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A B S T R A C T

Dynamic susceptibility contrast enhanced magnetic resonance imaging (DSC MRI) is widely used for studying
blood perfusion in brain tumors. While the time-dependent change of MRI signals related to the concentration of
the tracer is used to derive the hemodynamic parameters such as regional blood volume and flow into tumors,
the tissue-specific information associated with variations in profiles of signal time course is often overlooked. We
report a new approach of combining model free independent component analysis (ICA) identification of specific
signal profiles of DSC MRI time course data and extraction of the features from those time course profiles to
interrogate time course data followed by calculating the region specific blood volume based on selected in-
dividual time courses. Based on the retrospective analysis of DSC MRI data from 38 patients with pathology
confirmed low (n= 18) and high (n=20) grade gliomas, the results reveal the spatially defined intra-tumoral
hemodynamic heterogeneity of brain tumors based on features of time course profiles. The hemodynamic het-
erogeneity as measured by the number of independent components of time course data is associated with the
tumor grade. Using 8 selected signal profile features, machine-learning trained algorithm, e.g., logistic regres-
sion, was able to differentiate pathology confirmed low intra-tumoral and high grade gliomas with an accuracy
of 86.7%. Furthermore, the new method can potentially extract more tumor physiological information from DSC
MRI comparing to the traditional model-based analysis and morphological analysis of tumor heterogeneity, thus
may improve the characterizations of gliomas for better diagnosis and treatment decisions.

1. Introduction

Glioblastoma is one of the most deadly cancers in adults which
accounts for 52% of all parenchymal brain tumor cases and 20% of all
intracranial tumors (Stupp et al., 2005). Clinical decisions regarding the
treatment of brain tumors depend greatly on tumor characteristics
(Fossati et al., 2015) which display substantial intra-tumoral

heterogeneity in virtually all distinguishable phenotypic features
(Marusyk and Polyak, 2010). Brain tumor patients typically undergo
extensive magnetic resonance imaging (MRI) scans for classifying the
tumor type, determining the tumor grade, and monitoring the treat-
ment response and tumor recurrence. Unlike histopathologic analysis of
tumor tissue samples collected from biopsy or surgical resection, which
cannot reveal intra-tumoral heterogeneity due to limitations in
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obtaining tissue samples, different MRI techniques can be performed
repeatedly and non-invasively to provide both morphological and
physiological information of the tumor with high spatial resolution.
Among the methods widely used for brain tumor imaging, dynamic
susceptibility contrast enhanced (DSC) MRI uses signal intensity
changes associated with the passage of intravenously injected (i.v.)
paramagnetic gadolinium (Gd) chelate contrast agent (e.g., gado-
pentetate dimeglumine), through the micro-vascular system to char-
acterize the hemodynamic properties of tissues. By tracking time-de-
pendent MRI signal changes in the brain and tumor tissue after injection
of the contrast agent, hemodynamic properties, including cerebral
blood volume (CBV), cerebral blood flow (CBF), time to peak (TTP) and
mean transit time (MTT), vascular permeability, can be derived from
the signal time course data using given pharmacokinetic models (Jiang
et al., 2014). These hemodynamic parameters can serve as surrogate
markers for tumor angiogenesis associated with tumor progression and
recurrence (Benner et al., 1997; Law et al., 2004; Stadler et al., 2017) as
well as responses to anti-angiogenesis therapies (Fayed and Modrego,
2005; Fuss et al., 2001; Jarnum et al., 2010; Lehmann et al., 2010;
Weber et al., 2006), such as bevacizumab (Avastin®), a clinically
available vascular endothelial growth factor (VEGF) antagonist
(Friedman et al., 2009; Vredenburgh et al., 2007; Zhang et al., 2012).
Conventional methods for analyzing DSC MRI time course data mostly
use a computational model to follow the first pass of the contrast agent
bolus in different tissue compartments in reference of the arterial input
of the blood to measure the hemodynamic parameters (Bjornerud et al.,
2011; Boxerman et al., 2012). However, these methods mostly use
empirical models with the assumption of a homogeneous distribution of
the Gd-contrast agent in a single intra- and extra-cellular compartment
(Winchester, 2008) while the brain tumors, especially high grade
glioblastoma, are highly spatially heterogeneous (Marusyk and Polyak,
2010). Tumor heterogeneity depends heavily on tumor biology and has
significant implications for diagnosis and treatment. In this report, we
demonstrate that the hemodynamic properties of brain tumors are also
highly heterogeneous, and the hemodynamic heterogeneity, as well-
known morphological heterogeneity, potentially adds new information
for better tumor characterization. Using a model-free and data-driven
approach with the assistance of independent component analysis (ICA)
(Stone, 2004), specific types of signal time courses of DSC MRI data
were identified as independent components (ICs) which were further
used to extract significant features of signal profiles. This new approach
can better capture the spatial and hemodynamic heterogeneity of
gliomas without depending on a priori model. Since ICA was commonly
used in analyzing 4D resting-state functional MRI time course data, to
extract features (Ribeiro de Paula et al., 2017; Tian et al., 2013), si-
milarly, we focus on applying ICA to extract spatial and temporal fea-
tures of 4D DSC data. Furthermore, by taking into account of tissue-
specific variations of signal time courses extracted by ICA, more accu-
rate rCBV maps can be calculated.

