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ABSTRACT

Background Most pediatric cancers are considered
immunologically cold with relatively few responding to
immune checkpoint inhibition. We recently described an
effective combination radio-immunotherapy treatment
regimen (combination adaptive-innate immunotherapy
regimen (CAIR)) targeting adaptive and innate immunity
in 9464D-GD2, an immunologically cold model of
neuroblastoma. Here, we characterize the mechanism

of CAIR and the role of major histocompatibility complex
class | (MHC-I) in the treatment response.

Methods Mice bearing GD2-expressing 9464D-

GD2 tumors were treated with CAIR (external beam
radiotherapy, hu14.18-IL2 immunocytokine, CpG, anti-
CD40, and anti-CTLA4) and tumor growth and survival
were tracked. Depletion of specific immune cell lineages,
as well as testing in immunodeficient R2G2 mice, were
used to determine the populations necessary for treatment
efficacy. Induction of MHC-I expression in 9464D-GD2 cells
in response to interferon-y (IFN-y) and CAIR was measured
in vitro and in vivo, respectively, by flow cytometry and
quantitative real-time PCR. A cell line with IFN-y-inducible
MHC-I expression (9464D-GD2-1) was generated by
transfecting a subclone of the parental cell line capable
of expressing MHC-I with GD2 synthase and was used

in vivo to assess the impact of MHC-I expression on
responsiveness to CAIR.

Results CAIR cures some mice bearing small (50 mm®)
but not larger (100 mm®) 9464D-GD2 tumors and these
cured mice develop weak memory responses against
tumor rechallenge. Early suppression of 9464D-GD2
tumors by CAIR does not require T or natural killer (NK)
cells, but eventual tumor cures are NK cell dependent.
Unlike the parental 9464D cell line, 9464D-GD2 cells have
uniformly very low MHC-I expression at baseline and fail
to upregulate expression in response to IFN-vy. In contrast,
9464D-GD2-1 upregulates MHC-I in response to IFN-y and
is less responsive to CAIR.

Conclusion Treatment with CAIR cures 9464D-GD2
tumors in a NK cell dependent manner and induction of
MHC-I by tumors cells was associated with decreased
efficacy. These results demonstrate that the early tumor
response to this regimen is T and NK cell independent,
but that NK cells have a role in generating lasting cures in
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WHAT IS ALREADY KNOWN ON THIS TOPIC

= A combination radio-immunotherapy regimen
(external beam radiotherapy, hu14.18-IL2 immu-
nocytokine, CpG, anti-CD40, and anti-CTLA4) is ef-
fective in immunologically cold 9464D-GD2 murine
neuroblastoma.

WHAT THIS STUDY ADDS

= Natural killer (NK) cells are a primary effector popu-
lation responsible for the responsiveness of 9464D-
GD2 tumors to combination radio-immunotherapy
and their activity might be aided by very low expres-
sion of major histocompatibility complex class | on
the surface of 9464D-GD2 cells. Further strategies
to better inhibit tumor outgrowth may require further
NK activation or the ability to engage alternative im-
mune effector cells.

the absence of MHC-I expression by tumor cells. Further
strategies to better inhibit tumor outgrowth in this setting
may require further NK activation or the ability to engage
alternative immune effector cells.

INTRODUCTION

Neuroblastoma is the most common extracra-
nial solid tumor in pediatrics. High-risk cases,
which account for approximately half of all
patients, are associated with a 5-year overall
survival rate of 50%." 2 Tumor-specific mono-
clonal antibodies (mAb) targeting GD2, a
disialoganglioside  preferentially upregu-
lated on tumors of neuroectodermal origin,
including neuroblastoma and melanoma, are
a component of standard therapy for high-
risk neuroblastoma patients following combi-
nation chemotherapy, surgical resection, and
autologous stem cell transplant.” Despite
this multimodal strategy, the risk of relapse
remains high, highlighting an opportunity
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for an enhanced immunotherapeutic approach to reduce
the risk of recurrence.

