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Abstract Progression of cancer is often associated with interactions between cancer cells and
extracellular matrix (ECM) surrounding them. Increasing evidence has suggested that accumulation of
hyaluronan (HA), a major component of ECM, provides a favorable microenvironment for cancer
progression. Pancreatic ductal adenocarcinoma (PDAC) is characterized typically by a dense desmoplastic
stroma with a large amount of HA, making this molecule as an attractive target for therapy. Several
studies have shown efficacy of inhibitors of HA synthesis or signaling for the treatment of PDAC. Recent
studies have also demonstrated substantial improvements in the effects of chemotherapy by a targeted
depletion of stromal HA in PDAC using an enzymatic agent. Thus, targeting HA has been recognized as a
promising therapeutic strategy to treat this highly aggressive neoplasm. In this review article, we
summarize our current understanding of the role of HA in the progression of PDAC and discuss possible
therapeutic approaches targeting HA.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
aggressive and intractable solid tumors, which often invades
surrounding stromal components, including lymphatic, vascular,
and perineural systems, ultimately metastasizing to distant organs.
Despite recent advances in the clinical management, the survival
rate in patients with PDAC remains the lowest among all cancer
types, emphasizing the need for a better understanding of its
biology. In particular, identification of molecular mechanisms
underlying the aggressive behaviors of PDAC can provide the
basis for the development of targets for therapeutic intervention1.
Although substantial progress has been made in our understanding
of the genetic and epigenetic alterations in PDAC, the identifica-
tion of these molecular defects in cancer cells has led to little
progress in developing new treatment strategies2,3.

The progression of cancer is governed by complex mechanisms
and is significantly accelerated by tumor microenvironment
composed of extracellular matrix (ECM), such as collagen,
fibronectin, laminin, and hyaluronan (HA)4. Among the ECM
components, HA has been extensively studied in its relation to
cancer initiation and progression. HA, a large polysaccharide
composed of repeating disaccharides of glucuronic acid and N-
acetyl-glucosamine, plays a critical role in a variety of cellular
processes5. HA regulates cell adhesion, migration, and prolifera-
tion by interacting with specific cell surface receptors including
CD44 and receptor for HA-mediated motility (RHAMM)6. HA is
synthesized by hyaluronan synthases (HAS, including HAS1,
HAS2, and HAS3) and is degraded by hyaluronidases (such as
HYAL1 and HYAL2)5,7,8. In normal physiological conditions, the
amount of HA is controlled by a balance between synthesis and
degradation; however, HA has been shown to be abundantly
accumulated in the surrounding stroma of malignant tumor9,10.
The HA-rich microenvironment may promote tumor progression
by enhancing cell proliferation, migration, invasion, metastasis,
angiogenesis, and resistance to chemotherapeutic agents9,10.

Because PDAC is characterized typically by a dense desmo-
plastic stroma containing a large amount of ECM, it is highly
probable that HA is involved in the malignant properties of this
tumor type. In fact, several studies have shown increased expres-
sion of HA and its receptors in PDAC11–16. In an experimental
model of PDAC, accumulation of extracellular HA by HAS
overexpression accelerated tumor growth17. These findings
strongly suggest that HA could be a therapeutic target in PDAC.
Only a few studies, however, have addressed the effects of HA
inhibitors for the treatment of PDAC18–20. More recently, two
studies have shown that inhibition of HA by PEGPH20, an HA-
targeting enzymatic agent, substantially augments the effect of
chemotherapy with gemcitabine in animal models21,22. These
findings suggest a novel therapeutic approach to combat the
chemoresistance of PDAC by targeting HA. In this review article,
we summarize the current understanding of the role of HA in
PDAC and discuss its potential therapeutic applications.
Figure 1 Overexpression of hyaluronan in human pancreatic ductal
adenocarcinoma tissue by immunohistochemical staining. Strong
staining is observed mainly in tumor cells (arrows) but is also present
in stroma (�).
2. Role of HA in the progression of PDAC