2. Materials and methods

2.1. Characteristics of selected patients

This retrospective study was approved by the institutional review
board (IRB). Clinical MRI data from thirty patients (16 males, 14 fe-
males) who had biopsy or tumor resection after routine MRI exams
were selected for retrospective analysis. The data from the clinical di-
agnosis, grading, and classifications of the tumor were collected and
used. For the low grade glioma group, we first used histopathology
based on 2007 criteria of World Health Organization (WHO) glioma
grading criteria (Louis et al., 2007) to select the patients. We then
followed 2016 revised WHO glioma classification criteria, including
mutation status of isocitrate dehydrogenase 1 and 2 (IDH1/2) and
chromosome 1p19q to further evaluate and confirm the tumor grade.
Among 30 patients, based on pathology grading, 16 cases were initially

diagnosed as high grade gliomas (WHO III-IV) and 14 were low grade
gliomas (WHO II). The locations of tumors were seen mostly in the
frontal or temporal regions of the brain. Among 30 cases, 18 were as-
sessed with tumor proliferation MIB-1 index based on the Ki-67 assay.
Table 1 summarizes the clinical and demographic information of the
patients. Additional 8 cases with 4 high grade and 4 low grade gliomas
with clinically diagnosis were then included for re-testing the devel-
oped classification algorithms.

2.2. MRI data acquisition

All patients underwent MRI exams on a 3 T MRI scanner (Magnetom
Tim/Trio; Siemens, Germany) with a routine brain tumor protocol
which includes the following sequences: pre and post-contrast en-
hanced T1 weighted spin-echo imaging, T2 weighted (axial) fluid-at-
tenuated inversion recovery (FLAIR) imaging, diffusion weighted ima-
ging and DSC MRI. FLAIR images, which were used for segmentation of
tumors, were obtained by following parameters: repetition time
(TR)=6000, echo time (TE)= 93ms, flip angle= 130°, inversion
time=2030ms, 25 axial slices (thickness= 5mm), field of view
(FOV)=240×240mm2, and matrix of 512, giving spatial resolution
of 0.469×0.469× 5mm.

DSC MRI data were acquired using a gradient echo planar sequence
with TR/TE=1990/30ms, time points= 50 or 70, FOV: 220–240mm,
matrix: 128×128, 19 axial slices and slice thickness of 5mm. A bolus
of gadolinium (Gd) contrast agent (0.05–0.15mmol/kg) was injected at
a rate of 3mL/s at 20 s after starting the acquisition of dynamic data.

