
Vaccines 2014, 2, 323-353; doi:10.3390/vaccines2020323 

 

vaccines 
ISSN 2076-393X 

www.mdpi.com/journal/vaccines 

Review 

Immune Adjuvant Effect of Molecularly-defined Toll-Like 

Receptor Ligands  

Deana N. Toussi and Paola Massari * 

Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, 

Boston, MA 02118, USA; E-Mail: Deana.Toussi@bmc.org 

* Author to whom correspondence should be addressed; E-Mail: pmassari@bu.edu;  

Tel.: +1-617-414-4807; Fax: +1-617-414-5280. 

Received: 11 February 2014; in revised form: 27 March 2014 / Accepted: 28 March 2014 /  

Published: 25 April 2014 

 

Abstract: Vaccine efficacy is optimized by addition of immune adjuvants. However, although 

adjuvants have been used for over a century, to date, only few adjuvants are approved for 

human use, mostly aimed at improving vaccine efficacy and antigen-specific protective 

antibody production. The mechanism of action of immune adjuvants is diverse, depending 

on their chemical and molecular nature, ranging from non-specific effects (i.e., antigen 

depot at the immunization site) to specific activation of immune cells leading to improved 

host innate and adaptive responses. Although the detailed molecular mechanism of action 

of many adjuvants is still elusive, the discovery of Toll-like receptors (TLRs) has provided 

new critical information on immunostimulatory effect of numerous bacterial components 

that engage TLRs. These ligands have been shown to improve both the quality and the 

quantity of host adaptive immune responses when used in vaccine formulations targeted to 

infectious diseases and cancer that require both humoral and cell-mediated immunity. The 

potential of such TLR adjuvants in improving the design and the outcomes of several 

vaccines is continuously evolving, as new agonists are discovered and tested in experimental 

and clinical models of vaccination. In this review, a summary of the recent progress in 

development of TLR adjuvants is presented. 
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1. Introduction 

The main goal of vaccination is to induce immunologic protection from infectious diseases of 

bacterial, viral and parasitic origin. Host immune responses to a given vaccine antigen can be greatly 

enhanced by simultaneous administration of an immune adjuvant. Adjuvants are exogenous substances 

that have a wide variety of nature and origin, ranging from mineral salts, oil and water-based 

emulsions, polymers, microparticles, liposomes, saponins, microbial products and even cytokines [1–3]. 

Despite the importance of their influence on the immune response, the mechanisms of action by 

which most adjuvants potentiate innate and adaptive immunity have only recently begun to be understood. 

Adjuvants are generally categorized into delivery systems and immunostimulatory adjuvants. Delivery 

systems, particulate adjuvants and emulsions including alum [4], water-in-oil and oil-in-water emulsions 

(i.e., Complete Freund’s Adjuvant (CFA) [5] or MF59 [6]) are thought to generate an antigen depot at 

the site of injection, which is then slowly released over time (although other factors have been 

described to contribute to the effect of alum and MF59, for example [7,8]). This process leads to 

enhanced antigen uptake and presentation by antigen presenting cells (APCs) and induction of high 

antigen-specific antibody titers. The second category of vaccine adjuvants, immunostimulatory 

substances, enhances immune responses via a direct effect on immune cell activation and function. 

These adjuvants induce: (1) upregulation of surface expression levels of the major histocompatibility 

complexes I and II (MHC I and MHC II) on APCs and enhanced antigen presentation to the T-cell 

receptor (TCR) (Signal 1); (2) APC maturation/activation and increased surface expression of  

co-stimulatory molecules (CD40, CD80, CD86) needed for proper activation of naïve T cells (Signal 2); 

(3) direct and indirect immunomodulation and differentiation of T lymphocytes; 4) recruitment of 

immune cells at the site of injection and migration to the draining lymph nodes [9]. In addition, both 

categories of adjuvants induce immune cell responses mediated by inflammatory mediators (i.e., 

cytokines and chemokines (signal 3)) [9] and surface receptors/adhesion molecules. The convergence 

of the events elicited by immune adjuvants leads to enhanced adaptive immune responses and subsequent 

immune protection, particularly through the activation of dendritic cells (DC) and T cells [10].  

It has also been established that activation of APCs occurs via specific recognition of microbial 

products, a step that has been defined as Signal 0 [9], and is required for innate immune responses that 

guide T helper cells towards Th1-, Th2- and Th17-type differentiation. Th1-type responses are defined 

by the pro-inflammatory cytokines IL-12, IFN-γ and TNF-α, by high levels of IgG2a/b (or IgG2c), 

IgG3 and IgA in mice, and IgG1, IgG3 and IgA in humans, cell-mediated immunity (CMI) via both 

CD4
+
 T cells and CD8

+
 cytotoxic T cells (CTLs) (although the latter also require antigen presentation 

via MHC class I). Th2-type responses are defined by IL-4, IL-5, IL-6, IL-10 and IL-13 and CD4
+
 T 

cell-dependent B cell-mediated humoral immunity via induction of IgG1 and IgE/ IgA in mice or IgG4 

and IgE in humans [11]. Dysregulation of Th1-type responses to self-antigens or the commensal flora 

leads to tissue destruction and chronic inflammation, while dysregulation of Th2-type responses is 

implicated in allergy and asthma. Recently, Th17-type responses, characterized by IL-17 and IL-23 [12] 

have been described to modulate neutrophil recruitment [13], and B and T cell functions, including 

those of regulatory T cells (Treg) [14], thus playing a role in vaccine development [15]. Therefore, 

inclusion of adjuvants in vaccine formulations is important for both stimulation of innate immunity 

and induction of improved antigen-specific adaptive responses.  
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Various adjuvants have been shown to mediate different types of adaptive immune responses. For 

example, alum (the first USDA-licensed adjuvant approved for use in humans in the US and present in 

over 80% of the licensed human vaccines) stimulates Th2-type responses and strong antigen-specific 

IgG1 and IgE antibody production, but it does not induce CD8
+
 T-cell immunity and may even inhibit 

Th1-type immune responses [16]. By contrast, adjuvants such as QS-21 (a saponin from the Soap bark 

tree Quillaja saponaria in an oil-in-water emulsion), MF59 or Freund’s complete adjuvant (CFA) 

induce preferentially Th1-skewed responses, or a mixed Th1/Th17-type and Th1/Th2-type immunity [3]. 

