present at increased concentrations, whereas negative covariance corresponds to decreased
component concentration. Predictivity of the model is represented by R2. 1 = leucine, 2 = isoleucine, 3 = valine, 4 = lactate,
5 = 4-aminobutyrate, 6 = N-acetylaspartate, 7 = glutamine, 8 = allantoin, 9 = uridine, 10 = uracil, 11 = inosine, 12 = tyrosine,
13 = phenylalanine. (C) Statistical analysis of altered metabolites in brain samples using a Student’s t-test. p < 0.05 was
considered statistically significant.
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Figure 2. NMR metabolomic analysis of mouse heart samples. (A) O-PLS-DA plot of heart samples, including cross vali-
dation. (B) The reduced NMR spectrum revealed altered components in normalized heart samples. Positive covariance 
corresponds to components present at increased concentrations, whereas negative covariance corresponds to decreased 
component concentration. Predictivity of the model is represented by R2. 1 = leucine, 2 = isoleucine, 3 = valine, 4 = acetate, 
5 = 4-aminobutyrate, 6 = creatine, 7 = uracil, 8 = tyrosine, 9 = uridine, 10 = phenylalanine. (C) Statistical analysis of altered 
metabolites in heart samples using a Student’s t-test. p < 0.05 was considered statistically significant. 

Figure 2. NMR metabolomic analysis of mouse heart samples. (A) O-PLS-DA plot of heart samples, including cross
validation. (B) The reduced NMR spectrum revealed altered components in normalized heart samples. Positive covariance
corresponds to components present at increased concentrations, whereas negative covariance corresponds to decreased
component concentration. Predictivity of the model is represented by R2. 1 = leucine, 2 = isoleucine, 3 = valine, 4 = acetate,
5 = 4-aminobutyrate, 6 = creatine, 7 = uracil, 8 = tyrosine, 9 = uridine, 10 = phenylalanine. (C) Statistical analysis of altered
metabolites in heart samples using a Student’s t-test. p < 0.05 was considered statistically significant.
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Figure 3. NMR metabolomic analysis of mouse kidney samples. (A) O-PLS-DA plot of kidney samples, including cross
validation. (B) The reduced NMR spectrum revealed altered components in normalized kidney samples. Positive covariance
corresponds to components present at increased concentrations, whereas negative covariance corresponds to decreased
component concentration. Predictivity of the model is represented by R2. 1 = leucine, 2 = isoleucine, 3 = valine, 4 = threonine
5 = alanine, 6 = methionine, 7 = glutamate, 8 = succinate, 9 = aspartate, 10 = asparagine, 11 = lysine, 12 = ethanolamine,
13 = choline, 14 = glycerol, 15 = creatine, 16 = serine, 17 = allantoin, 18 = uracil, 19 = uridine, 20 = inosine, 21 = tyrosine,
22 = nicotinamide. (C) Statistical analysis of altered metabolites in kidney samples using a Student’s t-test. p < 0.05 was
considered statistically significant.
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Impaired fatty-acid oxidation and increased de novo lipogenesis in the liver contribute
to the risk for age-associated chronic liver disease [38]. Comparable to other organs
described above, we also identified two distinct metabolic clusters in livers of old and
young mice with correlation coefficients R2Y of up to 0.997 (p < 0.01) and a positive Q2