2.3. Data analysis

4-dimensional (4D) DSC MRI images from each case were pre-pro-
cessed with motion correction and realignment before being used to
extract temporal and spatial features using ICA. Briefly, the noise re-
duction was applied first using Smallest Univalue Segment Assimilating
Nucleus (SUSAN) (Smith and Brady, 1997). Subsequently, Linear Image
Registration Tool (FLIRT) was used for image alignment to minimize
the motion artifacts (Jenkinson et al., 2002; Jenkinson and Smith,
2001). Finally, skull stripping was performed on T2 weighted FLAIR
images using the brain extraction tool (BET) of the FMRIB Software
Library (FSL) for subsequent co-registration of anatomic images and
maps of hemodynamic parameters calculated from the DSC MRI data
analysis. After all preprocessing steps, the 4D DSC MRI data were

Table 1
Demographic information of enrolled patients.

Characteristics or variables High grade Low grade

(n=16) (n=14)

Age 67 (54–70) 55 (45–64)
Gender
Female 6 3
Male 10 11

Cell Types
Glioblastoma 7 –
Anaplastic astrocytoma 4 –
Anaplastic oligoastrocytoma 5
Astrocytoma – 8
Oligodendroglioma – 6

Mutation Status
IDH 4 5
1p19q – 6
Wide type IDH 7 2
IDH mutation unknown 5 1

MIB Index (Ki-67)
< 10% – 5
10%–25% 5 2
>25% 6 –
N/A 5 7
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analyzed following the procedure illustrated in Fig. 1.

2.3.1. Tumor segmentation
Tumor regions defined as volume of interest (VOI) were segmented

in reference to FLAIR images using K-means clustering with Silhouette
Criterion (Kodinariya and Makwana, 2013) and neighborhood con-
nectivity information. We used FLAIR images for tumor segmentation
because of their better delineation of the tumor given both high spatial
resolution and high contrast between the tumor and surrounding tissue.
Contrast enhanced T1 weighted spin echo images were also reviewed
and used as the reference for evaluating the tumor location, size and
shape as well as the grade, however, they were not used for segmen-
tation as most low grade gliomas do not always have post-contrast
enhancement. K-means clustering used for segmentation is a data
mining approach that partitions data into mutually exclusive k clusters
in which each pixel belongs to the cluster with the nearest mean. This
method has been often employed for image analysis (Jose et al., 2014;
Patel et al., 2013), including subdividing tumors (Selvakumar et al.,
2012).

Prior to K-means clustering, the number of clusters k was chosen
according to the Silhouette Criterion (Rousseeuw, 1987; Vidal et al.,
2017) with the highest silhouette index value between −1 and 1. The
given criterion was based on how close each voxel in one cluster are
from voxels in other clusters.

Neighborhood connectivity information of the pixels (Cheng et al.,
2009) is used to extract the maximum cluster, e.g., tumor region. After
identifying the tumor region from each image to obtain the tumor vo-
lume, the segmented volume was transformed from the FLAIR image
space into the DSC image space using both linear (FLIRT) and non-
linear (FNIRT) algorithms.

2.3.2. Profile feature extraction and analysis
We used the ICA algorithm with Laplace approximation (LAP) cri-

teria to extract temporal features of time course profiles of DSC MRI
data. Briefly, the segmented tumor volume for each patient was bi-
narized as a mask and then transformed to 4D DSC data. ICA was then
performed to extract ICs of time course profiles within a defined tumor
region using FSL-MELODIC package (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/MELODIC). ICA is a statistical method that identifies maxi-
mally independent specific features/patterns from the source data by
minimization of mutual information or maximization of non-
Gaussianity (Calhoun and Adali, 2012). Given a 4D DSC MRI time
course data, spatial ICA is applied to obtain independent component
signals including spatial maps and time courses in pairs (Chen and
Calhoun, 2018; Chen et al., 2018). The resultant maps and corre-
sponding time courses with signal intensity were normalized to z-scores
(Agarwal et al., 2017) by calculating the difference between a value in
the sample and the mean, and then dividing it by the standard devia-
tion.