HA is a large, linear glycosaminoglycan that consists of repeating
disaccharide subunits of glucuronic acid and N-acetylglucosamine
produced by HA synthases (HAS1, HAS2, and HAS3) and
degraded by hyaluronidases (mainly HYAL1 and HYAL2)5. In
normal physiological conditions, the amounts of HA in tissues are
tightly regulated by a balance between synthesis and degradation.
In certain cancers, HA is often increased or highly concentrated in
tumor cells and, particularly, in their surrounding ECM. There
have been several studies investigating the degree of HA con-
centration and/or pattern of HA expression in PDAC. For example,
a previous study showed that HA is secreted from cultured human
pancreatic cancer cell lines11. In addition, the amount of HA is
increased in human PDAC tissues (12-fold increase) as compared
to the normal pancreas14. Using a biotinylated HA-binding protein
isolated from bovine cartilage, Fries et al.12 demonstrated that in
primary PDAC tissues, HA was found predominantly in the
connective tissue immediately around tumor cells or at the border
between the tumor and normal pancreatic tissue. A comprehensive
analysis of the HA content in a variety of human malignant tumors
revealed that PDAC had the highest incidence of detectable HA
content, which was predominantly associated with the desmoplas-
tic stroma rather than with tumor cells21. We also used immuno-
histochemistry to analyze the expression of HA and its regulators
(including HAS2 and HYAL1) in primary PDAC16, and demon-
strated that HA is strongly expressed in 80% of primary PDAC
tissues with a staining being detected both in tumor and stromal
components (Fig. 1). Importantly, strong HA expression was an
independent prognostic factor in patients with PDAC undergoing
resection, suggesting a prognostic significance of HA in PDAC16.

Little is known about the mechanism by which HA is aberrantly
accumulated in PDAC. One possible mechanism is increased
production of HA from cancer cells themselves through its
accelerated synthesis. In fact, our previous study demonstrated
overexpression of one of the HA synthases, HAS2, in PDAC
tissues16. We and other researches also demonstrated that cultured
PDAC cells secrete a certain amount of HA into conditioned
media23,24. Furthermore, we recently discovered that epigenetic
mechanism (namely DNA methylation) is involved in the regula-
tion of HA synthesis in PDAC cells24. Another mechanism may be
related to the enhanced secretion of HA from stromal cells,
including fibroblasts. In support of this, it has been shown that
HA staining was predominantly associated with the desmoplastic
stroma rather than with tumor cells in human PDAC tissues15,21.
Interestingly, Knudson et al.25 demonstrated that direct coculture
between tumor cells (including PDAC cells) and normal fibro-
blasts promotes the production of HA into the culture medium.



Figure 2 Strategies of targeting hyaluronan for the treatment of
pancreatic cancer. Currently, three different therapeutic approaches
may are considered: (1) inhibiting HA synthesis, (2) blocking HA
signaling, and (3) depleting stromal HA barrier in PDAC to improve
chemosensitivity.
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Thus, tumor-stromal interactions may play a pivotal role in the
increased HA accumulation in PDAC.

Recently, a study used a genetic model to investigate the role of
HA in the progression of PDAC. Kultti et al.17 demonstrated that
forced production and accumulation of HA by HAS3 overexpres-
sion promoted the growth of PDAC tumor in mice through
initiation of epithelial-mesenchymal transition (EMT) as evidenced
by loss of plasma membrane E-cadherin and accumulation of
cytoplasmic β-catenin. Further studies are needed to elucidate the
exact mechanism by which HA promotes the progression
of PDAC.
3. Therapeutic strategies targeting HA in PDAC

In light of these critical contributions of HA to tumor progression,
there have been great interest in developing therapeutic strategies
targeting HA. Three different therapeutic approaches may be
identified: (1) inhibiting HA synthesis, (2) blocking HA signaling,
and (3) depleting stromal HA in PDAC to improve chemosensi-
tivity (Fig. 2).

3.1. Targeting HA synthesis

First, inhibition of HA synthesis may be an ideal and straightfor-
ward treatment strategy. One agent that has received increasing
attention is 4-methylumbelliferone (4-MU). 4-MU inhibits HA
synthesis by acting as a competitive substrate for UDP-
glucuronosyltransferase (UGT) and by downregulating HAS2
and HAS326,27. Notably, 4-MU, also known as hymecromone, is
already used in several countries as a drug to improve liver
function or to treat biliary spasm without any serious side effects
reported28. Previous studies have shown that 4-MU and its
derivatives inhibit the growth and metastasis of PDAC in vitro
and in vivo18,20. In addition, Nakazawa et al.19 showed that 4-MU
enhanced the anticancer activity of a commonly used chemother-
apeutic drug, gemcitabine, in PDAC cell line and animal model.
This finding is consistent with a recent study showing that
chemotherapy with carboplatin induces HA production which
can contribute to chemoresistance by regulating ABC transporter
expression in ovarian cancer29. Recently, in addition to its antic-
ancer efficacy, chemopreventive efficacy of 4-MU has been shown
in prostate cancer animal models30. However, these studies used
cancer cell lines and/or xenograft models which basically lack
human tumor stroma, raising a concern about the potential
therapeutic benefits of 4-MU in patients with PDAC. Further
preclinical and clinical studies are required to determine the
efficacy of 4-MU for the treatment of PDAC.

