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Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in
pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate
receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor
responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca2+ imaging. The combined
blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/
kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of
interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and
interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual
mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations.
Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These
results indicate that (1) interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2)
interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3) AMPA/kainate receptors
participate in the synchronization of odor-dependent neuronal ensembles, and (4) ionotropic glutamate receptor-containing
synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for
the processing of odor-encoding activity patterns in the olfactory bulb.
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INTRODUCTION
The first olfactory processing center in vertebrates, the olfactory

bulb, transforms odor-specific patterns of sensory inputs across the

array of glomeruli into spatio-temporal patterns of activity across

the output neurons, the mitral cells. Processing of activity patterns

in the olfactory bulb reduces the overlap between representations

of related odors [1–3], rhythmically synchronizes odor-dependent

ensembles of mitral cells [1,4–6], and is likely to be important for

additional computations involved in the analysis of an animal’s

molecular environment. The mechanistic basis of pattern

processing in the olfactory bulb, however, is poorly understood.

The synaptic architecture of neuronal circuits in the olfactory

bulb is conserved across vertebrate classes [7,8]. Within the

sensory input modules of the olfactory bulb, the glomeruli, mitral

cells can excite one another via gap junctions and fast volume

transmission of glutamate [9–12]. Across glomeruli, synaptic

interactions are mediated by interneurons, predominantly peri-

glomerular and granule cells. Interactions among neurons

associated with different glomeruli occur via various synaptic

pathways that extend over multiple spatial scales and exert

predominantly inhibitory effects on olfactory bulb output neurons

[13,14] (Fig. 1). The most prominent inter-glomerular synaptic

pathway is the mitral cellRinterneuronRmitral cell pathway,

where periglomerular or granule cells are excited by glutamatergic

mitral cellRinterneuron synapses and feed back GABAergic

inhibition onto the same and other mitral cells at interneur-

onRmitral cell synapses. This and other pathways (Fig. 1) shape

spatio-temporal patterns of olfactory bulb output activity and may

thereby optimize odor representations for processing in higher

brain regions.

Experiments in brain slices have demonstrated that the

activation of GABA release from interneurons can depend on

NMDA receptor input [15,16]. Glutamate release from mitral cells

can cause long-lasting inhibitory GABAA receptor currents in the

same mitral cell even in the absence of action potential firing [15–

17], partly by direct coupling of Ca2+ influx through the NMDA

receptor to GABA release at the reciprocal dendro-dendritic

synapse [18–20]. This mechanism is thought to mediate recurrent

inhibition of the same presynaptic mitral cells because synaptic

Ca2+ transients in granule cells are local events [21]. Strong inputs

to interneurons trigger Na+ or Ca2+ action potentials that invade

large portions of the dendritic tree and probably mediate inter-

glomerular lateral inhibition among multiple mitral cells [21–23].

The relative strength of these different modes of inhibition during

an odor response, however, is unclear.

Despite detailed insights into the molecular and biophysical

properties of olfactory bulb neurons and synapses it remains

unclear how synaptic interactions shape the spatio-temporal
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structure of olfactory bulb output activity in the intact circuit. To

address this question, we took advantage of a preparation of the

entire zebrafish brain that permits the combination of odor

stimulation, electrophysiology, functional imaging and pharma-

cology. We concentrated on the role of ionotropic glutamate

receptors, which comprise AMPA/kainate and NMDA receptors.

Both receptor types are coexpressed at the olfactory sensory

neuronRmitral cell synapse and at mitral cellRinterneuron

synapses [14,24]. Hence, ionotropic glutamate receptors mediate

most or all excitatory synaptic interactions among olfactory bulb

neurons and are involved in multiple synaptic pathways (Fig. 1).

While the combined blockade of AMPA/kainate and NMDA

receptors abolished excitatory input to mitral cells, the selective

blockade of each receptor type produced complex effects on the

spatial and temporal patterning of olfactory bulb output activity.

The results provide insights into the functions of synaptic circuits

in the intact olfactory bulb, including the regulation of the total

output activity, the mechanisms of interneuron activation, and the

oscillatory synchronization of neuronal ensembles.

RESULTS
Mitral cells in the non-anesthetized olfactory bulb of zebrafish and

other species exhibit pronounced fluctuations in membrane

potential and fire spontaneous action potentials at irregular

intervals. Odor stimulation causes stimulus- and mitral cell-

dependent temporal modulations of firing frequency that can

comprise successive excitatory and inhibitory epochs [2,4,25–28].

The population of mitral cells therefore responds to a given

stimulus with a specific spatio-temporal pattern of activity. To

analyze the role of glutamatergic synaptic interactions in this

response, we pharmacologically manipulated AMPA/kainate and

NMDA receptor function by bath-application of the selective

antagonists 2,3-Dioxo-6-nitro-1,2,3,4-tetrahydropbenzo[f]qui-

noxaline-7-sulfonamide (NBQX; 5–10 mM) and D-(-)-2-Amino-

5-phosphonopentanoic acid (AP5; 50–100 mM), respectively. We

first measured the effect on odor responses of mitral cells in an

explant preparation of the adult zebrafish brain by loose-patch

extracellular and whole cell intracellular recordings. The panel of

odor stimuli comprised two food extracts and 6 individual amino

acids, which are natural odors for aquatic animals. The amino

acid concentration used (10 mM) is in the intermediate physiolog-

ical range and does not saturate glomerular odor responses in

zebrafish [29].

Combined blockade of AMPA and NMDA receptors
We first blocked all ionotropic glutamate receptors with NBQX

and AP5. Spontaneous activity and odor responses were initially

recorded for 15–20 min in the absence of drugs. Thereafter,

NBQX and AP5 were washed in for 15 min and responses to the

same stimuli were recorded again in the presence of the drugs. If

recordings could be maintained for sufficient periods of time,

drugs were washed out for at least 30 min and odor responses were

measured again. The three recording conditions are designated

‘‘control’’, ‘‘drug’’, and ‘‘wash-out’’, respectively.

In the presence of NBQX and AP5, spontaneous action

potential firing was either completely abolished or became slow

and periodic (n = 4 mitral cells; Fig. 2A). Subthreshold membrane

potential fluctuations were reduced or eliminated and spontaneous

fluctuations in the local field potential were decreased (Fig. 2A, B).