LAP is a default method used in MELODIC software (Minka, 2001)
given by Gaussian approximation to a continuous distribution with the
highest approximation value to determine the optimal number of ICs.
To select ICs for further analysis instead of using the entire set of ICs for
this proof-of-principle study, we used the DFC based on the concept
similarly to the selection of ICs (Wang and Li, 2015) in the resting state
functional MRI data which are also time course based 4D image data-
sets. to remove the components, such as those time courses not affected
by the contrast agent, and to retain the time course profiles resemble
the typical signal time course of in-and-out first-pass contrast bolus. In
this criterion, the area under curve (AUCIC) value of the signal time
course was calculated by doing a definite integral under the signal time
curve between the start time of first-pass contrast bolus and the end of

Fig. 1. An overview of the data analysis process. Step 1: Extracting tumor regions from T2 weighted FLAIR images and transforming segmented regions to DSC image
space. Step 2: Applying spatial ICA to 4-D DSC MRI time course data to obtain independent components of signal profiles and corresponding spatial maps of the
components. Step 3: Using defined filtering criterion to remove unwanted components and artifacts by generating the histogram of area under the curve (AUCIC) of
the signal time course and using 2.5% confidence intervals of distributions as a cut-off threshold. An example of the removed component is presented in the top-left
corner of AUCIC value histogram. Step 4: Identifying signal profile features with the order according to the importance. Step 5: Evaluating classification methods. Step
6: Ranking featuresusing logistic regression.
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first-pass contrast bolus. After determining the AUC value of the signal
time course associated with each IC, the histogram (distribution) of
each AUC of the signal time course was generated and the cut-off
threshold was set to 2.5% confidence intervals of distributions. If the
AUC value of the component is less than the cut-off threshold, the
component would be removed as an unwanted component. For those
selected ICs of signal time courses in the segmented tumor volume,
contrast agent concentration changes over the time were converted
from the signal intensities at different time points to further calculate
the relative cerebral blood volume (rCBV) in the region (Knutsson et al.,
2010). The conversion formula (Østergaard, 2005) is shown as follow:

⎜ ⎟= − ∙ ⎛
⎝

⎞
⎠

C t k S t
S t

TE( ) log ( )
(

/
0) (A.1)

where C(t) denotes the tumor tissue contrast agent concentration, k is
the constant of proportionality. In most practical applications, the
proportionality constant k assumed to be equal for both tissue and
blood (Knutsson et al., 2010), S(t0) represents the baseline signal before
the arrival of the contrast bolus, S(t) refers to the signal intensity of each
time point associated with a time course profile of a selected IC, and TE
is echo time. C(t) is considered to be proportional to rCBV. The varia-
tion of rCBV or ΔrCBV which is defined as the difference between rCBV
of each selected IC and the mean rCBV in the tumor was also used to
show the intra-tumor heterogeneity. Finally, we calculated the varia-
tion of pixel intensity in the segmented tumor regions from T2 FLAIR
images which we use as a representation of the morphological hetero-
geneity of the tumor using the coefficient variation (CV) value to de-
scribe the dispersion which presents the degree of morphological het-
erogeneity, comparing high grade gliomas to that of low grade gliomas
which were shown in Fig. 3B, C. The formula is presenred as (A.2):

=CV σ/μ (A.2)

where σ is the standard deviation, μ is the mean.
The conventional single compartment models only use selected time

course profiles in reference to the arterial input and wash-out of the
contrast agent to calculate hemodynamic parameters using the scanner
(Siemens) build-in toolbox and neglect other potentially useful but
uncharacteristic profiles that may also contain physiologic information.
The steps for the conventional way include selection of volume of in-
terests to define the “standard” signal profiles of the time course data in
the blood vessel or normal tissue, and then calculate CBV from each
voxel by fitting the time course data and the area under curves (AUC)
using the formula reported in the literature. Finally, Values of rCBV
map were calculated as the ratio of maximum CBV from the tumor area
to CBV from the contralateral normal area. In contrast, we expand the
selection of the time course profile patterns for analysis based on a
criteria of eight parameters, including bolus arrival time, mean transi-
tion time (MTT), time to peak (TTP), signal descent rate defined as the
signal intensity difference between the arrival time and the time to peak
divided by the time between these two time points, signal ascent rate
defined as signal intensity difference between time to peak and the
endpoint where the signal recovers to the baseline divided by the time
between two time points, full width at half maximum (FWHM), percent
signal recovery (PSR) and AUC. A logistic regression algorithm, fitting a
logistic function to the entire data and further measuring the relation-
ship between the classification label and features, was used to sort
features according to contributions for classifying groups. The formula
is given by the Eq. (A.3),