3.2. Targeting HA signaling

In addition to the synthesis process of HA, signal transduction
pathways induced by HA can be a target for anticancer therapy.
HA interacts with several cell-surface receptors, including CD44
and RHAMM, to activate intracellular signaling pathways that
regulate a variety of cellular processes. In many cancers including
PDAC, HA-CD44 interactions may play an important role in tumor
cell growth, survival, migration, invasion, multidrug resistance, and
cancer stem cell self-renewal6,31–33. Previous studies34,35 have
shown that CD44 regulates invasion of PDAC. Therefore, blocking
this interaction may prevent progression of PDAC. For example,
Sugahara et al.36 showed that tumor-derived HA fragments enhance
CD44 cleavage and cell migration in a CD44-dependent manner and
that inhibition of CD44-HA interaction by digesting the HA
oligosaccharides using hyaluronidase results in complete abrogation
of these cellular events. As downstream of CD44-HA interactions,
Ras-mitogen-activated protein kinase pathway and phosphoinositide
3-kinase (PI3K)-Akt signaling pathway are known to be involved in
the cancer-promoting effects of HA37. These signaling pathways are
thus a target for therapy. Teranishi et al.38 demonstrated that
enhanced cell motility and peritoneal metastasis of PDAC induced
by HA were blocked by the PI3K inhibitor wortmannin in mice.

RHAMM is another receptor for HA known to be implicated in
various cancers6. RHAMM mRNA is overexpressed in pancreatic
cancer cell lines exhibiting a poorly differentiated phenotype and a
high metastatic potential when injected into nude mice13. Recently,
we also show that RHAMM is overexpressed in primary PDAC
tissues and its expression correlates with poor survival in patients
who underwent surgical resection39. Therefore, RHAMM may also
be a promising target but has not yet been investigated in terms of
its therapeutic efficacy in PDAC.

3.3. Depleting stromal HA in PDAC

PDAC is characterized typically by its extensive fibrosis in a
stromal region as a result of desmoplastic reaction. It has been
suggested that accumulation of HA in tumor stroma may increase
tumor interstitial pressure, thereby blocking delivery of drugs to the
tumor cells. Consequently, targeting the components of ECM,
particularly HA, has been considered an attractive therapeutic
strategy to overcome chemoresistance40–42. Although this idea of
depleting stromal HA has been previously proposed and tested in
other tumor types43, it had not been tested in a model of PDAC until
recently. Provenzano et al.22 investigated intravenous administration
of PEGPH20, an HA-targeting enzymatic agent, in mice bearing
PDAC. Systemic administration of PEGPH20 depleted stromal HA,
normalized interstitial pressure, re-expanded microvasculature, and
consequently improved the effects of gemcitabine22. Similarly,
Jacobetz et al.21 also used a genetically engineered mouse model,
the LSL-KrasG12D/þ; LSL-Trp53R172H/þ; Pdx-1-Cre (KPC) mice, to
demonstrate that PEGPH20 depletes HA, induces the re-expansion
of collapsed blood vessels in PDA, and increases the intratumoral
delivery of two chemotherapeutic agents, doxorubicin and gemci-
tabine. Furthermore, combination therapy with PEGPH20 and
gemcitabine inhibits tumor growth and prolongs survival in the
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KPC mice21. Importantly, treatment with PEGPH20 alone had no
significant effects on the tumor growth and survival in mice21,22,
suggesting that the potential therapeutic benefit of HA inhibition is
obtained primarily by overcoming the stromal barrier and sensitiz-
ing chemotherapy rather than by its own anticancer effect.

Based on these promising results of preclinical studies,
PEGPH20 is now being tested in a clinical trial (NCT01839487)
to determine its efficacy when used in combination with nab-
paclitaxel plus gemcitabine in patients with metastatic PDAC
(https://clinicaltrials.gov/show/NCT01839487). The results of this
and future trials will reveal the clinical efficacy of HA inhibitors
and offer a novel treatment option for otherwise untreatable
patients with PDAC.
4. Future prospective

In summary, there are currently three major strategies targeting
HA (inhibition of HA synthesis, blocking HA-receptor signaling,
and depletion of stromal HA in combination with chemotherapy)
in the treatment of PDAC. In addition to these strategies, there
may be other potential strategies to target HA for the treatment of
PDAC. For example, inhibition of HA degradation, as well as HA
synthesis, could be an ideal strategy, because accumulating
evidence suggests that low-molecular-weight or fragmented HA,
produced through degradation by hyaluronidase, plays a critical
role in cancer progression44,45. In fact, previous studies have
shown antitumor effects of hyaluronidase inhibitors in some types
of cancers46,47. Although further preclinical and clinical studies are
required, controlling the amount and/or size of HA by modulating
the production and degradation process may be a promising
therapeutic strategy to improve the prognosis of this deadly
disease in the future.
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