Odor stimulation failed to elicit mitral cell depolarization and

action potential firing (Fig. 2A). Similar results were obtained in all

mitral cells, each of which was stimulated with 1–2 amino acid

odors or food extracts that elicited a strong response under control

conditions. Moreover, odor-evoked local field potential oscillations

were completely abolished (Fig. 2B, C, D). In the presence of

NBQX and AP5, the power in the 15–30 Hz band of the local

field potential was significantly reduced to 461% of control (t-test:

P,0.001). These results show that glutamatergic synaptic

transmission is essential for responses of olfactory bulb neurons

to odors, most likely because glutamate is the neurotransmitter of

olfactory sensory neurons [30,31].

Blockade of AMPA/kainate receptors: effect on

mitral cell responses
In contrast to the combined application of AMPA/kainate and

NMDA receptor antagonists, the selective blockade of AMPA/

kainate receptors by NBQX produced diverse effects on mitral cell

activity. The spontaneous activity of individual mitral cells could

decrease, remain similar, or even increase relative to control levels.

Figure 1. Simplified architecture of synaptic pathways in the
olfactory bulb. Within glomeruli, glutamatergic olfactory sensory
neurons provide excitatory synaptic input to mitral cells and a
subpopulation of periglomerular cells via AMPA/kainate and NMDA
receptors. Periglomerular cells also receive glutamatergic input from
mitral cell dendrites and provide GABAergic output to mitral cells of the
same and neighbouring glomeruli. In addition, GABA (green arrow) and
dopamine (not shown) released from periglomerular cells reduces
glutamate release from olfactory sensory neuron axon terminals by
acting on GABAB and D2 receptors, respectively, in the same glomerulus
[23,49–53]. In subglomerular layers, glutamate release from mitral cell
dendrites and axon collaterals stimulates granule cells via AMPA/kainate
and NMDA receptors. Granule cells release GABA back onto GABAA

receptors on the same and other mitral cells. Glutamate release from a
mitral cell can therefore cause recurrent inhibition of the same mitral
cell and lateral inhibition of other mitral cells via periglomerular and
granule cells. These interactions, here collectively referred to as the
mitral cellRinterneuronRmitral cell pathway, can extend over distanc-
es corresponding to multiple glomeruli. An additional pathway
mediating lateral inhibition that is not detailed in this scheme is the
short axon cell (SAC)RperiglomerularRmitral cell pathway identified in
rodents [13,54]. Centrifugal inputs from higher brain areas are also not
shown in detail. Many of these inputs terminate on interneurons and
are glutamatergic. Not included in the scheme are metabotropic
glutamate receptors, interactions among interneurons in the granule
cell layer [55], glutamate spillover [56], and a small glutamatergic
subpopulation of granule cells [57]. Strong excitatory interactions
across glomeruli, as revealed in the antennal lobe of Drosophila [58–60],
have not been found in the vertebrate olfactory bulb. Abbreviations:
OSN: olfactory sensory neuron, PGC: periglomerular cell, MC: mitral cell,
GC: granule cell, SAC: short axon cell.
doi:10.1371/journal.pone.0001416.g001
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On average, NBQX did not significantly change the spontaneous

firing rate. Average spontaneous firing rates under control

conditions and in the presence of NBQX were 6.663.61 Hz

(mean6standard deviation) and 5.5164.90 Hz, respectively (sign

test: p = 0.23; n = 13 mitral cells). In most (5/6) mitral cells, steep

subthreshold transients in the membrane potential were strongly

reduced while slow fluctuations could still be observed (Fig. 3A).

All mitral cells were still odor-responsive in the presence of

NBQX (n = 22 odor responses in 13 mitral cells; 1–3 different

odors per mitral cell), but the magnitude and time course of odor

responses was usually altered (Fig. 3A, B). Paradoxically, NBQX

often enhanced transient periods of excitation shortly after

response onset (Fig. 3B1–B3), while reductions in the amplitude

of excitatory responses were rare. Inhibitory responses were

prolonged in two cases (Fig. 3B4) and unchanged in one case. In

two other cases, the sign of the response changed from an

inhibition to a weak excitation (Fig. 3B5). In both of these cases,

NBQX almost completely suppressed spontaneous activity.

Changes in the sign of the response from excitatory to inhibitory

were not observed. The effects of NBQX were at least partially

reversed after wash-out.

To quantify the effects of NBQX on odor responses we first

compared the average odor-evoked firing rate change before and

during NBQX treatment between 0.25 s and 0.75 s after response

onset. On average, odor stimulation evoked an increase in mitral

cell firing of 4.069.7 Hz above baseline under control conditions.

This increase was significantly enhanced to 11.5618.9 Hz by

NBQX (sign test: P = 0.02; Fig. 4A). The cumulative distribution of

response amplitudes was shifted to the right and saturated at higher

frequencies (Fig. 4B), showing that smaller responses became less

frequent and maximal response magnitudes were increased.

However, not all responses were enhanced by NBQX and the

effect of NBQX depended on the neuron and stimulus, suggesting

that NBQX may also affect the pattern of activity across the

population of mitral cells. We therefore compared responses of

different mitral cells to different odors before and during application

Figure 2. Ionotropic glutamate receptors are essential for odor responses of mitral cells. (A) Whole-cell recording from a mitral cell during odor
stimulation (food extract; bar) before (black) and during (red) application of NBQX and AP5. (B) Local field potential recording during odor stimulation
(food extract; bar) before (black) and during (red) application of NBQX and AP5 and after washout (gray). Traces are band-pass filtered between 8–
43 Hz. (C) Power spectrum of local field potential traces (average of 6 trials; from unfiltered data) for the examples shown in (B). (D) Average local field
potential power (15–30 Hz) in the presence of NBQX and AP5, normalized to control (n = 4 olfactory bulbs). ***, P,0.001.
doi:10.1371/journal.pone.0001416.g002
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of NBQX in a diagram where responses are ranked according to

their magnitude before drug application (Fig. 4C). Response

patterns before and during application of NBQX showed obvious

similarities, indicating that NBQX did not cause major changes in

population activity patterns. Nevertheless, some, but not all,

responses in the presence of NBQX were significantly different

from control. Thus, the blockade of AMPA/kainate receptors not

only scaled odor responses but also caused small changes in the

distribution of activity across the mitral cell population.

To assess the effect of NBQX on the time course of mitral cell

responses in more detail, we constructed peri-stimulus time

histograms. The enhancement of the mean response of mitral

cells was most pronounced during the early phase of the odor

response (Fig. 4D). The effect of NBQX on individual responses

was examined by subtracting the peri-stimulus time histogram

measured before NBQX treatment from the corresponding

histogram measured in the presence of NBQX (Fig. 4E). This

analysis confirmed that NBQX increased odor responses in a

subset of mitral cells, particularly during the initial phase of the

odor response, while suppressive effects of NBQX were small.