=
+ − ∑ =

p
e

1

1
i β xj

M
j ij1 (A.3)

where pi corresponds to probability at observation i, βj refers to the jth
regression coefficient, xij is the jth variable observation i.

2.3.3. Evaluation of the performance of classification methods
To test the performance of the reported approach in differentiating

low and high grade gliomas using current data sets and identified fea-
tures, we compared several commonly used machine learning based
classification methods, including Gaussian native Bayes which predicts
the probability of each class based on features with a prior distribution
of the probability (Wang et al., 2007), decision tree which uses a tree-
like graph and possible consequence to classify features (Friedl and
Brodley, 1997), wrapper-based logistic regression (forward) (Kurt et al.,
2008), discriminant analysis which relies on measured characteristics
of known clusters to classify new samples (Liu and Wechsler, 2002) and
support vector machine (SVM) which find optimal segmentation hy-
perplane to separate different clusters (Hearst et al., 1998). We split the
initial data of 30 cases (16 high grad glioma cases and 14 low grade
glioma cases) into the training data set with 24 cases and a testing
dataset with 6 cases. The training set and testing set were randomly
partitioned using a five-fold cross-validation scheme proposed by others
(Wong, 2015) with a grid search (Hsu et al., 2003) to tune/select the
hyperparameters. This process was then performed with 100 times re-
petition (Lee et al., 2015). We then averaged 100 results to produce a
single estimation of classification performance. To minimize the effect
of overfit and overestimate when using the same data set to train and
test the machine-learning algorithm, we then used the trained model to
test the algorithms with a independent testing dataset of 8 cases with 4
high grade and 4 low grade gliomas cases.

2.4. Statistical analysis

Statistical analyses were conducted in Matlab using the statistics
toolbox (The MathWorks Inc., MA). Demographic variables were com-
pared between groups (Chi-square or two-tailed independent samples t-
test) for descriptive purposes. The numbers of selected ICs from dif-
ferent groups (i.e., high grade or low grade gliomas) were compared
using independent sample t-test with a threshold of p < 0.05 which
was considered as statistically significant. In the meantime, the corre-
lation coefficient value was calculated between the coefficient of var-
iation of pixel intensity and IC numbers with a threshold of p < 0.05.
In addition, one-factor ANOVA analysis was applied to test the re-
lationship between coefficient of variation of pixel intensity and the
tumor grade in the cases of p < 0.05. Finally, independent sample t-
test was conducted again for the group comparison of ΔrCBV in the
cases of p < 0.05.

3. Results

3.1. Patients and related clinical information

We divided the patients into high and low grade glioma groups
based on the clinical information collected from the patients for ana-
lyzing data, testing and validating the results. Among 14 low grade
glioma patients, we found five patients carrying the IDH mutation, six
having 1p19q co-deletion, two carrying wild type IDH, and one without
IDH information. Among 16 patients in the high grade glioma group,
we found four patients carrying the IDH mutation, seven carrying wild
type IDH and five patients without IDH information. The prognostic
relevance of tumor proliferation (Ki-67/MIB-1) index was also obtained
for the patients and used as the reference when evaluating the tumor
grade. More detailed clinical information on selected patients used in
selecting and characterizing features is summarized in Table 1.