In the early 1990s, the potential for a number of bacterial and viral components to act as immune 

adjuvants has been elucidated by their ability to interact with specific host cell receptors that recognize 

microbial molecular patterns, the Toll-like receptor family (TLRs) [17]. The role of TLRs in regulation 

of host innate and adaptive immune responses has been explained by their ability to induce activation 

of immune cell signaling. In B cells, TLR signaling induces up-regulation of surface markers involved 

in antigen up-take (MHC I and MHC II) and in cross-talk with T cells (CD40, CD80, CD86), ultimately 

enhancing antigen-specific antibody production when TLR ligands are used combined with antigens in 

the context of vaccination. In addition, TLR signaling also plays a role in induction of B- and T-cell 

memory. In APCs, including B cell, DCs and macrophages, TLR signaling also results in enhanced 

secretion of both pro- and anti-inflammatory mediators that drive development of T helper cell subsets 

into Th1-, Th2- or Th17-type, depending on the type of APC involved [18]. Generally, signaling via 

TLR3, TLR4, TLR7, TLR8 and TLR9 promotes Th1-type immune responses while signaling via TLR2 

(along with TLR1 or TLR6) and TLR5 favors Th2-type immune responses [19,20]. TLR ligands also 

influence Treg development [21]. A direct influence of TLR signaling on Treg development has been 

shown, due to expression of functional TLRs on these cells, as well as an indirect effect, due to Treg 

interaction with TLR-activated APCs [22]. TLR signaling can lead to either Tregs functional activation 

or suppression, depending on the TLR ligand type and effect on antagonistic induction of Th17 cells [21]. 

This aspect is particularly relevant for cancer, autoimmunity and chronic inflammation, due to the effects 

of Th17-type cytokines (IL-17A, IL-17F and IL-22) [21,23]. This review discusses the mechanisms of 

action of TLR agonists with vaccine adjuvant properties and highlights their potential use to improve 

vaccination against infectious diseases and cancer. 

2. TLR Signaling Mechanism and Pathways 

Toll-like receptors (TLRs) comprise members of a family of related trans-membrane proteins that 

recognize microbial and viral products. TLRs have been categorized as pattern recognition receptors 

(PRRs) that recognize ligands from pathogenic microorganisms (the ―pathogen-associated molecular 

patterns‖ (PAMPs) [24]), from commensal organisms (the ―commensal-associated molecular patterns‖ 

(CAMPs) [25]) and endogenous ligands deriving from damaged cells (the ―danger-associated molecular 

patterns‖ (DAMPs)) [26]. 

The structure of TLRs is that of horse-shoe shaped proteins composed of three domains: an 

extracellular or cytoplasmic leucine-rich repeat (LRR) domain which mediates ligand recognition, a 

single trans-membrane domain, and an intra-cytoplasmic domain, the TIR domain, homologous to the 

corresponding intracellular domain of the IL-1 receptor (IL-1R) Toll/IL-1R [17]. In humans, 10 TLRs 

have been identified so far. TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10 are surface-expressed 
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and recognize extracellular ligands and microorganisms, while TLR3, TLR7, TLR8 and TLR9 are 

situated on endosomal membranes within the cell and are engaged by intracellular ligands and 

microrganisms [17]. Ligand binding and TLR homo- or heterodimerization brings the TIR domains of 

adjacent TLRs together, providing a conformational change necessary to trigger signaling. Binding of 

additional adaptor proteins is also essential for intracellular cascades. Adaptor proteins include the 

myeloid differentiation factor 88 (MyD88) [27], the MyD88 adaptor-like protein (Mal/TIRAP), the TIR 

domain-containing adaptor protein inducing interferon-β (TRIF/TICAM) and the TRIF-related adaptor 

molecule (TRAM) [28,29] (Figure 1). Negative regulators of TLR function have also been identified and 

include the Toll-interacting protein (Tollip), IRAK-M, the α- and HEAT-Armadillo-motif-containing 

protein (SARM) and the B cell adaptor for PI3K (BCAP) [30]. 

Figure 1. Schematic cartoon of Toll-like receptor (TLR) signaling [17,24,27–30]. Extracellular 

TLR homodimers (TLR4 and TLR5) are represented in black; heterodimers of TLR2 and 

TLR1, TLR6 or TLR10 are indicated in black/green. Intracellular homodimers (TLR3, 

TLR7, TLR8 and TLR9) are indicated in gray. 

 

All TLRs except TLR3 require MyD88 recruitment to the TIR domain for signaling activity [27]. 

TLR2 and TLR4 also require the cooperation of the adaptor protein Mal/TIRAP. In the MyD88-dependent 

signaling pathway, activation of IRAK4 and IRAK1 (members of the IL-1R-associated protein kinases 

(IRAKs) [31]) is followed by that of TRAF6 (tumor necrosis factor receptor-associated factor 6 [32]) 

and RIP (receptor interacting protein [33]), with subsequent signal transfer to a complex made of 

TAK1 (TGF-β-activated kinase 1), TAB1, TAB2 and TAB3 (TAK1-binding proteins 1, 2 or 3) and, 

ultimately, activation of NF-κB and, through members of the mitogen-activated protein kinase 

(MAPK) family (ERK, JNK, p38), activation of AP-1 [34]. The MyD88-dependent TLR signaling 

pathway leads to host cell responses involved in cell survival/proliferation and immune pathways 

culminating with immune cell activation, induction of inflammatory mediators and antimicrobial 

products. Signaling through TLR7, TRL8 and TLR9 also activates a parallel MyD88-dependent 

cascade through IRF7 (interferon regulatory factor 7 [35]), followed by TRAF6, IRAK4 and TRAF3 

activation and leading to type I interferons (IFN) production (Figure 1).  
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TLR3 signaling activates a MyD88-independent pathway via TRIF and TRAF3 [36], leading to 

activation of IRF3 and resulting in secretion of IFN-β and IL-10 (Figure 1). The TLR3-TRIF signaling 

also drives activation of MyD88-dependent pathway downstream components, TRAF6 and RIP1, 

converging on activation of NF-κB and AP-1. Similar to TLR3 signaling, TLR4 can also induce 

MyD88-independent signaling, although TRIF recruitment is not direct but requires prior activation of 

TRAM. Downstream cell activation via both TRAF6/RIP1, as well as TRAF3-IRF3, provides an 

amplification of the cytokine repertoire (Figure 1).  