of 0.842 (p < 0.01) (Figure 4A). The reduced NMR spectra revealed nine metabolites with
varying concentrations (Figure 4B). In old mice, the concentrations of lactate, alanine,
glycerol, glucose, uridine, inosine, fumarate and nicotinamide were decreased, whereas
aspartate was increased (Figure 4C). The assignment of metabolites was confirmed by a 2D
HSQC spectra of one liver sample in Figure S2D.
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Figure 4. NMR metabolomic analysis of mouse liver samples. (A) O-PLS-DA plot of liver samples, including cross validation.
(B) The reduced NMR spectrum revealed altered components in normalized liver samples. Positive covariance corresponds
to components present at increased concentrations, whereas negative covariance corresponds to decreased component
concentration. Predictivity of the model is represented by R2. 1 = lactate, 2 = alanine, 3 = aspartate, 4 = glycerol, 5 = glucose,
6 = uridine, 7 = inosine, 8 = fumarate, 9 = nicotinamide. (C) Statistical analysis of altered metabolites in liver samples using
a Student’s t-test. p < 0.05 was considered statistically significant.
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Lung ageing is related to structural remodeling, decreased respiratory function and
chronic lung diseases, which are closely linked to the ageing process of the immune sys-
tem [39]. The hierarchical O-PLS-DA score plots (Figure 5A) allowed a clear discrimination
between lung samples from young and old mice with correlation coefficients R2Y of up
to 0.986 (p = 0.26) and a positive Q2 of 0.755 (p = 0.02). Malonate, fumarate, and nicoti-
namide were decreased in the old mice, whereas leucine, isoleucine, valine, threonine,
methionine, aspartate, lysine, allantoin, tyrosine, and phenylalanine concentrations were
increased (Figure 5B,C). Additional confirmation of assigned metabolites of lung sample
was provided by a 2D HSQC spectrum shown in Figure S2E.Biomolecules 2021, 11, x FOR PEER REVIEW 13 of 22 

 

 
Figure 5. NMR metabolomic analysis of mouse lung samples. (A) O-PLS-DA plot of lung samples, including and cross 
validation. (B) The reduced NMR spectrum revealed altered components in normalized lung samples. Positive covariance Figure 5. NMR metabolomic analysis of mouse lung samples. (A) O-PLS-DA plot of lung samples, including and cross

validation. (B) The reduced NMR spectrum revealed altered components in normalized lung samples. Positive covariance
corresponds to components present at increased concentrations, whereas negative covariance corresponds to decreased
component concentration. Predictivity of the model is represented by R2. 1 = leucine, 2 = isoleucine, 3 = valine, 4 = threonine,
5 = methionine, 6 = aspartate, 7 = lysine, 8 = malonate, 9 = allantoin, 10 = fumarate, 11 = tyrosine, 12 = phenylalanine,
13 = nicotinamide. (C) Statistical analysis of altered metabolites in lung samples using a Student’s t-test. p < 0.05 was
considered statistically significant.
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The spleen plays an important role in the immune system. In aged mice, structural
changes in the spleen result in a less effective or decreased immune response [40]. O-PLS-
DA models clearly discriminated NMR spectra of spleen samples from young and aged
mice (Figure 6A). The reduced NMR spectra revealed decreased concentrations of alanine,
methionine, glutamate, aspartate, asparagine, lysine, o-phosphocholine, taurine, glycine,
uridine, fumarate, tyrosine, and phenylalanine in the aged mice, whereas lactate, glucose,
and allantoin concentrations were increased (Figure 6B,C). The 2D HSQC spectrum assign-
ment of a representative spleen sample was found to be consistent with the metabolites
assigned based on 1D spectra (Figure S2F).Biomolecules 2021, 11, x FOR PEER REVIEW 15 of 22 

 

 
Figure 6. NMR metabolomic analysis of mouse spleen samples. (A) O-PLS-DA plot of spleen samples, including cross 
validation. (B) The reduced NMR spectrum revealed altered components in normalized spleen samples. Positive covari-
ance corresponds to components present at increased concentrations, whereas negative covariance corresponds to de-

Figure 6. NMR metabolomic analysis of mouse spleen samples. (A) O-PLS-DA plot of spleen samples, including cross
validation. (B) The reduced NMR spectrum revealed altered components in normalized spleen samples. Positive covariance
corresponds to components present at increased concentrations, whereas negative covariance corresponds to decreased
component concentration. Predictivity of the model is represented by R2. 1 = Alanine, 2 = methionine, 3 = glutamate,
4 = aspartate, 5 = asparagine, 6 = lysine, 7 = o-phosphocholine, 8 = taurine, 9 = glycine, 10 = lactate, 11 = glucose,
12 = allantoin, 13 = uridine, 14 = fumarate, 15 = tyrosine, 16 = phenylalanine. (C) Statistical analysis of altered metabolites
in spleen samples using a Student’s t-test. p < 0.05 was considered statistically significant.