3.2. ICA-derived signal profile features and their spatial distributions

Using K-means clustering with Silhouette Criterion and neighbor-
hood connectivity information to segment T2 weighted FLAIR images,
tumor regions were successfully segmented (colored in red in Fig. 1) as
shown in the example of a high grade glioma case and a low grade
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glioma case. Different ICs representing different profiles of signal time
course from the segmented tumor volume were extracted from DSC MRI
data using ICA. After calculating histogram of AUCIC values of signal
profiles of each IC, a cut-off threshold of 7.71 was applied in the DFC to
reduce the number of ICs to be used for analysis. The current DFC
simplified for this proof-of-concept study allows for selecting ICs ex-
hibiting various signal profile patterns of both high and low grade
gliomas. The examples shown in Fig. 2 demonstrate that signal profiles
of DSC MRI time course data in the low and high gliomas reveal dif-
ferent hemodynamic properties in different tissue types. More non-
conventional appearing time course profiles were observed in high
grade gliomas than those in low grade gliomas, indicating the greater
hemodynamic variations of the tumor tissue in high grade gliomas. In
addition, the hemodynamic heterogeneity can be spatially defined in
high resolution based on the individual signal profiles of the time
course with examples presented in different colors in the 3D rendered
brain. Hemodynamic characteristics such as arrival time, time to peak,
PSR, signal descent rate, signal ascent rate, mean time to enhance
(MTE) (Essig et al., 2013), which is the average time for the entire bolus
of injected contrast to pass through a region of tumor tissue, defined in
Fig. 2A were highly variable among signal profiles of selected ICs.
Furthermore, these different patterns can be seen in the different tumor
regions (Fig. 2), explicitly demonstrating spatially heterogeneous blood
perfusion patterns in both low grade and high-grade gliomas. It should
be noted that because these time course profiles were selected based on
the DFC, they can be further analyzed with similar computational
models used in the conventional analysis of DSC MRI data.

3.3. Hemodynamic heterogeneity of low and high grade gliomas

We then further investigated intra-tumoral hemodynamic hetero-
geneity by examining the number of ICs selected from each tumor

(Fig. 3), which may be used to quantify the hemodynamic hetero-
geneity of the tumor. The number of ICs found in high grade glioma
patients was significantly higher than those from patients with low
grade glioma (p < 0.05, Fig. 3A).

The observed different levels of hemodynamic heterogeneity in low
and high grade gliomas are correlated with the levels morphological
heterogeneity calculated based on the coefficient of variation of signal
intensities measured from the FLAIR images of the tumors.

We further estimated ΔrCBV values from the time course of each
selected IC. As shown in Fig. 4A, ΔrCBV values, which characterizes the
degree of neovascularization (Di Stefano et al., 2014), found in patients
with high-grade glioma were significantly higher than those from pa-
tients with low-grade glioma (p < 0.05). This result is in agreement
with the typical findings reported in the literature (Hakyemez et al.,
2005). In addition, we evaluated other parameters including mean
transition (MTT) and time to peak (TTP) and found there are significant
differences in MTT values (p < 0.05) and TTP (p < 0.01) between
high grade gliomas and low grade gliomas.

Worth noting, conventional computational methods for rCBV maps
limit the computation of the regional blood volume to the fairly defined
time course patterns, however, may not reveal heterogeneity of blood
supplies to the tumor in details. When using individual time course
patterns obtained from ICA with a model free approach, we were able
to calculate the rCBV maps with inclusion of more variations of time
courses as shown in Fig. 4B, C which were different from those obtained
from the conventional method (Fig. 4D, E). Therefore, the reported
approach may expand the quantification of hemodynamic parameters
to more complex and heterogeneous patterns.