3. TLR Adjuvants with a Preferential Th1-bias 

3.1. TLR3-Dependent Adjuvants 

TLR3 (CD283) is expressed in endosomal compartments in myeloid dendritic cells (mDCs) and, 

weakly, in monocyte-derived macrophages [37] and it recognizes viral double-stranded RNA (dsRNA) 

that is produced during viral replication in infected cells, with the potential contribution of CD14 [38]. 

A synthetic analog of dsRNA, Poly I:C (polyriboinosinic:polyribocytidylic acid) [39], has similar 

immunostimulatory properties, inducing TLR3 activation via the TRIF/TRAM pathway and secretion 

of inflammatory cytokines and IFN-β (Figure 1). However, Poly I:C also interacts with other receptors, 

such as the retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA-5) 

and double stranded RNA-dependent protein kinase [40], which may possibly influence its adjuvant 

activity. Nevertheless, since TLR3 ligands favor strong cellular Th1-type immune responses, they have 

been tested as adjuvants in vaccines against viral infections. Activation of dendritic cells by TLR3 

agonists not only contributes to induction of innate and adaptive immune responses against microbial 

pathogens, but also favors NK cell activation and killing of tumor cells by stimulating anti-tumor 

CD8
+
 T cells [41].  

Poly I:C has been used as an adjuvant in various experimental vaccine models. However, the major 

draw-backs of Poly I:C are its low stability and toxic side-effects. Pre-clinical studies carried out in 

primates have shown that Poly I:C is easily degraded by serum nucleases, with a consequent reduction 

of IFN secretion and anti-tumor activity [42]. Unfortunately, increasing the dosage of Poly I:C has not 

proven a successful strategy, as this TLR3 ligand is not well-tolerated. Thus, several derivatives of 

Poly I:C have been synthetized and tested for safety and adjuvanticity, such as Poly ICLC and Poly 

I:C12U (Table 1). 

Poly I:C favors antigen cross-presentation to primed CD8
+
 T cells, due to TLR3-dependent increased 

MHC class I expression and type I IFN secretion, as well as development of antigen-specific cytotoxic 

T cell clones [43]. Poly I:C inclusion in an HIV vaccine based on purified recombinant gp120 antigen 

has shown development of MHC class I-restricted CD8
+
 cells in vivo [44]; in another HIV vaccine 

strategy, addition of Poly I:C (and CpG DNA) to DNA encoding for a Gag antigen/anti-DEC205 

antibody fusion protein has shown improved mucosal antigen presentation on MHC class I molecules 

and enhanced CD4
+
 T cell-mediated immunity [45]. Several studies in experimental animal models 

support the efficacy of vaccine formulations containing TLR3-based adjuvants [46]. In the quest for 

vaccines against cancer, the use of Poly I:C has shown enhancement of tumor specific T cell responses [47]. 

For example, in an ovarian cancer vaccine, Poly I:C enhances DC maturation and IL-12 secretion [48]. 
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Poly I:CLC (Hiltonol®) is a synthetic double-stranded polyriboinosinic-polyribocytidylic acid 

stabilized with poly-L-lysine carboxymethyl cellulose and is less sensitive to serum-degradation [49]. 

Poly ICLC induces high IFN-γ secretion and enhances CTL responses and antigen-specific antibody 

titers, although mild to severe side effects have been reported when it is used at high doses [50,51]. 

Poly ICLC is currently being tested in clinical trials for both tumors and infectious diseases. 

Table 1. Examples of TLR adjuvants, disease models tested in experimental and clinical 

trials, and human vaccines. Disease models and corresponding vaccines are shown in bold. 

TLR Ligand Disease Models Human Vaccine 

TLR3 

Poly I:C, HIV [44,45,52], HPV [51],  

Poly I:CLC (Hiltonol), Influenza [46,53],  

Poly I:C12U (Ampligen), Cancer [47,48,50,54]  

Poly I:C + CAF01 (CAF05)   

TLR4 

Monophosphoryl Lipid A (MPL), HBV [55–59], 
Supervax/Fendrix 

[55,58,59], 
RC-529 (Ribi), Leishmania [60], TB [61,62], 

MPL/QS-21/liposomes (AS01), VZV [63], Malaria [64–67], 

MPL/QS-21/oil-in-water HIV [68,69], HPV [70–73], 
Cervarix [72,73], 

emulsion (AS02), HSV [74], EBV [75], 

MPL + Alum (AS04), Melanoma [76,77], Melacine [76], 

MPL + DETOX, AGPs, Cancer [78–80] Stimuvax [78],  

GLE-(SE), E6020, OM-174, RSV [81], L. monocytogenes [81], Theratope [79] 

 Influenza [81,82]  

TLR7  

TLR8 

Imiquimod (R-837), Resiquimod 

(R-848) 

HPV [83,84], Molluscum [84],  

Aldara [83–87] Cancer [83–86], Melanoma [87], HIV 

[88], HSV [88], Leishmania [89] 

TLR9 
CpG ODN, CpG ODN + 

MPL/QS21 (AS15) 

Malaria [90–92],  

Influenza [93], Fluarix [93], 

HBV [94–97], Anthrax [98], HPV [99], Engerix-B [96],  

Cancer [99–103], Heplisav [97] 