We previously described a combination radio-
immunotherapy regimen, which activates components
of both the adaptive and innate immune systems to
induce tumor cures in an immunologically cold model
of neuroblastoma.* Herein, this combination adaptive-
innate immunotherapy regimen is referred to as ‘CAIR’.
The foundation of this approach is the hul4.18-IL2
immunocytokine (IC), a fusion protein linking hul4.18
anti-GD2 mAb and interleukin (IL)-2. When immunocy-
tokine is delivered intratumorally (IT-IC) in combination
with local radiation therapy (12 Gy RT), this approach
generates an in situ vaccination effect that cures mice
bearing GD2-expressing B78 melanoma and NXS2
neuroblastoma.*® The treatment efficacy was enhanced
by concurrent immune checkpoint inhibition with anti-
CTLA4 antibodies.” However, this RT + IT-IC approach
is not effective, even when anti-CTLLA4 is added, in mice
bearing 9464D-GD2 neuroblastoma tumors, which are
immunologically cold and are associated with low tumor
mutation burden.*

Separately, we have described an effective combination
of innate-targeting (agonistic anti-CD40 mAb and CpG-
oligodeoxynucleotides) and adaptive-targeting (IT-IC
and anti-CTLA4 mAb) approaches to cure tumors in a
murine model of melanoma.® When we added local RT to
this treatment combination (ie, CAIR), it was able to cure
some mice bearing 9464D-GD2 tumors.* However, the key
cellular mediators of CAIR and the relative importance of
each component are not fully understood. In addition,
there are limitations to this approach. First, in situ vacci-
nation with RT and IT-IC results in protection against
lung metastasis and rejection of tumor rechallenge in B78
melanoma.’ However, tumor cure of 9464D-GD2 neuro-
blastoma by CAIR fails to generate protective memory
against tumor rechallenge, only slowing outgrowth of
rechallenged 9464D-GD2 tumors, rather than preventing
outgrowth.* This incomplete memory suggests a less effec-
tive systemic adaptive response that may not treat distant
9464D-GD2 disease. Second, the development of CAIR
required a dose reduction of hul4.18IL2 in response
to observed toxicity, suggesting that it is likely that this
regimen could be associated with significant toxicity in
patients. Understanding the mediators of efficacy in this
combination immunotherapy regimen would allow for
rational modifications that might improve the systemic
immune response and decrease toxicity.

In this report, we identify key immune cell mediators
responsible for the efficacy of CAIR (RT, IT-IC, anti-
CD40, CpG, and anti-CTLA4) in mice bearing 9464D-
GD2 neuroblastoma. Our data suggest that natural killer
(NK) cells are a primary effector population responsible
for the responsiveness of 9464D-GD2 tumors to CAIR and
that their activity might be aided by very low expression
of major histocompatibility complex class I (MHC-I) on
the surface of 9464D-GD2 cells. Accordingly, we observed
that increased MHC-I expression on tumors cells was

associated with worse treatment outcomes in GD2-
expressing 9464D models, suggesting that CAIR-induced
NK cell activity can be suppressed by tumor expression of
MHC-I and that this regimen generates a T cell response
that is insufficient to fully compensate for the suppression
of NK cells by MHC-I.

METHODS

Cells

The parental 9464D cell line is a MYCN-driven neuro-
blastoma cell line derived from TH-MYCN transgenic
mice.” 9464D-GD2 is a GD2-expressing cell line derived
from 9464D as previously described.* A subclone of
the parental 9464D cell line selected for interferon-y
(IFN-y)-inducible MHC-I expression was obtained by flow
sorting and was subsequently transfected to express GD2
and GD3 synthases (9464D-GD2-1). Cells were grown in
DMEM supplemented with 10% fetal bovine serum, 2
pM L-glutamine, 1 mM sodium pyruvate, 1X MEM non-
essential amino acids, 100 U/mL penicillin, and 100 pg/
mL streptomycin. Cell lines were confirmed to be nega-
tive for mycoplasma by PCR prior to use.

Murine tumor models

All mice procedures were conducted in accordance with
the Institutional Animal Care and Use Committee at
the University of Wisconsin-Madison. C57BL/6 female
mice aged 6-8 weeks were purchased from Taconic
Biosciences (Germantown, New York, USA). R2G2 mice
(B6;129-Rag2™ " [1.2rg™ "™ /DwlHsd) were used for
experiments requiring immunodeficient mice and were
obtained from Envigo (Indianapolis, Indiana, USA).
R2G2 mice are Rag2 and IL2RG double knockout mice
that are deficient in B, T, and NK cells and relatively
radioresistant.®? 9464D-GD2 flank tumors were engrafted
by intradermal flank injection of 2x10° tumor cells
diluted in 100 pL phosphate buffed saline (PBS). Tumor
size was determined by precision caliper measurement,
and tumor volume was approximated using the formula
(tumor volume in mm®=((tumor width in mm?)x(tumor
length in mm?)). Mice were randomized into treatment
groups when tumors reached enrollment size (50 mm?).
The first day of treatment with RT was defined as ‘day
1’. After injection, approximately 90% of mice had
tumors at the time of randomization that were suitably
uniform to enable similar tumor sizes among all random-
ized mice (ie, within the tumor volume range of 40-60
mm?®); the remaining 10% of mice were excluded from
randomization.