Blockade of NMDA receptors: effects on mitral cell

responses
The selective blockade of NMDA receptors by AP5 had little effect

on spontaneous mitral cell activity. In one mitral cell, spontaneous

Figure 3. Effect of the AMPA/kainate receptor antagonist, NBQX, on odor responses of mitral cells. (A) Whole-cell recording of a mitral cell
response to odor stimulation (food extract; bar) before (black) and during (red) bath-application of NBQX and after washout (gray). (B1–B5) Five
examples illustrating effects of NBQX on odor responses. Ticks denote individual action potentials. Each row shows one trial. Black: control; red:
during NBQX application; gray: after wash-out of NBQX. Continuous lines are peri-stimulus time histograms, averaged over all trials under each
condition. Thick portions depict time bins where peri-stimulus time histograms were significantly different (Student’s t-test; P,0.05) from the
corresponding time bin in the control peri-stimulus time histogram (black). Bar indicates odor stimulation. Responses are from different cells and
were recorded in the whole-cell, cell-attached or loose-patch configuration.
doi:10.1371/journal.pone.0001416.g003
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action potential firing was completely abolished, while it was slightly

increased in others. The average spontaneous firing rates under

control conditions and in the presence of AP5 were 8.666.5 Hz and

9.467.2 Hz, respectively (sign test: P = 1.00; n = 12 mitral cells).

Fluctuations in the membrane potential in the presence of AP5

appeared largely unchanged as compared to control (Fig. 5A).

Odor responses were still observed after AP5 treatment in all

recorded neurons (n = 25 responses from 12 mitral cells; 1–3

different odors per mitral cell), but the amplitude and time course

were often changed (Fig. 5A, B). The effects caused by AP5

appeared more complex than those caused by NBQX. While

excitatory response amplitudes were often slightly increased by

AP5 (Fig. 5 B2–B4), decreases in response amplitude were also

observed (Fig. 5A, 5B1). In some responses, AP5 affected mainly

the initial transients (Fig. 5B4) whereas in other responses it also

changed the later phases (Fig. 5B1, B2, B3, B5). Changes in the

sign of the response amplitude were observed in 4 out of the 25

responses. In one case, a weak inhibitory response became

Figure 4. Effect of NBQX on odor responses of mitral cells: quantitative analysis. (A) Mean firing rate change evoked by odor stimulation before
(control) and during NBQX treatment in the time window between 0.25 and 0.75 s after response onset. Error bars show standard deviation. *,
P = 0.02 (sign test). (B) Cumulative distribution of odor-evoked firing rate changes in mitral cells before (control) and during NBQX application. (C) Left:
mitral cell odor responses ranked according to the firing rate change measured before NBQX application. Right: Responses of the same mitral cells to
the same odors in the presence of NBQX (same rank order as control). Asterisks denote responses that were significantly changed in the presence of
NBQX (Student’s t-test; P,0.05). (D) Top (continuous lines): average peri-stimulus time histogram of mitral cell odor responses before (control) and
during NBQX treatment. Thick portions depict time bins where the peri-stimulus time histogram in the presence of NBQX was significantly different
from the control peri-stimulus time histogram in the corresponding time bin (sign test; P,0.05). Dashed lines show standard deviation. (E)
Differences of peri-stimulus time histograms (NBQX–control) for all mitral cell odor responses.
doi:10.1371/journal.pone.0001416.g004
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excitatory while in the other three cases excitatory responses

became inhibitory (Fig. 5A, B1). Effects of AP5 were at least

partially reversible after washout.

In the presence of AP5, the average firing rate change of mitral

cells between 0.25 s and 0.75 s amounted to 8.5620.8 Hz above

baseline and was not significantly different from the average firing

rate change of 5.0615.7 Hz under control conditions (sign test:

p = 0.71; Fig. 6A). The cumulative histogram of response

amplitudes showed little or no change (Fig. 6B). The analysis of

individual responses, however, revealed that AP5 increased some

responses and decreased others. Consequently, the distribution of

responses across the population of mitral cells in the presence of AP5

was different from control (Fig. 6C). Peri-stimulus time histograms

revealed that the average time course of mitral cell firing was similar

to control (Fig. 6D) but individual mitral cell responses could be

increased or decreased, often within certain time windows (Fig. 6E).

Largest changes were observed shortly after response onset, but later

phases could also be affected. Hence, AP5 had little effect on the

average magnitude and time course of the population response but

caused complex changes of individual mitral cell responses and

spatio-temporal activity patterns.

Effects of ionotropic glutamate receptor antagonists

on local field potential oscillations
In the absence of drugs, all stimuli evoked local field potential

oscillations with a frequency around 20 Hz (Fig. 7A–D). Because

amplitudes were largest in response to food extracts, we

concentrated on these stimuli for further experiments. NBQX

completely abolished local field potential oscillations in response to

food extracts (Fig. 7A, B, E), as observed in 6 olfactory bulbs. The

power in the 15–30 Hz band was significantly reduced to 561%

of control (t-test: P,0.001). AP5 reduced, but not completely

abolished, local field potential oscillations (Fig. 7C–E), as observed

Figure 5. Effect of the NMDA receptor antagonist, AP5, on odor responses of mitral cells. (A) Whole-cell recording of a mitral cell response to odor
stimulation (Lys, 10 mM; bar) before (black) and during (red) application of AP5. (B1–B5) Five examples illustrating effects of AP5 on odor responses.
Conventions as in Fig. 3. Responses are from different cells and were recorded in the whole-cell, cell-attached or loose-patch configuration.
doi:10.1371/journal.pone.0001416.g005
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in 4 olfactory bulbs. The power in the 15–30 Hz band was

significantly reduced to 44630% of control (t-test: P,0.01).

Moreover, the oscillation frequency was slightly increased

compared to control in all experiments (Fig. 7D). The effects of

both drugs were reversible after washout (Fig. 7A, C).