Melanoma [100,102,104,105],  

TLR2/TLR1  

TLR2/TLR6 

Lipoproteins, MALP-2, Pam2CSK4, 

Pam3CSK4; non-lipidated ligands: 

porins (Neisseriae, F. nucleatum, 

Chlamydia, Salmonella, Shigella), 

toxins (E. coli LT-IIa-B(5)/IIb-B(5)) 

enterohemorragic E. coli [106,107],  

Lyme Disease [108,109]  LYMErix [109] 

Malaria [110,111], HBV [112,113]  Theradigm-HBV [112] 

HIV [114,115],Chlamydia [116], 

Salmonella [117], Neisseriae [118,119], 

Influenza [120,121], Helminths [122],  

F. tularensis [123] 

 

 

 

 

TLR5 Flagellin 

Y. pestis [124], West Nile virus [125],  

L. monoctyogenes [126], Malaria [127,128], 

Dental Caries [129], Cancer [130,131], 

HPV [131], Influenza [132–138] 

VAX128 [134],  

VAX125 [135],  

VAX102 [137],  

STF2.4xMe [138] 
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Poly I:C12U (Ampligen®), a synthetic Poly I:C containing mismatched bases (uracil and guanine), 

is also immunostimulatory while less toxic than Poly I:C and Poly I:CLC. Intranasal immunization 

with Poly I:C12U as an adjuvant in a hemagglutinin (HA)-based H5N1 influenza vaccine induces 

higher levels of protective, specific mucosal IgA and systemic IgG responses than the corresponding 

adjuvant-free vaccine [53]. In phase II and III clinical trials for HIV vaccines, and in phase I and II 

cancer vaccine studies, Poly I:C12U has been deemed safe to use and induces maturation of mDCs, 

secretion of IL-12 and inhibition of IL-10, enhances antigen-specific CTL responses and Th1-type 

CD4
+
 T cell responses [54,139].  

Poly I:C has also been combined with a cationic adjuvant formulation, CAF01, a liposome-based 

adjuvant composed of dimethyldioctadeclammonium and trehalose-6,6-dibehenate (DDA/TDB) [140]. 

The combined Poly I:C-CAF01 adjuvant is called CAF05. Through the effect of Poly I:C, CAF05 

enhances CD8
+
 T cell responses and, through the effect of CAF01, induces a long lasting antigen 

depot. CAF05 favors Th1-type and Th17-type immunity and antibody responses in animal models of 

bacterial, viral and parasitic infections, and also has an effect on reducing tumor growth rates [52,141].  

3.2. TLR4-Dependent Adjuvants 

TLR4 (CD284) is expressed by the majority of circulating immune cells but its mature form has 

been characterized in macrophages and mDCs [37,142]. TLR4 signals via both the MyD88-dependent 

and the (MyD88-independent) TRIF-dependent pathway, leading to a robust IL-12 production, secretion 

of type I IFNs and a strong Th1-type cellular and humoral immune response (Figure 1).  

A number of TLR4 ligands has been described, with lipopolysaccharide (LPS) being the first 

bacterial product shown to interact with this receptor [143]. Other TLR4 agonists include a variety of 

components from fungi, viruses and parasites and endogenous ligands [144–147]. The TLR4/LPS 

molecular interaction has been elucidated in detail [148]. LPS has a hydrophilic polysaccharide 

component and a hydrophobic lipid A, composed of polyacylated diglucosamine lipids. The lipid A 

interacts with the TLR4 accessory molecule, lipid A binding protein (LBP) [149], followed by 

formation of a complex with CD14 (soluble or cell wall-anchored via glycosyl-phosphatidylinositol 

(GPI)), which is then presented to TLR4 and the myeloid differentiation protein 2 (MD-2) [150].  

LPS, along with its molecular derivatives, has been tested in numerous vaccine clinical trials (Table 1). 

However, despite its strong immunostimulatory effect, an intrinsic toxicity severely limits its use in 

humans. A detoxified form of LPS, the monophosphoryl lipid A (MPLA) from Salmonella minnesota 

R595, was developed by Ribi [151]. MPLA retains a potent immunostimulatory activity in vitro and  

in vivo while lacking toxicity, and is used in a number of complex adjuvants broadly referred to as Ribi 

adjuvant systems (RAS). For example, synthetic MPL RC-529 (Ribi.529) is used in the human 

hepatitis B virus (HBV) recombinant antigen vaccine, SupervaxTM [55]. MPLA triggers both the 

MyD88-dependent and TRAM/TRIF-dependent pathway, although an apparent preferential bias 

towards signaling via the TRIF-dependent pathway has been reported [152]. Induction of a strong 

protective Th1-biased immunity and secretion of pro-inflammatory mediators (i.e., TNF-α) by MPLA 

has been shown for Leishmania and TB vaccine formulations, as well as induction of anti-inflammatory 

mediators (i.e., IL-10) [61,70].  
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MPLA has been combined with a variety of other adjuvants, such as QS21 and liposomes (AS01, 

GlaxoSmithKline (GSK) Vaccines), QS21 and an oil-in-water emulsion (AS02 (GSK)), and alum 

(AS04 (GSK)) [153] (Table 1). Due to the effect of MPLA, AS01, AS02 and AS04 all induce  

TLR4-dependent NF-κB activity and cytokine secretion, maturation and trafficking of DCs and 

monocytes to the draining lymph nodes and antigen-specific T cell activation (although AS04 does not 

directly activate B or CD4
+
 T lymphocytes) [154]. 

In experimental and clinical trials, AS01 has been shown to induce Th1-type immunity, improve 

CD8
+
 T-cell responses and high antibody titers, for example to TB, varicella zoster virus (VZV), HIV 

antigens and to the malaria antigen RTS,S (a P. falciparum surface protein fused to the HBV surface 

antigen (HBsAg)) [63,64,68]. AS02, which has also been tested with HBV, HIV, TB and malaria 

antigens, elicits a more balanced Th1/Th2 immunity, with lower lymphoproliferative responses and a 

shorter-lived protection than AS01 [62,65,68]. By contrast, AS02 induces higher CD8
+
 cytolytic T cell 

responses than AS04, the MPLA/alum adjuvant. In the AS04 adjuvant, the MPLA/antigen complex is 

stabilized by the presence of alum, which also favors formation of antigen depot. AS04-containing 

vaccines have been tested against viral pathogens, including HBV [57], HPV [70,71], herpes simplex 

virus (HSV) [74] and Epstein-Barr virus (EBV) [75] showing improved protective responses than the 

corresponding alum-alone containing vaccines. AS04 is part of the HBV vaccine, FENDrix® [58], 

which has been safely and successfully used in healthy adults and in specific high-risk patients [55,59]. 