Flank tumor rechallenge experiments were performed
with tumor-free mice approximately 40 days after treat-
ment start unless otherwise indicated. Rechallenge
consisted of intradermal injection of 2x10° tumor cells
on the contralateral flank from the original tumor cell
injection. Tumor volume was assessed twice weekly and
mice were euthanized when tumors exceeded 20 mm
in any direction or mice were assessed to be in distress
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by changes to posture, activity, or grooming. In experi-
ments where rechallenge was conducted in the setting of
a primary tumor, mice that died of a rechallenge tumor
before the primary tumor were censored with respect to
primary tumor-related survival.

Radiotherapy

RT was delivered to primary tumors on day 1 of treatment
using an Xstrahl Small Animal Radiation Research Plat-
form (Suwanee, Georgia, USA). Mice were immobilized
using custom lead jigs that exposed the dorsal right flank
as previously described.” For all experiments, a maximum
dose of 12 Gy RT was delivered to the right flank tumor
in one fraction.

Antibodies and IC

Hul4.18-IL2 IC was provided by Apeiron Biologics
(Vienna, Austria) and has been previously described."
Intratumoral (IT) injections of 25 pg hul4.18-1L2 IC in
100 pL. PBS were delivered once daily for 5 days (days
6-10). Anti-mouse-CTLA-4 mAb (IgG2c isotype of the 9D9
clone) was provided by Bristol-Myers Squibb (Redwood
City, California, USA) and was administered intraperito-
neally (IP) at a dose of 200 pg in 0.2 mL PBS on days 6, 9,
and 12 as previously described.® Anti-mouse-CD40 mAb
was obtained from the ascites of nude mice injected with
FGK 45.5 hybridoma cells producing agonistic anti-CD40
antibody (giftfrom Fritz Melchers, PhD, Basel Institute for
Immunology, Basel, Switzerland). After enrichment for
IgG, anti-CD40 mAb was administered IP at a dose of 500
pg in 0.2 mL PBS on day 3. CpG-1826 oligodeoxynucle-
otide (TCCTATGACGTCCCTGACGTT) was purchased
from TriLink Biotechnologies (San Diego, California,
USA) or Integrated DNA Technologies (Coralville, Iowa,
USA) and administered IT at a dose of 50 pg in 0.1 mL
PBS on days 6, 8, and 10. Treatment timing was selected
based on previous studies.*™

Depletion experiments

Depletion of NK cells was performed with IP injection
of 100 pg anti-NKI.1 mAb (clone PKI136, Bio X Cell,
Lebanon, New Hampshire, USA) in 0.5 mL PBS on days
-1, 3, 7, and 11. Depletion of T-cells was performed with
IP injection of 400 pg anti-CD4 mAb (clone GKI.5, Bio
X Cell) in 0.5 mL PBS and 400 pg anti-CD8 mAb (clone
2.43, Bio X Cell) in 0.5 mL PBS on days -1, 3, 7, and
11. Confirmation of depletion efficiency was performed
via whole blood flow cytometry on day 1 (online supple-
mental figure 1).

MHC-I induction by IFN-y

Expression of MHC-I antigens (H-2Kb and H-2Db) was
assessed by flow cytometry using H-2Db-PE (clone KH95)
and H-2Kb-BV711 (clone AF6-88.5) antibodies, both
obtained from BioLegend (San Diego, California, USA).
Induction of MHC-I expression in vitro was measured
by flow cytometry following a 48-hour incubation in
media containing 100 U/mL IFN-y. Induction of MHC-I

expression in vivo was measured by flow cytometry anal-
ysis of tumors harvested 7 days following the start of CAIR.