Biomolecules 2021, 11, 235 11 of 17

Finally, we compared the abundance of all metabolites between the organs of young
and aged mice. Figure 7 depicts a correlation heat map of metabolites in the six investigated
tissues from both young and old mice, which exhibited the different distribution patterns
of metabolites between different age and organs.
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Figure 7. Heat map of NMR analyses showing the relative metabolite levels in organs from young and old mice. Each
column represents one single sample, and each row represents one distinct metabolite as indicated. Increased and
decreased metabolites are given in red and blue, respectively. Metabolites are indicated and sorted according to different
chemical classes or biomolecular pathways. Bioinformatic analysis of data was performed using the statistical package in
MetaboAnalyst 5.0.

4. Discussion

Ageing is a process that gradually increases an organism’s vulnerability and affects
multiple biological pathways, including metabolism. The health state of tissues plays a
key role in ageing or vice versa, as age-associated organ failure, for example, can lead
to the death of an organism. Therefore, revealing the consequences of ageing on specific
metabolites in distinct tissues is essential to provide information on the underlying mech-
anisms, as they explain the metabolic activity in various tissues and provide functional
evidence for biochemical activity. By studying metabolic reprogramming in ageing mice
using untargeted NMR-based metabolomics, we identified a set of robust biomarkers for
ageing in several murine tissues. NMR spectroscopy is a powerful tool in this regard due
to its high reproducibility, and simple analysis and interpretation.

In the course of our study, we analyzed six tissues and identified sets of tissue-specific
biomarkers of ageing. In brain tissue, we identified 13 metabolites comprising amino
acids and their derivatives, such as tyrosine, phenylalanine and N-acetylaspartate. In
addition to amino-acid metabolism, the ageing metabolome of mouse brain is characterized
by alterations in the purine and pyrimidine metabolism, with a significant increase in
uracil [22]. In line, we observed increased uracil in aged mice. Of note, Larsson et al.
reported that the elevated plasma levels of BCAAs (isoleucine, leucine and valine) are
associated with Alzheimer’s disease [41]. In line with this observation, we also found
increased levels of BCAAs in brain lysates of old mice. This phenomenon may be related
to the production of the neurotransmitter glutamate, which is known to be altered in the
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nervous system during ageing [42]. Additionally, our results for changes in glutamine
concentrations, in line with a study that investigated metabolites of the motor cortex
of the brain in humans of different age (24–68 years) by 1H-NMR, indicate that these
metabolites represent stable ageing markers in the brain of both mice and humans [43].
Thus, changes in BCAAs, uracil and glutamine are in accordance with recent studies of
brain metabolites [41,44].

With ageing, the heart exhibits alterations in amino-acid and purine metabolism.
Here we found a set of 10 metabolites significantly changed in the ageing mouse heart.
Downregulation of BCAA catabolism in cardiomyocytes has been previously reported
to disrupt autophagy, which in turn may be associated with ageing [45,46]. Elevated
BCAA levels can therefore be seen as detrimental, in line with large-scale human cohort
studies that investigated heart failure [47] and risks of cardiovascular disease [48]. Thus,
increased BCAA levels suggest an increased risk for cardiovascular disease in course of
ageing. Similarly, the neurotransmitter GABA has been proposed to interfere with cardiac
function and was increased by ageing [49,50]. A direct association with cardiac function
has previously been demonstrated [47,49,50], rendering leucine, isoleucine, valine and
GABA particularly promising as ageing-heart biomarkers.

In the kidney, we identified profound changes in metabolic profiles, with more than
20 metabolites differing between old and young mice. Most metabolic changes were
associated with amino-acid, purine/pyrimidine metabolism, and the tricarboxylic acid
(TCA) cycle. Among additional metabolites, changes in the choline status might indicate
kidney damage [51]. Choline deficiency has been reported to cause kidney damage in rats
due to a decrease in the formation of phospholipids, which in turn causes degeneration
of the kidney structure [52]. Thus, the decreased choline status in aged mice points to
similar mechanisms [51]. Succinate activates the longevity regulator DAF-16 C in C. elegans,
which increases stress resistance and may extend lifespan [53]. Decreased succinate levels
in old mice suggest a more important role of this metabolite in age-related metabolic
adaptations than previously assumed. The importance of glutamate is still investigated,
but recent publications indicate a tight connection of expression of glutaminases to cellular
senescence [54,55]. We could observe lowered glutamate levels in the kidney and spleen
of our old mice, although the levels of glutamine remained unchanged in these organs.
Choline, succinate and glutamate might be used in the future as promising biomarkers to
determine the health- and age-related status of the kidneys.