Measurements of odor-evoked activity patterns by

2-photon Ca2+ imaging
Although AMPA/kainate and NMDA receptors mediate excit-

atory synaptic input from olfactory sensory neurons to mitral cells,

the blockade of one receptor type alone did not reduce the average
excitation of mitral cells, suggesting that ionotropic glutamate
receptors also influence mitral cell responses via other, multisyn-
aptic pathways. We therefore analyzed the effect of ionotropic
glutamate receptor antagonists on network activity patterns using
2-photon Ca2+ imaging after bolus loading of olfactory bulb
neurons with the red-fluorescent Ca2+ indicator, rhod-2. Mitral
cells and interneurons were distinguished by the expression of the
mitral cell marker, HuC-YC [32,33], that was detected simulta-
neously in a separate emission channel. Somatic Ca2+ signals
reflect the spike output of individual mitral cells and interneurons

Figure 6. Effect of AP5 on odor responses of mitral cells: quantitative analysis. (A) Mean firing rate change evoked by odor stimulation before (control)
and during AP5 treatment in the time window between 0.25 and 0.75 s after response onset. (B) Cumulative distribution of odor-evoked firing rate changes
in mitral cells before (control) and during application of AP5. (C) Left: mitral cell odor responses ranked according to the firing rate change measured before
application of AP5. Right: Responses of the same mitral cells to the same odors in the presence of AP5 (same rank order as control). Asterisks denote
responses that were significantly changed in the presence of AP5 (Student’s t-test; P,0.05). (D) Top (continuous lines): average peri-stimulus time histogram
of mitral cell odor responses before (control) and during application of AP5. Thick portions depict time bins where the peri-stimulus time histogram in the
presence of AP5 was significantly different from the control peri-stimulus time histogram in the corresponding time bin (sign test; P,0.05). Bottom (dashed
lines): standard deviation. (E) Differences of peri-stimulus time histograms (AP5–control) for all mitral cell odor responses.
doi:10.1371/journal.pone.0001416.g006

GluRs in Odor Processing

PLoS ONE | www.plosone.org 7 January 2008 | Issue 1 | e1416



[34] and are stable over hours [35]. 2-photon Ca2+ imaging

therefore permits measurements of odor-evoked action potential

firing from many neurons, including interneurons in deep layers

that are difficult to record using electrophysiological methods.

We first examined the effect of glutamate receptor antagonists on

odor-evoked Ca2+ signals of mitral cells using the same drug

application protocol as before (Fig. 8A). In many mitral cells,

NBQX increased the amplitude of odor-evoked Ca2+ signals, while

decreases in response amplitude were rarely observed. On average,

NBQX significantly increased Ca2+ signals to 150% of control (sign

test: P = 0.002; Fig. 8B). Consequently, the cumulative distribution

of response amplitudes was shifted towards higher amplitudes

(Fig. 8C). At the level of individual mitral cells, the effect of NBQX

varied in magnitude (Fig. 8D, E). The correlation between mitral

cell activity patterns before and during NBQX treatment was 0.73

(Fig. 8D; n = 190 responses; pooled over all mitral cells and odors).

As a control, we performed the same procedures in a different set of

fish except that NBQX was omitted during the wash-in period. The

Figure 7. Effect of NBQX and AP5 on local field potential oscillations. (A) Example of a local field potential recording (bandpass-filtered 8–43 Hz) of
an odor response (food odor; bar) before (black) and during application of NBQX (red) and after washout (gray). (B) Example of power spectra of local
field potential responses before and during application of NBQX (average of 7 trials; calculated from unfiltered traces). (C) Example of a local field
potential recording of an odor response before and during application of AP5 and after washout. (D) Example of power spectra before and during
application of AP5 (average of 14 trials; calculated from unfiltered traces). (E) Average local field potential power (15–30 Hz) in the presence of NBQX
(n = 6 olfactory bulbs) and AP5 (n = 4 olfactory bulbs), normalized to control. ***, P,0.001; **, P,0.01.
doi:10.1371/journal.pone.0001416.g007
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correlation between activity patterns in these control experiments

(r = 0.78; n = 126 responses) was slightly, but not significantly

(P = 0.32), higher than in experiments using NBQX. Hence, NBQX

increased the amplitude of the mitral cell population response but

had little or no effect on the odor-evoked pattern of Ca2+ signals

across the mitral cell population.

Blockade of NMDA receptors by AP5 had diverse effects on

odor-evoked Ca2+ signals of individual mitral cells, including

increases and decreases of the response (Fig. 9A). The average

response amplitude was 86% of control and not significantly

different from control (sign test: P = 0.26; Fig. 9B). The cumulative

histogram of response amplitudes showed no obvious change

(Fig. 9C). However, the activity pattern across the mitral cell

population differed from control because some responses were

increased while others were decreased (Fig. 9D, E). The

correlation between activity patterns before and during AP5

treatment was 0.45 (n = 742 responses) and significantly different

from control (r = 0.78; n = 126 responses; P,0.001). Hence, AP5

did not significantly affect the mean response amplitude of mitral

cells but changed the pattern of activity across the population. The

Figure 8. Effect of NBQX on mitral cell responses measured by 2-photon Ca2+ imaging. (A) Odor-evoked Ca2+ signals in mitral cells before, during
and after application of NBQX (stimulus: Trp, 10 mM). Arrows depict somata of neurons identified as mitral cells by expression of the genetically
encoded fluorescence marker HuC-YC. (B) Average somatic Ca2+ signals before (control) and during application of NBQX, normalized to control. Error
bars show standard deviation. **, P = 0.002 (sign test). (C) Cumulative distribution of Ca2+ signal amplitudes before (black) and during application of
NBQX (red) and after washout (gray). (D) Comparison of Ca2+ signal amplitudes evoked by the same odors in the same mitral cells before and during
application of NBQX. Data were pooled over all cells, odors and animals (n = 190 responses). r, Pearson correlation coefficient. Inset shows the density
of data points in the boxed region. Lines are diagonals with slope one. (E) Left: mitral cell odor responses ranked according to the Ca2+ signal before
application of NBQX. Inset shows an enlargement of a subregion. Right: Responses of the same mitral cells to the same odors in the presence of
NBQX, ranked in the same order as in the control.
doi:10.1371/journal.pone.0001416.g008
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effects of AP5 and NBQX on odor-evoked patterns of Ca2+ signals

across mitral cells are therefore consistent with those observed in

electrophysiological experiments.