Flow cytometry

Mice were sacrificed on day 13 following initiation of
radio-immunotherapy, and tumors were resected for
analyses by flow cytometry or quantitative PCR (qPCR).
Resected tumors were mechanically dissociated for 45
min using a gentleMACS dissociator (Miltenyi Biotec,
Bergisch Gladbach, Germany) in HBSS supplemented
with 1 mg/mL collagenase type D and 100 pg/mL DNAse
I (Sigma Aldrich, St. Louis, Missouri, USA) to obtain
single cell suspensions.6 Ghost Dye Red 780 (Tonbo
Biosciences, San Diego, California, USA) was used for
viability staining. For cell surface staining, cells were
preincubated with mouse Fc block (clone 2.4G2, BD
Biosciences). After blocking, the cells were labeled with
CD3-PE-Cy5 (clone 145-2 Cl11, BiolLegend), CD4-PE-
Dazzle594 (clone GKI1.5, BioLegend), CD8a-APC-R700
(clone 53-6.7, BioLegend), CD25-BB515 (clone PC61,
BD Biosciences, Franklin Lakes, New Jersey, USA), CD45-
BV510 (clone 30-F11, BioLegend), GD2-APC (clone
14G2a, BioLegend), CD11b-BB700 (clone M1/70, BD
Biosciences), F4/80-PE (clone BMS, BioLegend), Ly6G-
BB711 (clone 1A8, BioLegend), and NK1.1-BV421 (clone
PK136, BioLegend). Cells were then fixed and perme-
abilized overnight using Foxp3/Transcription Factor
Staining Buffer Set (eBioscience). FoxP3 staining was then
performed prior to flow cytometry (FoxP3-PE-Cy7, clone
FJK-16s, BioLegend). Flow cytometry data were acquired
using an Attune NXT Flow Cytometer (Thermo Fisher
Scientific, Waltham, Massachusetts, USA) and analyzed
using FlowJo V.10.7.1 (FlowJo LLC, Ashland, OR). The
flow cytometry gating strategy is shown in online supple-
mental figure 2.

RNA isolation and complementary DNA synthesis

RNA was isolated using a Trizol/RNeasy (Qiagen, Gilden,
Germany) Hybrid protocol using Phase Lock Gels. In brief,
cells were cultured in six-well plates as described. To harvest
RNA, media was aspirated from each well and 1 mL of Trizol
(Thermo Fisher Scientific) was added. After a 5 min incuba-
tion, cells were scraped with a sterile scraper, and lysates were
transferred to Phase Lock tubes and incubated for 5 min at
RT. Chloroform (200 pL) was added to each tube followed
by vigorously shaking for 15 s. Samples were centrifuged at
12,000 x g for 10 min at 4°C. Supernatants were transferred
to a new tube, and an equal volume of 100% ethanol was
added to each sample and gently mixed. Samples were then
transferred to RNeasy columns (RNeasy Mini Kit, Qiagen)
and RNA was isolated according to kit instructions. RNA
was eluted in 30 pl of RNase-free water into a 1.5 mL tube
and stored at —80C. complementary DNA was synthesized
from 500 ng of RNA using SuperScript IV VILO MasterMix
(Thermo Fisher Scientific) following the manufacturers
protocol, followed by dilution in nuclease-free water 1:10 and
then stored at —20°C.
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qPCR

The quantification of RNA was performed using TagMan Fast
Advanced Master Mix (Thermo Fisher Scientific) containing
TagMan primers (H2-K1/H2-D1, Assay ID: Mm04208017_
mH; Tapl, Assay ID: Mm00443188_ml; Tap2, Assay ID:
Mm01277033_m1; PSMB9, Assay ID: Mm00479004_ml;
B2m, Assay ID: Mm00437762_ml; NLRC5, Assay ID:
Mm01243039_m1). Amplification of test genes were normal-
ized to three internal control genes: Actb (Mm00607939_s1),
Gadph (Mm99999915_gl1), and Hprt (Mm00446968_m1).
qPCR was conducted at 50°C for 2 min, 95°C for 2 min,
followed by 40 cycles of 95°C for 2 s and 60°C for 20 s. The
threshold crossing value was noted for each transcript and
normalized to the internal controls. The relative quantita-
tion of each messenger RNA (mRNA) was performed using
the comparative CT method. Experiments were performed
using a QuantStudio 6 RealTime Flex PCR System (Thermo
Fisher Scientific).