3.4. Classification methods performance

Using AUC ROC to evaluate the classification performance of

Fig. 2. Examples of the time courses of independent components (ICs) from low and high-grade gliomas. The ICs were selected from the segmented tumor regions of
low-grade glioma (A) generally have less variations than those of high-grade glioma (C). The corresponding spatial locations of each IC were shown in the colored
maps overlaid on the 3D brain (B, D).
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different algorithms based on the 8 features, logistic regression algo-
rithm was able to differentiate high grade gliomas from low grade
gliomas among all machine learning classifiers with the highest AUCROC

value (0.77). The algorithm was followed by Naïve Bayes, Decision
Tree, Support Vector Machine (SVM), and Discriminant Analysis which
have an AUCROC of 0.716, 0.703, 0.697, and 0.297, respectively, as
shown in Fig. 5. When we used the trained model to re-test 8 cases, it
was found that the logistic regressions algorithm still could reach the
highest performance with AUCROC of 0.72.

3.5. Contribution of features in differentiating tumors grades

Using the wrapper-based logistic regression (forward), we evaluated
the performance of 8 signal profile features in their contributions to the
accuracy of differentiating low and high grade gliomas based on in-
creasing order of p-value. Simultaneously, we calculated the variance
inflation factor (VIF) to assess correlation between these predictors as
shown in Table 2 below.

The results show that 6 features including Area, Time to peak, Mean
transition time, FWHM, Increasing speed and Arrival time are highly
correlated with each other (VIF > 1). Thus we used the logistic re-
gression while treating the variables with high VIFs as control variables
to minimize the multicollinearity of covariates. Based on the

performances of 8 signal profile features, i.e., bolus arrival time, mean
time to enhance, time to peak, signal descent rate, ascent rate, FWHM,
PSR and AUC, all factors except for ascent rate were statistically sig-
nificant in contributing to differentiating low and high grade gliomas
(p < 0.05) as shown in Fig. 6. By calculating 95% confidence interval
for a proportion, which implies the degree of accuracy, the performance
of first seven features that contributed to differentiate high grade
gliomas from low grade gliomas are 83.5, 83.5, 77.7, 76.7, 74.8, 73,8,
and 72.8 with statistically significant p values at 0.000, 0.000, 0.002,
0.005, 0.006, 0.02 and 0.045, respectively. Furthermore, combining
these seven features together for classification of tumor grades can
achieve the best performance with the overall accuracy of 86.7%.

4. Discussion

In the current study, we show that the model free ICA can be applied
to DSC MRI of brain tumors to help discriminate high and low grade
gliomas based on the hemodynamic heterogeneity associated with the
tumor vasculature and blood supplies. Although it needs to be validated
with larger patient cohorts and better correlation with the results from
histopathological or molecular analysis, the widely available DSC MRI
method combining with machine-learning selection of features in time
course signal profiles has potential to improve the assessment of

Fig. 3. The DSC MRI data derived intra-tumoral heterogeneity of high grade gliomas and low grade gliomas. The relationship between the coefficient of variation of
pixel intensity and IC number or tumor grade was analyzed. A: the numbers of ICs in high grade glioma vs. low grade glioma patients (p < 0.05). B: the coefficient of
variation of pixel intensity vs. IC number (p < 0.05). C: the coefficient of variation of pixel intensity in different tumor grades (p < 0.05).

Fig. 4. rCBV maps of high grade gliomas and low grade gliomas calculated based on ICA derived signal profiles of the time course data. A: Comparison of ΔrCBV
values in high grade glioma patients and low grade glioma (p < 0.05) with high grade tumors exhibiting higher rCBV. B, C: rCBV maps of a high and a low grade
tumor based on the ICA derived data. D, E: rCBV maps from the same patients obtained by using a conventional method for calculating rCBV.
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treatment responses and tumor progression. In this case, hemodynamic
heterogeneity derived from this approach may be applied as a bio-
marker to predict responses to the antiangiogenic treatment commonly
used in clinical management of brain tumors (LaViolette et al., 2013,
2014).