The AS04-containing vaccine against HPV, Cervarix®, is prophylactically used against cervical 

cancer and is also well tolerated [72,73]. In addition, MPLA-containing adjuvants have been used in 

cancer vaccine formulations, for example with the MUC1 antigen against prostate cancer or non-small 

cell lung cancer (NSCLC) [78] (Stimuvax®), or in combination with the adjuvant DETOX® (an  

oil-droplet complex that contains purified Mycobacterium phlei cell wall skeleton products (CWS) [76]) in 

a melanoma vaccine (Melacine®). DETOX is also used with the MUC1/ KLH antigen complex 

(Theratope) in breast and ovarian cancer treatment [79]. AS02 has also been used with the recombinant 

melanoma-associated antigen 3 (MAGE-A3) in cancer vaccine approaches, with some success [77]. 

The AS01, AS02 and AS04-adjuvanted vaccines are considered safe [66,67,69].  

Based on the success of AS04, and on the different chemical composition of MPLA species, the 

adjuvant effect of other synthetic lipid A mimetics with different length and degree/type of fatty acid 

acylation has been examined (Table 1). For example, aminoalkyl glucosaminide 4-phosphates (AGPs), 

tested against L. monocytogenes, influenza and RSV [81], the E6020 synthetic molecule [155], and the 

RC-529 (Ribi.529) molecule, structurally similar to the hexa-acyl component of MPL® [65]. These 

synthetic lipid A mimetics are considered safe. Another synthetic lipid A derivative, glycopyranosyl 

lipid adjuvant (GLA) has been used in combination with squalene (SE, an oil-in-water emulsion), and 

shown to induce strong Th1-type responses, enhance antigen-specific responses and have a good safety 

profile [82]. Lastly, the lipid A derivative, OM-174 from E. coli, has also been tested for its adjuvant 

effect [80]. 

3.3. TLR7- and TLR8-Dependent Adjuvants 

TLR7 and TLR8 (CD288) are expressed in neutrophils, monocytes, macrophages, eosinophils  

and B cells (TLR7), plasmacytoid DCs (pDCs) (TLR7), NK cells and T cells (TLR8) and Langerhans 
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cells [156]. Similar to TLR3, TLR7 and TLR8 have an intracellular localization within endosomal 

compartments in the cells that express these receptors. Engagement of TLR7 and TLR8 leads to 

signaling through MyD88 ⁄Mal, NF-κB and IRF7 activation and secretion of proinflammatory 

cytokines, chemokines and other mediators (Figure 1). In DCs, TLR7/TLR8 activation leads to cell 

maturation/activation, expression of co-stimulatory molecules (CD80, CD86 and CD40), enhanced 

antigen presentation and secretion of Th1-type pro-inflammatory cytokines (IFN-α, TNF-α and IL-12). 

pDCs respond to TLR7 activation by secreting IFN-α while mDCs respond to TLR8 activation by 

producing IL-12 [157]. Both TLR7 and TLR8 induce Langerhans cell differentiation and migration 

from the skin to the lymph nodes. Signaling via TLR7 induces secretion of Ig, IL-6 and TNF-α  

by B cells [158] and IFN-γ by NK cells [159]. TLR8 signaling induces T cell proliferation, IFN-γ, 

IL-2 and IL-10 production, memory T cell activation and also reduces CD4
+
 Treg-mediated 

immunosuppression [160].  

The ligands for TLR7 and TLR8 include single stranded (ss) RNA enriched for poly-U or poly-GU 

sequences [161], synthetic imidazoquinolinamines, such as imiquimod (R-837) and resiquimod  

(R-848) [162] and guanosine analogues, such as loxoribine. While TLR7 or TLR8 agonists are not 

approved as vaccine adjuvant components, imiquimod and resiquimod have undergone extensive 

clinical testing in a 5% cream formulation (AldaraTM) for topical treatment of HPV-induced  

warts, actinic keratoses, basal cell and squamous cell carcinoma, lentigo maligna and molluscum 

contagiosum [83,84] (Table 1). Both compounds induce strong local secretion of IFN-α, TNF-α, IL-6 

and IL-12, as well as cytotoxic T-cell responses. Topical application of imiquimod-containing formulations 

has also been tested in prostate cancer vaccines, favoring development of specific CTL responses and 

antibodies [85]. In a melanoma trial, systemic co-administration of imiquimod, a melanoma peptide 

vaccine and Flt-3 ligand (a DC activator) resulted in enhanced peptide immunogenicity and 

recruitment of both mDCs and pDCs in the treated areas. Imiquimod topical application also favors 

development of a T cell-dependent response to intradermal injection of the melanoma antigen,  

NY-ESO-1 [87]. In various tumor animal models, the combination of DNA-based vaccines and 

imiquimod treatment has been successful in reducing tumor onset, increasing CTL responses and 

IgG2a antibody production [86]. In pre-clinical studies on HSV and HIV, antigen-specific T cell 

responses and antibody secretion are enhanced by imiquimod [88], and in Leishmania infections, 

macrophage-dependent bacterial killing and resolution of cutaneous lesions have been reported 

following use of imiquimod [89]. Unfortunately, systemic administration of imiquimod is highly toxic 

and studies on TLR7/TLR8 adjuvant safety and efficacy are limited by the unresponsiveness of mice 

to TLR8 agonists for human use [161]. 