Statistical analysis

Tumor growth was monitored after treatment, and figures
show the means and standard errors of the tumor volume.
Results from each mouse were summarized by the time-
weighted average (area under the volume-time curve, calcu-
lated using trapezoidal method). Time-weighted averages
were compared between treatment groups overall by Kruskal-
Wallis tests. If significance was found using the Kruskal-Wallis
test, then pairwise comparisons were conducted using
Mann-Whitney tests. No p value corrections were applied to
the pairwise tests. Complete responders (cured mice) were
defined as mice who had zero-volume tumors on the last day
of the study and were alive. If significance was found using
the % test, then pairwise comparisons were conducted using
proportion tests. Survival curves were generated using the
Kaplan-Meier method and compared using log-rank tests.
For qPCR data, statistical comparisons were performed on
the dCT values and analyzed via one-way analysis of variance
with Siddk’s multiple comparisons test. Data are presented
as fold-change compared with the parental 9464D expres-
sion. Cell quantification from flow cytometry and immuno-
histochemistry was compared using Mann-Whitney tests.
All experiments were performed in duplicate. P values less
than 0.05 were considered statistically significant and are
indicated in figures as *#*p<0.001; **p<0.01; *p<0.05; NS,
non-significant (p>0.05). All analyses were performed using
GraphPad Prism (GraphPad) or RV.4.0.5 (R Foundation for
Statistical Computing).

RESULTS

CAIR treatment is effective in small 9464D-GD2 tumors and is
associated with some toxicity

We previously described a combination radio-immunotherapy
regimen (CAIR) that is effective in 9464D-GD2 tumors
(figure 1A) 4 We confirmed that this regimen is effective
in prolonging survival (p<0.01) and curing mice bearing
small (50 mm?) 9464D-GD2 tumors (4/5 mice tumor free,
figure 1B). Larger (100 mm®) 9464D-GD2 tumors had

prolonged survival (p=0.03) butwere not cured by CAIR (0/5
mice tumor free, figure 1C). In addition, we confirmed that
cured mice fail to reject rechallenge with 9464D-GD2 on the
contralateral flank (figure 1D), although the growth of the
rechallenged tumors is slower than tumor growth in paired
naive age-matched mice (p=0.01). In addition to limited effi-
cacyagainst larger 9464D-GD2 tumors, CAIR is associated with
moderate toxicity. To determine which components of the
regimen are responsible for efficacy and toxicity, we tracked
weight and survival of variants of the regimen (figure 1E). For
all three regimens, following the addition of other agents to
RT, we observed substantial weight loss from days 5-10. We
observed similar efficacy under these conditions when anti-
CTLA4 was omitted, suggesting that alleviation of immune
suppression by T regulatory cells is not required for CAIR
efficacy in this model. Individual tumor growth curves for the
data included in figure 1E are shown in online supplemental
figure 3A. These findings demonstrate that while CAIR can
cure a significant number of mice bearing small 9464D-GD2
tumors, there is significant potential for improvement which
might be informed by further examination of the mecha-
nisms driving CAIR efficacy.

NK cells play a significant role in CAIR-mediated tumor cures
but are not required for early tumor regression

To determine which immune subsets are involved in the
response to CAIR for 9464D-GD2, we assessed treatment
response in immunodeficient mice and mice depleted of
specific immune subsets. We first tested the response to
CAIR in immunodeficient R2G2 mice, which lack T, B,
and NK cells and have decreased macrophages, dendritic
cells, and neutrophils. These 9464D-GD2 tumor-bearing
R2G2 mice had superior tumor response with CAIR
compared with RT treated or vehicle controls (p<0.01
and p<0.01, respectively, figure 2A). However, after this
initial reduction in tumor size during the first ~30 days
following CAIR, the majority of R2G2 mice had tumor
regrowth/escape by 100 days after the start of therapy
(0/7 mice tumor free, figure 2A). Immunocompetent
C57BL/6 mice treated with CAIR also had improved
tumor response relative to RT treated or vehicle controls
(p<0.01 and p<0.01, respectively, figure 2B), though the
majority of mice were cured (4/5 mice tumor free). Indi-
vidual tumor growth curves are shown in online supple-
mental figure 3B. These data demonstrate that early
response to CAIR by 9464D-GD2 tumors is not driven by
T, B, or NK cells and suggest, conversely, that late tumor
control might depend on one or more of the populations
of cells deficient in R2G2 mice.