Effects of ionotropic glutamate receptor antagonists

on interneuron activity
Somata of interneurons in the deeper layers of the olfactory bulb

are densely packed and show pronounced Ca2+ signals in response

to odor stimulation (Fig. 10A) [34,35]. In the presence of NBQX,

response amplitudes of many interneurons were decreased and

response patterns appeared sparser. Ca2+ signals in the neuropil

were also substantially smaller (Fig. 10A). The average somatic

Ca2+ signal of interneurons was significantly reduced to 47% of

control (sign test: P,0.001; Fig. 10B) and the cumulative

distribution of response amplitudes was shifted towards lower

amplitudes (Fig. 10C). NBQX therefore increased the ratio

between the mean mitral cell response and the mean interneuron

Figure 9. Effect of AP5 on mitral cell responses measured by 2-photon Ca2+ imaging. (A) Odor-evoked Ca2+ signals in mitral cells before, during
and after application of AP5 (stimulus: food extract). Arrows depict somata of neurons identified as mitral cells by expression of the genetically
encoded fluorescence marker HuC-YC. Black and white arrows show mitral cells whose response was increased and decreased, respectively, by AP5
treatment. (B) Average somatic Ca2+ signals before (control) and during application of AP5, normalized to control. Error bars show standard deviation.
(C) Cumulative distribution of Ca2+ signal amplitudes before (black) and during application (red) of AP5 and after washout (gray). (D) Comparison of
Ca2+ signal amplitudes evoked by the same odors in the same mitral cells before and during application of AP5. Data were pooled over all cells, odors
and anminals (n = 742 responses). r, Pearson correlation coefficient. Inset shows the density of data points in the boxed region. Lines are diagonals
with slope one. (E) Left: mitral cell odor responses ranked according to the Ca2+ signal before application of AP5. Inset shows an enlargement of a
subregion. Right: Responses of the same mitral cells to the same odors in the presence of AP5, ranked in the same order as in the control.
doi:10.1371/journal.pone.0001416.g009
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response by a factor of 3.2. At the level of individual interneuron

somata, the effect of NBQX was diverse. Not all responses were

reduced by the same amount, and some responses were even

enhanced (Fig. 10A, D, E). The correlation between activity

patterns before and during NBQX treatment was 0.41 (n = 5878

responses; pooled over all interneurons and odors) and signifi-

cantly lower than the correlation between activity patterns in

control experiments without drugs (r = 0.71; n = 208 responses;

P,0.001). Hence, blockade of AMPA/kainate receptors decreased

the mean response of interneurons and changed the activity

pattern across the interneuron population.

Blockade of NMDA receptors by AP5 caused only a slight

change in the mean response amplitude of interneurons to 109%

of control (sign test: P,0.001; Fig. 11A, B) and the cumulative

histogram of response amplitudes remained similar (Fig. 11C).

AP5 therefore changed the ratio between the mean mitral cell

Figure 10. Effect of NBQX on interneuron responses measured by 2-photon Ca2+ imaging. (A) Odor-evoked Ca2+ signals in interneurons before,
during and after application of NBQX (stimulus: food odor). (B) Average somatic Ca2+ signals before (control) and during application of NBQX,
normalized to control. Error bars show standard deviation. ***, P,0.001 (sign test). (C) Cumulative distribution of Ca2+ signal amplitudes before
(black) and during (red) application of NBQX. (D) Comparison of Ca2+ signal amplitudes evoked by the same odors in the same interneurons before
and during application of NBQX. Data were pooled over all cells, odors and anminals (n = 5878 responses). r, Pearson correlation coefficient. Inset
shows the density of data points in the boxed region. Lines are diagonals with slope one. (E) Left: interneuron odor responses ranked according to
the Ca2+ signal before application of NBQX. Right: Responses of the same interneurons to the same odors in the presence of NBQX, ranked in the
same order as in the control. Inset shows an enlargement of a subregion to demonstrate that low-amplitude values are interspersed between high
amplitude values. The visual impression in the full diagram that many amplitudes are increased during NBQX treatment is therefore an artifact caused
by crowding of bars in the graph.
doi:10.1371/journal.pone.0001416.g010
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response and the mean interneuron response by a factor of 0.79.

Individual interneuron responses, however, were often increased

or decreased by AP5 (Fig. 11D, E). The correlation between

activity patterns before and during AP5 treatment was 0.40

(n = 14884 responses) and significantly different from control

(r = 0.71; n = 208 responses; P,0.001). Hence, the blockade of

NMDA receptors had little effect on the overall amplitude of

interneuron responses but caused a redistribution of activity across

the population.

DISCUSSION

Function of ionotropic glutamate receptors in the

intact olfactory bulb
We used pharmacological manipulations in combination with

electrophysiology and 2-photon Ca2+ imaging to study the

functions of ionotropic glutamate receptors in neuronal circuits

of the intact olfactory bulb. Electrophysiology records action

potentials and subthreshold synaptic input at high temporal

Figure 11. Effect of AP5 on interneuron responses measured by 2-photon Ca2+ imaging. (A) Odor-evoked Ca2+ signals in interneurons before,
during and after application of AP5 (stimulus: food odor). (B) Average somatic Ca2+ signals before (control) and during application of AP5, normalized
to control. Error bars show standard deviation. (C) Cumulative distribution of Ca2+ signal amplitudes before (black) and during (red) application of
AP5. (D) Comparison of Ca2+ signal amplitudes evoked by the same odors in the same interneurons before and during application of AP5. r, Pearson
correlation coefficient. Inset shows the density of data points in the boxed region. Lines are diagonals with slope one. (E) Left: interneuron odor
responses ranked according to the Ca2+ signal before application of AP5. Data were pooled over all cells, odors and anminals (n = 14884 responses).
Right: Responses of the same interneurons to the same odors in the presence of AP5, ranked in the same order as in the control. Inset shows an
enlargement of a subregion to demonstrate that low-amplitude values are interspersed between high amplitude values. The visual impression in the
full diagram that many amplitudes are increased during AP5 treatment is therefore an artifact caused by crowding of bars in the graph.
doi:10.1371/journal.pone.0001416.g011
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resolution while 2-photon Ca2+ imaging detects responses of many

individual neurons simultaneously. The two recording methods

therefore have complementary advantages and yielded consistent

results.

The combined blockade of AMPA/kainate and NMDA

receptors completely inhibited spontaneous and odor-evoked

activity of mitral cells, indicating that ionotropic glutamate

receptors mediate excitatory synaptic transmission from olfactory

sensory neurons to mitral cells, as reported in other vertebrates

[30,31]. Paradoxically, however, the selective blockade of AMPA/

kainate or NMDA receptors did not decrease the mean response of

mitral cells. Rather, the AMPA/kainate receptor antagonist even

increased the mean mitral cell response, and both antagonists had

complex effects on neuronal responses including changes in the

sign. Moreover, ionotropic glutamate receptor antagonists,

particularly AP5, changed the spatio-temporal patterns of activity

across mitral cell and interneuron populations. These effects

cannot be explained by a partial blockade of the excitatory

olfactory sensory neuronRmitral cell synapse alone but imply that

ionotropic glutamate receptors influence mitral cell firing also via

additional, multisynaptic pathways. The most obvious pathway is

the mitral cellRinterneuronRmitral cell pathway. In addition,

ionotropic glutamate receptor antagonists may modulate other

sub-circuits in the olfactory bulb or the feedback from higher brain

regions onto interneurons (Fig. 1). Our results therefore indicate

that olfactory bulb output activity is strongly influenced by

synaptic pathways within and possibly beyond the olfactory bulb

and provide insights into the underlying mechanisms.