Metabolic profiles of mouse livers differed substantially in old compared to young
mice, with marked changes in the TCA cycle, as shown by the altered levels of alanine,
aspartate and fumarate. Ageing reduces glycerol-3-phosphate acyltransferase activity [56]
and glycerol [57] in rats, which is consistent with the finding of decreased glycerol con-
centrations in old mice. Nicotinamide, a poly ADP-ribose synthetase inhibitor, attenuated
ischemia-induced liver injury with potent anti-inflammatory effects [58]. Inosine also
has an anti-inflammatory potential and has been shown to be decreased in 24-month-old
compared to 1.5-month-old rats [59]. We observed decreased nicotinamide and inosine
levels in old mice, which may point to chronic inflammation during ageing [60]. Due to
the low variability within each group and the clear distinction between the groups, we
propose nicotinamide, glycerol and inosine as potential biomarkers for the age status of
liver tissues.

In the lung, a panel of 13 metabolites was identified and linked mostly to amino-acid
metabolism and the TCA cycle (alanine, aspartate and glutamine). The concentration of
the two aromatic amino acids tyrosine and phenylalanine, all three BCAAs and methionine
were increased. To date, few metabolome-wide analyses have been performed on lung
tissues, and no data at all are available for heathy lung tissue in the context of ageing.
Thus, our results could set the base for further investigations, focusing on the general
protein biosynthesis activity and its alterations as a potential cause or consequence of the
ageing process. Compared to other organs, lung lysates showed smaller differences in their
metabolic profiles between the two respective mouse groups. This may suggest that the
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change in the metabolic phenotype of the lung is a consequence of metabolic derailing
in other organs, which in turn affects the lung metabolome. Nevertheless, the levels of
lysine, nicotinamide, aspartate and fumarate differed between the two groups, implying
these metabolites as biomarkers for the assessment of ageing in lung tissue. In addition to
amino acids and metabolites of purine/pyrimidine metabolism, glucose and lactate levels
were changed, indicating derailing of the glucose metabolism with age. Altered levels
of nicotinamide and inosine in the lung and liver might be linked to the ability of both
molecules in triggering inflammatory responses [58].

In summary, the results obtained for the levels of the BCAAs (leucine, isoleucine
and valine) are of special interest, since the catabolism of these amino acids does not
take place in hepatic cells, but in non-hepatic cells like neurons, cardiomyocytes or the
diaphragm [45]. Usually, the degradation of BCAAs in mice is regulated by an enzyme
called protein phosphatase 2Cm (PP2Cm), whose mRNA is particularly highly expressed
in the brain and heart, highlighting their primary sites of BCAA catabolism [61]. In the
context of diseases, BCAAs have been correlated with cardiac pathology, since the expres-
sion of their activator PP2Cm can be influenced by stress, and was therefore decreased in
conditions like hypertrophy or heart failure. In vivo studies in zebrafish with deficiency of
PP2Cm led to a loss of cardiac contractility and premature death, further pointing out the
potential role of a unimpaired BCAA catabolism for cardiac health [61]. Since stress signals
such as oxidation or genetic damage increase with age, these stress signals may affect the
expression of PP2Cm, and a defect in BCAA catabolism may have adverse health effects,
possibly explaining the increase of these metabolites in the aged mice [45]. In detail, the
increased levels of the BCAAs (leucine, isoleucine and valine) were detected in the brain,
heart and lung, whereas no significant changes were seen in the liver. This broadly fits to
the hypothesis that accumulating stress signals may influence BCAA levels. Whether there
is a causal or close relationship between derailed BCAA metabolism and ageing cannot
be answered by our results. Nevertheless, the role of BCAAs in healthy ageing should
be further investigated in the future, as this subset of amino acids represents promising
biomarkers for the assessment of healthy ageing. mTOR signaling is active in all tissues
particularly involved in cell growth, ageing and metabolism, which is presumably impor-
tant in tissues with high metabolic rates, such as the liver [62]. Here we found significant
changes in glucose and glycerol, which are involved in glycolysis/gluconeogenesis, which
in turn are downstream targets of the mTOR signaling pathway.