3.4. TLR9-Dependent Adjuvants 

In humans, TLR9 (CD289) is expressed by immune cells in intracellular endosomal compartments 

and its role is particularly relevant in B cells and pDCs [163]. TLR9 signals through the MyD88 

pathway via IRAK and TRAF-6 without the contribution of Mal (Figure 1), leading to production of 

Th1-type pro-inflammatory cytokines (IL-1, IL-6, IL-12, IL-18, TNF-α and IFN-γ), up-regulation of 

CD80, CD86, CD40 and MHC molecules expression, increased antigen processing/presentation and 

CD8
+
 T cell responses [164,165]. In particular IL-12 and type I IFNs induced in pDCs via TLR9 drive 
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a strong Th1-type immunity and CD8
+
 CTL cytotoxicity, while TLR9-dependent B cell activation 

leads to increased antigen-specific humoral responses and IgG class switching [166,167].  

The ligands for TLR9 are bacterial and viral DNA that contains unmethylated CpG motifs and 

synthetic oligodeoxynucleotides (ODN) expressing CpG motifs [168]. The synthetic TLR9 ligands 

retain the immunostimulatory activity of bacterial DNA and are divided in three major classes, based 

on their structure, biological properties and ability to activate immune cells in vitro [169,170]. 

Multiple CpG motifs on a phosphorothioate backbone are classified as ―K‖ type ODN (also called ―B‖ 

type), which are strong inducers of B cell activation, pDCs and monocyte maturation. ―D‖ type ODN 

(also called ―A‖ type), have a mixed phosphodiester/phosphothioate backbone containing a single CpG 

motif flanked by palindromic sequences and 3'- and 5'-end poly-G tails that allow formation of 

concatamers. These CpG ODN activate NK cells. The third category, ―C‖ type ODN, is structurally 

and functionally similar to both ―K‖ type and ―D‖ type ODN, with both phosphorothioate nucleotides 

and palindromic CpG motifs, and induce activation of both B cells and pDCs and production of IFN-α.  

Numerous pre-clinical and clinical studies have been carried out with TLR9 adjuvants  

(Table 1) [171,172]. The adjuvant activity of ―K‖ type ODN has been explored in vaccine models 

against malaria [90,91], HBV [94,95], influenza [93] and anthrax [98]. CpG ODN induces a strong 

specific antibody response to the malarial Apical Membrane Antigen 1 (AMA1) and to the merozoite 

surface protein 142 (MSP142) (both poorly immunogenic vaccine candidates) [92]. In the case of 

HBV, the B type CpG ODN, CPG 7909, enhances specific, long-term antibody responses to the 

Engerix-B® vaccine (recombinant HBsAg vaccine absorbed on alum (Alhydrogel)), as compared to 

Engerix-B alone [96]. Another CpG ODN, the 1018 immunostimulatory sequence (ISS), has shown to 

improve the efficacy of the HBV vaccine Heplisav®, with only minor local side effects [97]. By 

contrast, inclusion of CpG 7909 in the influenza vaccines Fluarix® is considered less substantial, 

although it enhances IFN-γ secretion and is well tolerated, which is advantageous for reducing the 

vaccine dosage [93].  

CpG-ODN is also used in anti-cancer vaccines and immunotherapy, due to its ability to induce high 

numbers of tumor-specific cytotoxic CD8
+
 T cells when co-administered with HPV and melanoma 

tumor antigens [99,100]. In vaccine trials with the synthetic tumor peptide MART1 (melanoma-associated 

antigen recognized by T cells 1) (Melan-A) and with the NY-ESO-1 peptide antigen, addition of CpG 

ODN enhances antigen-specific CD8
+
 T cell responses [101,104]. CpG 7909 has only shown partial 

success when used in a MAGE-A3 protein-based vaccine, which has been improved by addition of 

MPL and QS21 in a liposomal formulation to CpG 7909, the AS15 adjuvant. The AS15-adjuvanted 

vaccine induces an increased MAGE-A3 delivery to APCs and enhances T-cell immunogenicity [105] 

(Table 1). However, despite a good safety profile of CpG 7909, intra-tumoral injection of this TLR9 

adjuvant has shown scarce results on tumor growth in melanoma and basal cell carcinoma models [102]. 

Similarly, evaluation of CpG 7909 administration during chemotherapy for NSCLC treatment, or 

combined with GM-CSF and the tumor antigen, hTERT (human telomerase reverse transcriptase), has 

not shown a great success rate [103]. 
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4. TLR Adjuvants with a Preferential Th2-bias 

4.1. TLR2-Dependent Adjuvants 

TLR2 (CD282) expression is relatively ubiquitous in immune cells and is found on the surface of 

neutrophils, macrophages, monocytes, basophils, T cells, B cells, NK cells and immature DCs [37]. 

TLR2 dimerizes with either TLR1 or TLR6 and also utilizes other accessory molecules, such as CD36, 

CD14 and LBP [173–176]. TLR2-dependent signaling proceeds through the Mal/TIRAP and  

MyD88-dependent pathway, inducing activation of NF-κB and MAPKs pathways leading to immune 

cell activation, survival/proliferation, secretion of inflammatory mediators and expression of co-stimulatory 

molecules (CD80, CD86 and CD40) (Figure 1).  

TLR2 interacts with structurally diverse ligands. Natural and synthetic lipopeptides and lipoproteins 

that signal via TLR2 include M. fermentans macrophage-activating lipopeptide (MALP-2), a TLR2/TLR6 

ligand [173], the syntetic triacylated lipoprotein, Pam3CSK4, a TLR2/TLR1 ligand [174] and the 

diacylated lipoprotein, Pam2CSK4, a TLR2/TLR6 ligand [177]. TLR2 also binds peptidoglycans  

(PG) [178], glycosylphosphatidyl-inositol-anchored structures from gram positive bacteria (lipoteichoic 

acid, LTA), lipo-arabinomannan from Mycobacteria and lipomannas from M. tuberculosis [179]) and 

other cell wall components (i.e., β-glucans [180] and zymosan [181]), as well as viral products [182] 

and some bacterial LPS types (reviewed in the TLR4 section). Endogenous ligands and DAMPs [183] 

and several lipid-free bacterial proteins have also been described as TLR2 ligands, including porins, 

toxins, fimbriae [184] and the PPE18 protein from M. tuberculosis [185]. The molecular and structural 

details of TLR2 interaction with some of its ligands have been elucidated, while other TLR2/agonist 

complexes are currently being explored [186–188].  