Previously, the model free ICA has been applied successfully in
brain functional mapping and functional connectivity studies using
fMRI time course data for analyzing specific patterns of oscillation
signals related to the resting state or task-invoked low-frequency brain
activities (Calhoun et al., 2001; Griffanti et al., 2014). Separation of the
mixed dynamic time course signals of DSC MRI into independent source
signals provides a better measurement of spatiotemporal variations in
local cerebral blood perfusion (Laiwalla et al., 2017). The present study
suggests that the model-free pattern extracting methods, such as ICA,
can be applied on DSC MRI data to characterize the brain tumor vas-
culature heterogeneity. DSC MR imaging is a standard imaging method
integrated into the brain tumor imaging protocol. The application of

ICA to DSC MRI data may be beneficial for characterizing brain tumors
and monitoring tumor response to a treatment in addition to better
distinguishing tumors from the normal tissue. However, further in-
vestigation is warranted to prove these potential benefits.

We also observed statistically significant positive correlations be-
tween the coefficient of variation of pixel intensity, IC numbers, and
histological grades. The observation of hemodynamic variations is
consistent with the notion that high-grade gliomas have a high level of
heterogeneity obtained from analyzing morphological properties of the
tumor tissue based on anatomical and diffusion weighted MRI (Jiang
et al., 2014), which is supported by the results from histological, ana-
lysis (Karim et al., 2016; Nakajima et al., 2012; Rebetz et al., 2008). The
result from the current study indicates that hemodynamic hetero-
geneity, as measured by IC numbers, might be a potential indicator of
prognosis in addition to morphological heterogeneity. Therefore, he-
modynamic properties derived from analyzing the signal profiles of the
DSC MRI time course data adds a new perspective and potential para-
meters for physiologically characterizing brain tumors. Furthermore,
distinctive features of signal profiles of DSC MRI time course data and
the number of ICs derived from the reported analysis can extract more
details and information. Thus, such model free approach can be po-
tentially used to extract a wide range of time course profiles for
quantitative measurements of tumor vascular physiology and biology.

Several limitations to this study should be considered. First, we
segmented tumors based only on FLAIR images. Thus, areas of non-
tumor edema were likely included in some of the segmentations, while
subtle signal changes from the infiltrative tumor tissue may have been
excluded. As a retrospective study, there is not enough information to
derive direct correlation between hemodynamic heterogeneity and

Fig. 5. The evaluation of machine learning based classification. The AUCROC values of different machine learning algorithms are: 0.77 (logistic regression), 0.716
(naive Bayes), 0.703 (decision tree), 0.697 (support vector machine), and 0.249 (discrimination analysis).

Table 2
Feature specific values of variance inflation factor.

Features VIF value

Area 4.996
Time to Peak 20.667
Mean_Transition_Time 14.292
Decreasing_Speed 0.677
FWHM 5.965
Increase_Speed 11.569
Arrival_Time 12.709
Slope 0.639
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histology data to validate our results. Direct correlation between ima-
ging results with those from image-guided biopsy of multiple sites
based on the observed hemodynamic heterogeneity could potentially be
performed in the future to confirm the image biomarkers and mea-
surements. In addition, we only extracted features from the time course
data of DSC MRI. Other quantitative image features from additional
advanced MRI sequences, such as susceptibility and diffusion weighted
imaging, used in clinical brain tumor MRI exams could potentially be
incorporated to increase diagnostic, prognostic, and predictive power.

5. Conclusions

The heterogeneous spatial characteristics of brain tumors on mor-
phologic imaging and histology are well known. However, the results of
the current study revealed that hemodynamic properties as measured
by DSC MRI are also heterogeneous within a tumor and can be mapped
spatially based on a model free analysis of DSC MRI time course data.
Fewer numbers of ICs in low grade gliomas compared to high grade
gliomas indicates that tumors with lower grades are less hemodyna-
mically heterogeneous. It is demonstrated that the model free approach
assisted by the feature extraction technique allows for identifying and
expanding more blood perfusion information from the DSC MRI data
comparing to the model based conventional DSC data analysis.
Therefore, this new strategy of identifying and interrogating various
forms and shapes of DSC MRI time course data may allow us to develop
computational and analytical tools to investigate the tumor vascular
features of the tumor tissues and regions and to better quantify imaging
markers, such as rCBV and other hemodynamic parameters, for more
accurate and sensitive monitoring of tumor progression and responses
to the treatment.
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