To determine whether NK or T cells were responsible
for preventing delayed outgrowth, and enabling cures
of tumors treated with CAIR, we next performed anti-
body depletion experiments (figure 2C, online supple-
mental figure 1). As in previous experiments, 9464D-GD2
tumors treated with vehicle controls or radiation grew
substantially during the first 30 days. In contrast, tumors
treated with CAIR or CAIR with NK, T, or NK and T cell
depletion regressed with superimposable growth curves
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during this period (figure 2D, online supplemental
figure 3C), confirming that NK and T cells are not
responsible for early tumor regression. However, while
roughly half of CAIR-treated, non-depleted, mice devel-
oped lasting tumor cures, all mice depleted of both NK
and T cells developed tumor outgrowth and were culled
(figure 2E-F). Similarly, nearly all CAIR-treated mice
depleted of only NK cells also showed delayed tumor
outgrowth in this late period, resulting in significantly
decreased survival compared with CAIR-treated IgG
controls (p<0.05). CAIR-treated mice depleted of only T
cells followed a similar pattern as those depleted of NK
cells, but the survival difference was not statistically signif-
icant compared with IgG controls (p=0.16).

NK cell activity in tumors is regulated by a variety of
receptor-ligand interactions, including the binding of
inhibitory receptors (KIRs in humans and Ly49 in mice)
to cognate MHC-T molecules.'' In light of the data indi-
cating that NK cells have a significant role in CAIR-
mediated tumor cures, we hypothesized that 9464D-GD2
cells might express very low levels of MHC-I, allowing for
NK cell-mediated elimination of tumors.

9464D-GD2 cells fail to express MHC-I in response to IFN-y

MHC-I molecules play multiple roles in the interactions
between cancer cells and infiltrating immune cells.
In addition to NK cell inhibition, MHC-I expression
by cancer cells is required for CD8" T cells to recog-
nize cognate antigens at the tumor site after priming
by antigen presenting cells in draining lymph nodes.
To determine the role of tumor MHC in the immune
response to CAIR, we assessed MHC-I expression on
parental 9464D and 9464D-GD2 cells in vitro. We found
that the 9464D cells express very little surface MHGC-I
at baseline; however, following stimulation with IFN-y, a
potent cytokine known to induce MHC-I though ligation
with its receptor IFN-YR, roughly 25% of cells express
significant levels of its two murine MHC-I genes, H-2Db
and H-2Kb (figure 3A). Conversely, 9464D-GD2 expressed
very little MHC-I both at baseline and after incubation
with IFN-y (figure 3B). This difference indicates that
when cells from the parental cell line were transfected to
express GD2, a subclone lacking MHC-I inducibility was
unintentionally selected to generate the new cell line. To
determine the source of MHC-I presentation dysfunction,
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transcription of genes related to antigen presentation
and MHC expression was quantified in both 9464D and
9464D-GD2 (figure 3C). Accordingly, we observed that
TAP1 and PSMB9 transcription was not upregulated in
9464D-GD2 cells following incubation with IFN-y, in
contrast to the prominent upregulation of both of these
when the parental 9464D cell line was incubated with
IFN-y. TAP1 and PSMB9 share a common bi-directional
promoter in humans and mice, suggesting that regula-
tion of this promoter region might contribute to the lack
of MHC-I inducibility in 9464D-GD2 cells.'*?

MHC-I expressing 9464D-GD2 cells are resistant to tumor cure
by CAIR

CD8" T cells are unable to recognize and respond to
tumor cells that do not have MHC-I expression. To assess
the impact of tumor cell expression of MHC-I on respon-
siveness to CAIR, we developed a separate cell line from

a subclone of the parental 9464D cell line capable of
upregulating MHC-T in response to IFN-y by transfecting
it to express GD2 and GD3 synthases (9464D-GD2-I)
(figure 4A). To confirm that 9464D-GD2-I expression of
MHC-I could be induced in vivo, we examined these tumor
cells by flow cytometry after in vivo growth followed by
CAIR treatment. We observed that 9464D-GD2-1, but not
9464D-GD2, effectively upregulated expression of MHC-I
in response to treatment in mice (figure 4B). To deter-
mine if this difference in MHC-I induction correlated with
tumor infiltration of NK or CD8" T cells, we harvested
tumors 13 days after the start of CAIR treatment. We
found that in both 9464D-GD2-1 and 9464D-GD2 tumors,
CDS8' T cell infiltration in CAIR-treated mice increases as
a percentage of live cells (figure 4C). Similarly, both types
of CAIR-treated tumors appeared to have increased infil-
tration of NK cells at this time point, although the shift was
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not statistically significant in 9464D-GD2 tumors. These
data indicate that while MHC-I inducibility is retained in
vivo in 9464D-GD2-I and its expression is upregulated in
response to CAIR, tumor recruitment or retention of NK
and T cells is not necessarily enhanced by this difference
compared with the MHC-I non-inducible 9464D-GD2
tumors.