The adjuvanticity of TLR2 agonists has been characterized as predominantly Th2-biased. The most 

extensively studied TLR2 adjuvants include MALP-2, Pam3CSK4, Neisseria PorB and E. coli LT-IIa-B(5) 

and LT-IIb-B(5) (Table 1). A large majority of studies conducted with these adjuvants have been 

carried out in experimental animal models, and most are not yet approved for routine administration in 

humans. In experimental and pre-clinical studies, TLR2 adjuvants support DC and B cell responses 

and T cell activation, including that of antigen-specific CD8
+
 T cell (CTL), although at relatively 

modest levels as compared to other TLR adjuvants [189]. Treg functions can also be influenced by 

TLR2 activation; for example, TLR2/TLR1 signaling may mediate protective mucosal Th17-type 

responses to pathogens and Treg cells expansion, while TLR2/TLR6 signaling may promote 

tolerogenic dendritic cells and Treg responses [190].  

MALP-2 has been used as an adjuvant in a number of experimental immunization studies with 

prototype antigens, such as ovalbumin (OVA), but also in disease models. Intranasal administration of 

MALP-2 in a vaccine model against enterohemorragic E. coli enhances secretion of antigen-specific 

serum IgG and mucosal IgA, IFN-γ, IL-2 and IL-4 [106]. The synthetic derivative of MALP-2, BPP 

(S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxyl polyethylene glycol), also 

enhances secretion of antigen-specific antibodies and cytokines (TNF-α, IL-10 and MIP-1β), and 

favors antigen cross-presentation by DCs to CD8
+
 T cells and cytotoxic T-cell response [191].  

Lipoproteins have been also used in experimental and clinical vaccine studies. In a vaccine against 

Lyme disease, immunization with the B. burgdorferi outer surface lipoprotein A (OspA) with alum has 
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shown enhanced secretion of protective antibodies against a C-terminus epitope of OspA [108]. This 

Lyme disease vaccine, LYMErix®, was licensed in 1998 after showing a good safety profile in clinical 

trials. However, potential concerns regarding skewing of Treg responses toward a Th17 phenotype and 

induction of autoimmune disease have stopped its commercialization [109]. Pam3CSK4 has been used 

in an anti-malarial vaccine containing several P. falciparum circumsporozoite protein (CSP) B cell 

epitopes and a universal T cell epitope, demonstrating induction of relatively high titers of  

peptide-specific IgG and IgG1, IgG3 and IgG4 antibody subclasses in immunized volunteers [110]. 

Lipid-containing TLR2 adjuvants can be easily conjugated to vaccine antigens, and even antigens 

themselves can be modified by addition of a lipid-core peptide for TLR2 interaction and direct 

activation of immune cells [192]. Such a strategy has been employed in a vaccine containing an HBV 

core antigen CTL peptide and a helper T lymphocyte (HTL) peptide conjugated with a palmitic acid at 

the N-terminus (Theradigm-HBV) [112]. In a phase I trial, this vaccine has shown higher immunogenicity 

than the un-palmitoylated vaccine and induction of long-term, dose-dependent, HBV-specific CTL 

responses in healthy subjects [113]. Phase I and II trials of an HIV-1 lipopeptide-based vaccine have 

shown similar long-lived, antigen-specific IgGs and specific CTL responses [114].  

Porins from Neisseriae, F. nucleatum, Chlamydia, Shigella, Haemophilus and Salmonella have 

been examined in numerous experimental immunization and pathogen challenge models. Generally, 

bacterial porins have a rather conserved, trimeric structure consisting of monomers with a high content 

of β-barrel structure. In the bacterial membrane, porins mediate passage of ions and solutes for 

organism survival [193]. Purified porins can be formed into stable native preparations, called 

proteosomes, and are recognized by TLR2 on the surface of immune cells. Porins from Neisseriae,  

F. nucleatum and Chlamydia have a TLR2/TLR1-dependent adjuvant activity [194–196], while the 

adjuvanticity of Shigella porin and Salmonella OmpS2 is mediated by TLR2/TLR6 signaling [117,197]. 

Remarkably, Neisseria, F. nucleatum, Chlamydia and Salmonella porins induce Th2-type skewed 

immune responses [116,173,195] while Shigella porin appears to favor Th1-type responses [198]. The 

TLR2-dependent porin effects include APC activation/proliferation, increased surface expression of 

CD80 (Shigella, Salmonella), CD86 (Neisseria, F. nucleatum, Chlamydia), CD40 and MHC II 

molecules and induction of antigen-specific IgM, IgG and IgA antibodies [118,119,196,199,200]. 

Neisserial porin proteosomes have been tested as adjuvants in mucosal and systemic vaccinations 

against different pathogens in both experimental and clinical models without side effects or 

toxicity [111,120–123,201].  

Toxins from Enterobacteriacee, divided in type I (the cholera toxin (CT) and the E. coli heat-labile 

enterotoxin I (LT-I)) and type II (the E. coli LT-IIa, LT-IIb and LT-IIc) [202–204], are also potent 

mucosal immune adjuvants, although their clinical development is severely compromised by their high 

toxicity in humans [205]. Enterotoxins are oligomeric proteins composed of an A subunit, responsible 

for the enzymatic activity of the toxin, and a pentameric B subunit (B5), which mediates binding to 

ganglioside receptors on host cells (i.e., GM1, GD1b and GD1a, GQ1 and GT1). Genetically 

detoxified type I toxin A and B subunits, including the LTK63, LTR192G, LTR72 and LTH44A 

molecules, have been tested in experimental vaccine models against bacterial, viral and parasitic 

infections, in cancer vaccines and in clinical trials [107,115,206,207], but their safety remains under 

scrutiny [208]. Besides binding to ganglioside receptors, the B subunit of type II LT (LT-IIa-B(5) and 

LT-IIb-B(5)) also binds to TLR2 [209,210], via regions that are normally masked by the A subunit in 
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the whole holotoxin [209]. Interaction of LT-IIa-B(5) and LT-IIb-B(5) with the TLR2/TLR1 

heterodimer is facilitated by binding to the GD1a ganglioside and leads to APC activation, secretion of 

high levels of antigen-specific systemic and salivary IgG and IgA antibodies, memory B cell development, 

secretion of cytokines (with high IL-4 and low IL-12), repression of Treg development/function and 

increased Th1, Th17 and especially Th2-type responses [204,210–212]. Additionally, LT-IIa induces CD8
+
 

T cell apoptosis, thereby reducing IFN-γ secretion and further influencing Th-type immunity [213]. 