Regulation of excitation and inhibition in the

olfactory bulb
Ionotropic glutamate receptors not only mediate excitatory input

from olfactory sensory neurons to mitral cells but are also involved

in synaptic pathways that activate interneurons, which in turn

provide inhibitory input to mitral cells (Fig. 1). In the presence of

an ionotropic glutamate receptor antagonist, the mean mitral cell

response amplitude may therefore decrease, stay unchanged, or

even increase, depending on the relative contribution of each

ionotropic glutamate receptor type to each of these pathways.

NBQX increased the mean response of mitral cells even though it

decreases excitatory synaptic input from olfactory sensory neurons,

indicating that the inhibition of AMPA/kainate receptors

attenuates input from inhibitory interneurons more strongly than

the excitatory input from olfactory sensory neurons. Consistent

with this conclusion, NBQX significantly decreased the mean

response of interneurons. The ratio between excitation and

inihibition of mitral cells therefore depends on AMPA/kainate

receptor-containing circuits such as the mitral cellRinterneur-

onRmitral cell circuit or glutamatergic connections to interneu-

rons from higher brain areas. Hence, AMPA/kainate receptor-

containing circuits regulate mitral cell population activity during

an odor response.

The regulation of mitral cell activity by inhibitory feedback

circuits could maintain a stable level of mitral cell population

activity when the strength of afferent glomerular input changes.

Indeed, the total mitral cell activity converges towards a common

level within a few hundred milliseconds in response to odors that

evoke different amounts of activity across olfactory sensory

neurons [3]. In a natural environment, the total sensory input

can vary over a wide range because the number and intensity of

activated glomeruli differs substantially across odors and concen-

trations. The AMPA/kainate receptor-containing synaptic path-

ways mediating inhibitory feedback onto mitral cells may therefore

establish a balance between excitatory and inhibitory inputs to

mitral cells that keeps the total amount of activity in the olfactory

bulb within an adequate range.

The occurrence of prominent odor responses in the presence of

NBQX confirms that NMDA receptors contribute to basal

synaptic transmission in the olfactory bulb [36–38] under natural

conditions. Unlike the blockade of AMPA/kainate receptors,

however, the blockade of NMDA receptors had little or no effect

on the mean activity of mitral cells and interneurons, indicating

that NMDA receptors are less important for the regulation of

mitral cell population activity than AMPA/kainate receptors.

Nevertheless, the blockade of NMDA receptors changed the

magnitude and time course of individual mitral cell responses. The

NMDA receptors are therefore involved in shaping spatio-

temporal activity patters of olfactory bulb output activity.

AMPA/kainate receptor-dependent control of

interneuron activity and mitral cell inhibition
In mammalian brain slices, NMDA receptors are critically

involved in the activation of granule cells and in the recurrent

inhibition of mitral cells by asynchronous GABA release from

interneuron dendrites [15,16,19]. However, when synaptic

background activity is introduced into an olfactory bulb slice,

activation of granule cell firing becomes NMDA receptor-

independent and asynchronous GABA release appears to be

strongly diminished [39]. Under these conditions, recurrent

inhibition is likely to be weak [39]. It is therefore unclear how

interneuron firing and inhibition of mitral cells is controlled during

an odor response in the intact olfactory bulb. We found that the

mean odor-evoked somatic Ca2+ signal in interneurons was

reduced by the blockade of AMPA/kainate receptors, but not by

the blockade of NMDA receptors. Somatic Ca2+ signals in

zebrafish mitral cells and interneurons reflect mainly action

potential firing [34,35]. Our data therefore indicate that

interneuron firing is controlled primarily by AMPA/kainate

receptors during an odor response.

Asynchronous GABA release from interneuron dendrites can

also be triggered without action potentials, for example by Ca2+

influx through NMDA receptors at reciprocal synapses

[15,16,18,20]. It is therefore possible that NMDA receptors

influence recurrent inhibition of mitral cells even if they do not

strongly affect interneuron firing. If so, the blockade of NMDA

receptors should increase the ratio between the mean activity of

mitral cells and interneurons. However, this was not observed.

Our data therefore suggest that the effect of recurrent inhibition by

NMDA receptor-dependent asynchronous GABA release on

mitral cell firing is, on average, weak compared to the effect of

other synaptic pathways. Nevertheless, the blockade of NMDA

receptors often changed individual responses of interneurons and

mitral cells. Hence, NMDA receptors appear to influence odor

responses in a subset of neurons and thereby cause complex effects

on spatio-temporal activity patterns within the network.

Unlike inhibition of NMDA receptors, the blockade of AMPA/

kainate receptors increased the mean response of mitral cells and

decreased the mean somatic Ca2+ response of interneurons. The

most likely explanation for these effects is that inhibitory input to

mitral cells during an odor response is mediated primarily by

AMPA/kainate receptor-dependent action potential firing of

interneurons, consistent with predictions based on data from

mammalian brain slices in the presence of synaptic background

activity [39]. Action potentials invade large portions of the

dendritic tree in interneurons [21–23] and are thought to trigger

GABA release onto multiple postsynaptic mitral cells. Hence,
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lateral inhibition, rather than recurrent inhibition, may be the

dominant mode of mitral cell inhibition during an odor response.

Further experiments are required to test this hypothesis and to

identify the synaptic pathways underlying the AMPA/kainate

receptor-dependent activation of interneuron firing during an odor

response.