To assess if MHGC-I upregulation correlated with
increased responsiveness of GD2-expressing 9464D
tumors to CAIR, we monitored tumor growth and survival
in response to treatment (figure 4D-F). As before, we
observed that both 9464D-GD2-I and 9464D-GD2 tumors
showed similar regression in the first 30 days after treat-
ment initiation, suggesting that MHC-I does not impact
the early response of tumors to CAIR (figure 4E).
However, after this early period, tumor growth diverged
and mice bearing 9464-GD2-I tumors had fewer cured
mice than mice bearing 9464D-GD2 tumors (6/17 mice vs
13/19 mice tumor free, p<0.05, figure 4D). Additionally,
9464D-GD2-1 tumors regrew more quickly and had worse
survival than 9464D-GD2 tumors (figure 4E-F, online
supplemental figure 4), suggesting that tumor-reactive
cells which are typically suppressed by MHC-I expression
(NK cells and possibly macrophages) are responsible for

slowing the growth of recurrent tumors.'* Together, these
data support the conclusion that NK cells, rather than
CD8" T cells, drive 9464D-GD2 responsiveness to CAIR
and that this NK response is aided by low or absent MHC-I
expression on tumor cells.

DISCUSSION

The results of this study provide insights regarding the
mechanism of our recently described combination radio-
immunotherapy regimen targeting innate and adaptive
immunity (CAIR) in the immunologically cold 9464-GD2
model of neuroblastoma. The initial response (substan-
tial tumor shrinkage up through 30 days) does not appear
to be mediated by NK or T cell populations. In contrast,
NK cells are substantially involved in tumor cures by CAIR
and might have a role in slowing tumor regrowth after
recurrence. This finding is consistent with our observa-
tion that MHC- is not expressed by 9464D-GD2 tumor
cells in vitro or in vivo, and thus would not be expected to
interfere with NK function via ligation of inhibitory Ly-49
receptors.” When CAIR was applied in mice bearing
tumors capable of MHC-I induction (9464D-GD2-I), the
treatment was similarly effective in causing initial tumor
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shrinkage; however, CAIR was significantly more effec-
tive at clearing tumors completely and slowing tumor
outgrowth in mice bearing the MHC-I non-inducible
9464D-GD2 tumors than for mice with the MHC induc-
ible 9464D-GD2-1 tumors. These differences might be
explained by the inhibition of NK cell function, a primary
effector population, by MHC-I, combined with the insuffi-
ciency of the regimen to generate an effective CDS8" T cell
response to fill in the gap in antitumor immune activity
against the 9464D-GD2-I tumors.

MHC-I expression is absent or very low in nearly all
high-risk clinical neuroblastoma tumors and is thought
to contribute to an immunosuppressive tumor micro-
environment.'® 7 One study demonstrated that primary
human neuroblastomas are similarly associated with low
expression of antigen presentation machinery.18 Another
study of human neuroblastoma cell lines found that of 11
commonly used cell lines, 9 expressed very low levels of
mRNA related to antigen presentation on MHC-L" This
lack of MHC expression on human neuroblastomas may be
driven in part by MYCN amplification, which is associated
with high-risk disease and with low expression of MHC-I
and poor infiltration of T cells into the tumor microenvi-
ronment.?’?! Similarly, the MYCN-overexpressing preclin-
ical mouse models of neuroblastoma, such as 9464D and