The TLR2-dependent functions are retained by non-toxic mutants of the LT B(5) subunit, such as  

LT-IIb(T13I), which fail to bind their ganglioside receptors [214,215].  

4.2. TLR5-Dependent Adjuvants 

TLR5 is expressed on the surface of neutrophils, monocytes, mDCs, Langerhans cells, T cells and 

NK cells [163,216,217]. Signaling through TLR5 via the MyD88 ⁄Mal pathway leads to a strong 

induction of NF-κB activation and a preferential Th2-type immunity (although a Th1 component can 

be also present) [218,219] (Figure 1). The ligand for TLR5 is bacterial flagellin and the TLR5-binding 

region is located in a conserved region of flagellin, the D1 portion [220–224]. A number of 

experimental models have demonstrated that flagellin, in both soluble monomeric and polymeric 

forms, has an immune adjuvant effect and induces DC maturation/activation with subsequent up-regulation 

of CD80, CD83, CD86 and MHC class II, secretion of IL-10 and TNF-α by monocytes and IFN-γ and 

α-defensins by NK cells, T cell proliferation/activation and antigen-specific CTL responses [224,225]. 

Although likely not through a direct effect on B cells, but more to a general TLR5-dependent 

enhancement of APC functions, immunization with flagellin-containing vaccines also leads to enhanced 

secretion of antigen-specific IgG and local IgA responses [222]. For example, addition of flagellin in 

an intranasal influenza vaccine in mice has shown enhancement of immune response as compared to 

the vaccine without flagellin [133,134]. Similar effects have been shown in experimental models of 

vaccination against Y. pestis [124], West Nile virus [125] and L. monocytogenes [216] (Table 1). 

A major advantage of this TLR5-dependent adjuvant is its use in fusion proteins with recombinant 

antigens, which has shown induction of superior immune responses as compared to simultaneous  

co-administration of flagellin and antigens [19,127,226]. This approach has been used in experimental 

and clinical trials of vaccines against influenza, using a flagellin/hemagglutinin-based vaccine (VAX125, 

VAX128) [134–136] or a flagellin/matrix protein 2 ectodomain (M2e) vaccine (VAX102) [137,138], 

and in vaccines against malaria [127,128], vaccinia virus [227], P. aeruginosa [228] and even against 

dental caries [129]. Although the safety of flagellin-based vaccines is still being evaluated in clinical 

trials, no major local or systemic side effects have been reported so far.  

In addition to its use as adjuvant for vaccines against infectious diseases, flagellin has also been 

used in cancer treatment, where NF-kB and transcriptional regulation of mediators of apoptosis are 

induced by flagellin via TLR5 signaling. It is thought that reduction of apoptotic cell death may be 

beneficial for the consequences of radiation treatment in normal tissues. In experimental irradiation 

studies in rodents and primates, improved survival rates have been observed following vaccination 

with flagellin-derived polypeptide (CBLB502) [130]. In other studies on potential anti-cancer 

strategies, flagellin has also shown an enhanced generation of tumor-specific CD8
+
 T cell immune 

responses [131]. 
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5. Conclusions 

The ultimate goal of vaccination is to generate protection against diseases. Such protective 

immunity requires induction of different host responses that are elicited by using vaccine formulations 

containing appropriate antigens and adjuvants. Adjuvants are important components of vaccines and 

can influence the outcomes of vaccination, particularly by directing host immune responses towards 

different T helper cell immunity and enhancing both the quality and the quantity of immune response 

against the antigens. However, major concerns in vaccine adjuvants development include their safety 

and efficiency. Even though vaccine design is still rather empirical, recent advances in immunology 

research have expanded our understanding of the mechanisms of action of various adjuvants and 

greatly improved the chances for successful development of safe and effective interventions to prevent 

and treat a number of human diseases through modulation of host immune responses. The discovery of 

TLRs and their role in modulation of innate and adaptive immunity has led to exploitation of their 

ligands as immune modulators, due to their ability to induce specific immune cell activation and 

influence host adaptive immunity. The advantage of TLR adjuvants is not only in their ability to 

preferentially induce Th1 or Th2 responses and development of CD4
+
 or CD8

+
 T-cells, but also to 

modulate B cell activation and enhance antibody secretion to otherwise poorly immunogenic antigens, 

improving both quality and quantity of specific antibody production. Furthermore, TLR adjuvants 

appear suitable for enhancing mucosal immunity, an area that is gravely underdeveloped in the current 

human vaccine strategies.  

As discussed here, experimental models and clinical trials evaluating TLR agonists as immune 

adjuvants have identified valuable molecules for use in vaccines against infectious diseases, allergies 

and cancer immunotherapy (Table 1). In particular, TLR3, TLR4 and TLR9 agonists have been shown 

to improve a number of vaccines, for example against HBV, influenza, malaria and anthrax, as well as 

some types of cancer. TLR7/TLR8 agonists are less developed as adjuvants but are already used with 

success in topical cancer immunotherapy. The efficacy of vaccine formulations containing traditional 

adjuvants has also been reported to be synergistically improved by the addition of TLR agonists. It is 

likely that the known TLR ligands described here and potentially other novel TLR ligands with 

adjuvant effect, could be introduced in human vaccine formulations worldwide in the near future as 

both stand-alone adjuvant systems or in combination with existing non-TLR adjuvants in the design of 

next-generation vaccines [19,126,229].  
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