Effect of glutamate receptor antagonists on odor-

evoked oscillatory synchronization
Oscillatory local field potential activity was abolished or reduced by

the blockade of AMPA/kainate receptors or NMDA receptors,

respectively, indicating that ionotropic glutamate receptors are

required for the rhythmic synchronization of neuronal ensembles in

the olfactory bulb. Oscillatory synchronization is thought to be

mediated by networks of mitral cells and interneurons coupled by

fast excitatory mitral cellRinterneuron synapses and inhibitory

interneuronRmitral cell synapses. Experiments in mammalian

brain slices indicate that the fast inhibitory connections are

mediated by GABAA receptors [40–42] and that the fast excitatory

connection is mediated by AMPA/kainate receptors [39], but the

involvement of these connections in odor-evoked oscillatory

synchronization has, to our knowledge, not been tested directly in

the intact olfactory bulb. Our finding that AMPA/kainate receptor

antagonists abolish odor-evoked oscillatory synchronization strongly

supports the notion that the fast excitatory transmission in this

circuit is mediated by AMPA/kainate receptors.

Because of their slow kinetics, NMDA receptors are unlikely to

be directly involved in fast oscillatory synchronization in the

olfactory bulb. Nevertheless, NMDA receptor antagonists reduced

odor-evoked local field potential oscillations and slightly increased

the oscillation frequency. One possible explanation is that NMDA

receptor-mediated depolarization facilitates action potential firing

of interneurons, which could enhance synchronization. However,

NMDA receptor antagonists did not, on average, reduce odor-

evoked Ca2+ signals in interneuron somata. Further experiments

are therefore necessary to clarify the role of NMDA receptors in

oscillatory synchronization.

Functional implications of ionotropic glutamate

receptor-containing circuits in the olfactory bulb
Synaptic pathways containing ionotropic glutamate receptors are

likely to mediate important computational functions in the

olfactory bulb. Under natural conditions, the number and intensity

of activated glomeruli varies greatly among different odors and

concentrations. The regulation of mitral cell population activity by

feedback circuits involving AMPA/kainate receptors may there-

fore contribute to the robustness of odor representations against

changes in stimulus intensity.

The dynamic reorganization of odor-evoked activity patterns

during the first few hundred milliseconds of an odor response

reduces the redundancy of activity patterns evoked by chemically

related stimuli [1–3]. This decorrelation may promote odor

discrimination [43] and prepare odor representations for further

processing by auto-associative networks [44]. Recent results

indicate that pattern decorrelation is caused, at least in part, by

the ‘‘local sparsening’’ of mitral cell activity patterns in regions

where glomerular input is dense and overlapping [35]. The most

likely mechanism underlying this ‘‘local sparsening’’ is the spatially

restricted inhibitory feedback from interneurons. Our pharmaco-

logical results are consistent with this hypothesis and indicate that

ionotropic glutamate receptors in the mitral cellRinterneuronR
mitral cell and possibly other synaptic pathways participate in this

process.

The oscillatory synchronization of odor-specific neuronal

ensembles has been implicated in odor discrimination in insects

[45] and affords the simultaneous transmission of different

information from the olfactory bulb to higher brain regions in

zebrafish [1]. Hence, the synchronization of neuronal ensembles

by ionotropic glutamate receptor-containing circuits may contrib-

ute to the formatting of odor representations for read-out in higher

brain regions. Together, our pharmacological analyses indicate

that ionotropic glutamate receptors perform multiple functions

during pattern processing in the olfactory bulb.

MATERIALS AND METHODS

Animals, preparation, pharmacological agents and

odor stimulation
Zebrafish (Danio rerio) were kept at 26.5uC at a day/night rhythm

of 13/11 hours. Experiments were performed in an explant of the

intact brain and nose as described previously [2,3,25]. Briefly,

adult zebrafish (.3 months old) were cold-anaesthetized, decap-

itated, and olfactory forebrain structures were exposed ventrally

after removal of the eyes, jaws and palate. To optimize access of

drugs, the dura mater over the ventro-lateral telencephalon close

to the olfactory bulb was removed with fine forceps. Care was

taken to avoid damage to the olfactory bulb. The preparation was

then placed in a custom made flow-chamber, continuously

superfused with teleost artificial cerebro-spinal fluid [46], and

warmed up to room temperature (,22uC). All animal procedures

were performed in accordance with the animal care guidelines

issued by the Federal Republic of Germany.

Stock solutions of AP5 (10 mM in artificial cerebrospinal fluid)

and NBQX (1 mM in DMSO; both from Tocris Bioscience,

Bristol, UK) were kept frozen and diluted 1:100–1:200 in artificial

cerebrospinal fluid immediately before the experiment, yielding

final concentrations of 5–10 mM NBQX and 50–100 mM AP5.

Solutions were applied through the bath. In pilot experiments,

effects of different drug concentrations between 50–500 mM AP5

and 5–50 mM NBQX were compared but no qualitative

differences observed, indicating that drugs penetrated well into

the tissue and produced maximal effects at the concentration used

in our experiments.

Odors were applied to the nasal epithelium through a constant

perfusion stream using a computer-controlled, pneumatically

actuated HPLC injection valve (Rheodyne, Rohnert Park, CA)

as described previously [2,25]. The volume of the applied solution

and the flow rate were adjusted to obtain a stimulus duration of

,2.4 s. Stock solutions of amino acids (Fluka, Neu-Ulm,

Germany) were made in distilled water at a concentration of

1 mM, stored at 218uC, and diluted in fresh artificial cerebro-

spinal fluid to a final concentration of 10 mM immediately before

the experiment. Extracts of commercially available dry fish food

were prepared as described [25] and kept at 26uC for up to two

weeks. Two hundered mg of dry food was suspended in 50 ml of

artificial cerebrospinal fluid overnight, filtered through a filter

paper and diluted 1:100 in artificial cerebrospinal fluid immedi-

ately before the experiment.

Electrophysiological recordings
Electrophysiological recordings from mitral cells were performed

in the ventro-lateral olfactory bulb where amino acid-responsive

neurons are located [2,29]. Borosilicate patch pipettes (8–13 MV)

were pulled on a P-2000 electrode puller (Sutter Instruments,

Novato, CA) and filled with intracellular solution containing (in

mM): 130 K-gluconate, 10 Na-gluconate, 10 Na-phosphocreatine,

4 NaCl, 4 Mg-ATP, 0.3 Na-GTP, 10 HEPES (pH 7.25; ,300
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mosm). Cells in the olfactory bulb were visualized by differential

interference contrast video microscopy or similar methods through

a coverslip in the bottom of the chamber. Recorded neurons were

selected for their large soma diameter (,10 mm) and a position

close in the glomerular/mitral cell layer. Anatomical studies

demonstrated that these are characteristics of mitral cells

[32,34,37,47]. Membrane potential values were corrected for a

junction potential of 213 mV.