other TH-MYCN driven models, have previously been
shown to express low levels of MHC-I and be minimally
infiltrated by T cells.?? In some neuroblastoma cell lines
with low baseline MHC-I expression, MHC-I expression
can be induced by IFN-y stimulation.'® ** However, this
does not necessarily improve treatment response. While
potentially increasing T cell recognition, induction of
MHC-I has been shown to result in decreased sensitivity
to NK-mediated Cytotoxicity.18 Accordingly, we have previ-
ously demonstrated that upregulation of MHC-I on NXS2
neuroblastoma cells can mediate escape from NK-driven
immunotherapy in vivo by inhibiting NK cell function."
Expression of antigens on MHC-I molecules is an intri-
cate process requiring cleavage of intracellular proteins
by the proteasome or immunoproteasome, translocation
of peptides through TAP channels in the endoplasmic
reticulum (ER) membrane, trimming of peptides in the
ER, and loading of high-affinity peptides before translo-
cation to the cell surface. As a result, interference with
any of these steps can inhibit cell surface expression of
MHC-I. Common methods of MHC-I downregulation by
tumors include epigenetic dysregulation of genes relating
to antigen presentation and, more rarely, selection for
mutations of these genes.24 Through a mechanism notyet
understood, the data presented here demonstrate that
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expression of TAP1 and PSMBY, genes responsible for
cleavage and translocation of peptides into the ER, are
dysregulated in 9464D-GD2. Similarly, loss of TAP1 and
PSMB9 induction has been linked to the loss of MHC-I
expression in models of renal cell carcinoma and leio-
myosarcoma.” *® Expression of these genes is linked by a
common bi-directional promotor that is induced by IFN-y
via IRF2 and STAT1."*? Accordingly, defects in the TFN-y
response pathway have also been linked to loss of MHC-I
expression by cancer cells.” It is not yet clear if the lack of
TAP1 and PSMBY inducibility by IFN-yis solely, or directly,
responsible for low MHC-I expression on 9464D-GD2 or
how expression of these genes is dysregulated. Future
studies will aim to clarify this association and identify the
mechanism by which TAP1 and PSMB9Y are suppressed in
9464D-GD2. Further analyses of the regulation of these
pathways, possibly via epigenetic modulation, may help
determine whether this observation has relevance for
human disease and potential therapeutic strategies to
engage CD8' T cells.” ™

In this study we demonstrated that early regression of
9464D-GD2 and 9464D-GD2-1 tumors following CAIR
treatment was not solely mediated by radiotherapy, indi-
cating that the initial response is driven by the immuno-
therapy component of CAIR. We demonstrated that NK
and T cells were not required for early tumor response,
suggesting that non-lymphocyte populations drive the
early antitumor response of these tumors to CAIR. Previ-
ously, we published a study showing that CD40 agonism
combined with CpG, two components of CAIR, can
mediate tumor regression via infiltration of tumoricidal
macrophages and macrophage repolarization.”™ Our
prior report also demonstrated that anti-CD40 and/or
CpG are required for the responsiveness of 9464D-GD2
tumors to CAIR, suggesting that this mechanism might
play a role in curing 9464D-GD2 tumors.” Preliminary
data from ongoing studies in our lab are suggestive of a
potential role for macrophages in the early response to
this CAIR regimen. Further work is underway to address
this question in a separate report.

Even though the tumor response data demonstrate
that T cells are not required in the early tumor response
to CAIR, analysis of immune cells infiltrating into these
tumors show an increase in infiltrating CD4" and CD8" T
cells correlating with the increase in infiltrating NK cells.
The increased infiltration of lymphocyte populations into
tumors after CAIR suggests that this treatment results
in the secretion of chemokines, which is driven by pro-
inflammatory signaling. This pro-inflammatory environ-
ment may be aided in part by the demonstrated depletion
of T regulatory cells by CAIR, likely by the anti-CTLA4
component of the regimen. Taken together, these results
indicate that while T cells may not have a significant role
in the early tumor response, CAIR treatment drives their
recruitment, suggesting that corresponding induction of
MHC-I with additional alleviation of immune suppression
might further support antitumor T cell activity. Thus,
the role of anti-CTLA4, which does not appear to have a

significant role in tumor shrinkage in this model, might
change substantially if further changes are made to the
CAIR regimen that increase the T cell mediated anti-
tumor effect.

Conclusion

We show here that in the 9464D-GD2 model of neuro-
blastoma, NK cells are a primary effector population
driving tumor cures and slowing tumor escape from our
combination radio-immunotherapy regimen, CAIR. This
conclusion is supported by reduced efficacy of CAIR after
antibody depletion of NK cells and the finding that the
inducible expression of MHC-I in 9464D-GD2-1 corre-
sponds to fewer tumor cures and more rapid tumor
outgrowth. Future studies should explore the role of
myeloid cells in the treatment response, the ability to
potentially modulate MHC class-I expression in vivo to
drive an effective CD8" T cell response, and the relevance
of this model to human disease.
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