Sixteen metabolites have been found as biomarker candidates for the ageing spleen.
Among them, metabolites emerge as components of metabolic pathways linked to amino
acid, glucose and lipid metabolism. A decreased concentration of taurine, a sulfur-
containing amino acid that augments the proliferative responses of T-cells, indicates a
defect in this process in old mice [63] and points to a reduced potential for detoxification
of reactive oxygen species [64]. In line with previous results [65], we observed decreased
uridine levels in the ageing spleen, suggesting uridine and taurine as robust spleen-specific
biomarker candidates for the ageing process. Accordingly, reduced levels of uridine might
be associated with increased cellular senescence in all tissues, as uridine has been shown
to affect senescence in human mammary epithelial cells [66]. During ageing, senescent
cells reduce production of nucleotides, the essential building blocks of DNA, implying that
precursors like inosine, uridine, uracil and nicotinamide might also be found at abnormal
levels [66]. Taken together, decreased uridine concentrations in the brain, heart, kidney,
liver and spleen of aged mice indicate that uridine may be a general biomarker for ageing.

5. Conclusions

Research desperately seeks for molecular markers of ageing [67]. Our straightforward
workflow of NMR-based untargeted metabolomics together with the identified metabolite
biomarker panels is well suited to study the effect of senolytic drug candidates such as
dasatinib, quercetin [68], FOXO4-DRI peptide [69], Bcl-2 family inhibitors [70] and Hsp90
inhibitors [71] to increase overall health and enable healthy ageing. Although experiments
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with mouse models have already been performed to test the efficacy of certain senolytics
in the past, these investigations mostly focused on measuring motor activities, frailty or
physical characteristics [26]. The ageing-associated, tissue-specific metabolite biomarkers
discovered in the current study should provide a novel molecular read-out for ageing-
associated changes of an organism. Our results represent a powerful tool for future drug
discovery projects to build a bridge between in vitro and in vivo studies, and to validate
the molecular efficacy of investigated therapeutics.

Importantly, besides the power of metabolomics for biomarker discovery and valida-
tion, identification of metabolites altered in different states of health and disease can help
tracing back the pathway(s) causing metabolic derailing during ageing. Following this ap-
proach, and assuming that ageing influences the health status, the identification of altered
metabolites during ageing is crucial in classifying metabolic pathways closely linked to key
ageing processes such as cellular senescence [72]. Senescent cells are “hypermetabolic,” a
condition that could potentially be therapeutically targetable. As previously demonstrated,
interventions such as rapamycin treatment and methionine restriction impact important
aspects of metabolism and delay cellular senescence to extend cellular lifespan [73,74].
How metabolically targeted drugs can achieve sufficient specificity for senescent over
non-senescent cells in vivo to allow successful translation remains an open question. Our
study provides a protocol to evaluate these metabolism-targeting drugs in vivo, based on
both universal and tissue-specific metabolite alterations that accompany the ageing process.
In addition, our approach also depicts a metabolite panel for future in vivo NMR studies
in living animals.

In this study, NMR-based untargeted metabolomics was applied to investigate the
metabolic profile of key tissues in young and old mice. We revealed that ageing is associated
with considerable metabolic alterations specifically in amino acids, neurotransmitters and
other small molecules. Our study not only generated a high-quality untargeted analysis of
ageing metabolism, but also provided a set of metabolic markers that may be used in further
translational studies, such as the development of senolytic compounds. Taken together,
our approach brought up a metabolite panel for future in vivo magnetic resonance studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-2
73X/11/2/235/s1, Figure S1: Overlapping signals of 1H-NMR spectra of significantly different
metabolites for each organ from young and old mice. The curves visualize the altered levels of
metabolites between each group and/or organ. Signals originating from 9–10 weeks old mice are
coloured in green, curves in orange represent samples from 96–104 weeks old mice. The black
bars indicate the integrated area further used for statistical analysis. Three metabolites and their
characteristic peak in the NMR spectra are shown in (A) brain, (B) heart, (C) kidney, (D) liver, (E)
lung and (F) spleen. Figure S2: 2D 1H, 13C HSQC NMR spectra for the different organs with assigned
and cross-validated metabolites for (A) brain, (B) heart, (C) kidney, (D) liver, (E) lung and (F) spleen.
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