Recordings were performed using an Axoclamp 2B amplifier

(Axon Instruments) and digitized at 10 kHz using National

Instruments hardware and custom software written in IgorPro

(Wavemetrics). To prevent early clogging of the glass capillary tip,

a pressure of ,100 mbar was applied to the pipette interior during

penetration of the tissue and lowered to ,40 mbar before a target

cell was approached. After formation of a Giga-seal and break-in,

intracellular whole-cell recordings were performed in current

clamp mode (n = 16 mitral cells). In most cells, a small negative

holding current was applied to stabilize recordings.

When Giga-seal formation or break-in could not be achieved,

pipette pressure was released and extracellular recordings were

performed in the loose-patch or cell-attached mode (n = 14 mitral

cells). Two whole-cell recordings were lost during the experiment

and continued as loose-patch recordings. Spontaneous firing rates of

cells recorded in whole-cell mode (3.963.6 Hz; mean6standard

deviation) were slightly lower than those recorded extracellularly

(7.366.0 Hz), probably due to the holding current. When a

recording was established, typically 2 food extracts and 6 amino

acids were applied to select one or two stimuli that evoked a strong

response in the recorded cell. These two stimuli were then applied

3–8 times (usually five times) at 2 min intervals in a pseudo-

randomly interleaved sequence, followed by ,15 min without odor

stimulation to wash in drugs. The original stimulus sequence was

then repeated. Completion of this stimulus protocol required

continuous recordings for approximately 60 min. Recordings that

were not stable up to this point, as judged by the measured resting

potential and action potential amplitude, were excluded from the

analysis. Drugs were then washed out for at least 30 min. When

recordings were still stable, the stimulus sequence was repeated

again. In total, responses of 30 neurons to 54 odor stimuli were

measured before and during drug application, and 21 of these

responses were tested again after wash-out.

To measure odor-evoked oscillatory activity in the local field

potential, glass micropipettes were filled with artificial cerebrospi-

nal fluid (8–13 MV) and positioned in the glomerular/mitral cell

layer. Recordings were made in bridge mode using an Axoclamp

2B amplifier (Axon Instruments) and band-pass filtered offline

between 8–43 Hz. The position of the micropipette was optimized

by small movements of the capillary tip while measuring oscillation

amplitudes during stimulation with food extract.

Two-photon Ca2+ imaging
Two-photon Ca2+ imaging experiments were performed in

transgenic fish expressing yellow cameleon (YC) under the control

of a fragment of the HuC promoter (HuC-YC) [33]. In the adult

olfactory bulb, HuC-YC is expressed selectively in mitral cells

[32]. HuC-YC-negative cells were collectively classified as

interneurons and include periglomerular and granule cells. YC

fluorescence did not change in response to odor stimulation and

was exclusively used as an anatomical marker.

The red-fluorescent Ca2+ indicator, rhod-2-AM ester (Invitro-

gen/Molecular Probes), was injected into the olfactory bulb as

described previously [34]. Briefly, 50 mg of rhod-2-AM was

dissolved in 16 ml DMSO/pluronic acid (80/20) and this solution

was diluted 1:10 in artificial cerebrospinal fluid before the

experiment. The dye solution was loaded into a patch pipette

after gently breaking off the very tip and pressure-injected into the

olfactory bulb under fluorescence optics. Injections were termi-

nated when a predetermined fluorescence intensity level was

reached to avoid excessive dye loading. To label mitral cells,

multiple brief injections were made into the glomerular/mitral cell

layer at different sites. To label interneurons, injections were made

into the granule cell layer. For details see [34].

Fluorescence images were acquired using a custom-built 2-

photon microscope [48] equipped with a 206 water immersion

objective (NA 0.95; Olympus). Two-photon fluorescence was

excited at 830 nm by a mode-locked Ti:Sapphire laser (Mira900;

76 MHz; Coherent, Santa Clara, CA) pumped by a 10 W diode

laser (Verdi; Coherent). Fluorescence emission was detected

externally by a photomultiplier-based whole-field detector in two

wavelength channels (515/30 nm and 610/75 nm), allowing for

the separate and simultaneous detection of HuC-YC and rhod-2

fluorescence, respectively. Image acquisition was controlled by

custom software (CFNT; written by Ray Stepnoski at Bell Labs,

Murry Hill, NJ, and Michael Müller at the Max-Planck-Institute

for Medical Research, Heidelberg, Germany). Laser intensity was

adjusted to minimize photobleaching.

To measure Ca2+ signals, series of images from a single focal

plane were acquired at 128 ms/frame and 1286256 pixels or

256 ms/frame and 2566256 pixels. Previous experiments dem-

onstrated that odor-evoked patterns of Ca2+ signals measured with

this protocol are reproducible and stable over hours [35]. To verify

the stability of responses, we repeated the first stimulus in the

sequence at least once before the drug treatment was started, and

typically multiple times during the initial phase of the experiment.

When responses appeared not stable, experiments were discarded.

Responses of interneurons were recorded in deep layers of the

olfactory bulb that contain predominantly granule cells. The focal

plane was kept constant during an experiment. Slow drift was

corrected if necessary using natural landmarks in the raw

fluorescence image and in the HuC-YC fluorescence image.

Image series of raw rhod-2 fluorescence were converted into

image series representing the fractional change in pixel intensity

relative to a pre-stimulus baseline (DF/F). Response maps were

constructed by averaging DF/F images during a period of 5s

around response peak and mild spatial low-pass filtering using a

Gaussian kernel (width, 5 pixels; s, 1.2 pixels).

Data analysis
Data were analyzed off-line using routines written in IgorPro

(Wavemetrics) or Matlab (Mathworks). Trains of action potentials

were described as series of delta functions and convolved with a

Gaussian kernel (s= 200 ms; other values gave similar results) to

obtain firing rate functions. Firing rate functions from repeated

stimulus applications were averaged, yielding peri-stimulus time

histograms. Spontaneous firing rates were measured during two

seconds before stimulus onset and averaged over all trials measured

at a given condition (usually $10 trials). Effects of drugs on odor

responses were assessed by subtracting peri-stimulus time histo-

grams measured in the presence of a drug from corresponding peri-

stimulus time histograms before drug application.

Mean response amplitudes of single neurons measured under

different conditions were compared using a paired Student’s t-test

because measurements in repeated trials were approximally

normally distributed. Mean responses across populations of neurons

were usually not normally distributed and compared using a non-

parametric sign test. To test for statistical differences between

correlation strengths, correlation coefficients were transformed

using the Fisher Z transform and compared using the z statistic.
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