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The cancerlectin plays an important role in the initiation, survival, growth, metastasis,

and spread of cancer. Therefore, to study the function of cancerlectin is greatly

significant because it can help to identify tumor markers and tumor prevention,

treatment, and prognosis. However, plenty of studies have generated a large amount

of protein data. Traditional prediction methods have been unable to meet the needs of

analysis. Developing powerful computational models based on these data to discriminate

cancerlectins and non-cancerlectins on a large scale has been treated as one of the most

important topics. In this study, we developed a feature extraction method to identify

cancerlectins based on fusion of g-gap dipeptides. The analysis of variance was used

to select the optimal feature set and a support vector machine was used to classify the

data. The rigorous nested 10-fold cross-validation results, demonstrated that our method

obtained the prediction accuracy of 83.91% and sensitivity of 83.15%. At the same time,

in order to evaluate the performance of the classification model constructed in this work,

we constructed a new data set. The prediction accuracy of the new data set reaches

83.3%. Experimental results show that the performance of our method is better than the

state-of-the-art methods.

Keywords: cancerlectins, g-gap dipeptide, feature selection, analysis of variance, support vector machine

INTRODUCTION

Cell recognition is the central event of various biological phenomena. The combination of cell
surface molecular selectivity with other molecules is an important link in cell development and
differentiation, such as fertilization, embryogenesis, immune defense, pathogen infection, and
pathogenicity. Abnormal cell recognition may lead to diseases, such as defects in leukocyte and
platelet adhesion, which can lead to the recurrence of bacterial infections and mucosal bleeding,
respectively. In addition, abnormal cell recognition is considered to be the basis of uncontrolled cell
growth and movement, which is the characteristic of tumor transformation and metastasis (Sharon
and Lis, 1989).

Lectin is one of the cell recognition molecules. It is a biological molecule that specifically
recognizes and binds the carbohydrate components existing in other proteins (Kumar and Panwar,
2011). Most lectins have high specificity and selectivity in identifying sugar molecules present in
other proteins (Lis and Sharon, 1998). According to their affinity with monosaccharides, these
glycoproteins can be divided into five categories: mannose, N-acetylglucosamine, galactose/N-
acetylgalactosamine, fucose, and sialic acid, which represent a group of heterogeneous oligomeric
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proteins (Kumar and Panwar, 2011). It has been found that
lectins are involved to a variety of biological processes, such
as maintaining the dynamic balance of cell proliferation and
apoptosis, cell differentiation, cell adhesion and migration,
cell-extracellular matrix interaction, host-pathogen interaction,
cell-cell recognition, complement activation pathway, immune
defense, and regulation of inflammatory response (Lin et al.,
2015). Lectin molecules provide biological scripts to decipher
complex codes in sugar groups (Damodaran et al., 2008).
Therefore, lectins are often used as diagnostic and therapeutic
tools in many fields such as cell biology, biochemistry,
and immunology.

Cancerlectins are a group of lectins which are closely related to
cancer (Kumar and Panwar, 2011). Lectin participates in serum-
glycoprotein transformation and innate immune response, and
has a special correlation with the growth and metastasis of
tumors (Damodaran et al., 2008). Some evidences suggest that
tumor cell agglutinin is involved in cell interactions, such as
adhesion, cell growth, differentiation, metastasis and infection
of cancer cells (Lis and Sharon, 1998). Whether basic research
or clinical application, cancerlectins has been widely used in
cancer research (Lai et al., 2017). For example, sialic acid-bound
immunoglobulin lectin-9 is a neutrophil-specific expression that
binds to sugar molecules on the surface of cancer cells, regulates
immune response and promotes or inhibits tumor progression;
spiral hemagglutinin is an effective prognostic indicator of
colorectal cancer, etc. (Kumar and Panwar, 2011). The effect
of lectins on the immune system by altering the production of
various interleukins has beenwell-documented. There is also data
showing that some lectins down-regulate the activity of telomere,
thereby inhibiting angiogenesis (Choi et al., 2004; De Mejía
and Prisecaru, 2005). Cancerlectins can induce cytotoxicity,
apoptosis, and inhibit tumor growth by binding to receptors on
the surface of cancer cells. It can be used as a therapeutic method
for cancer treatment. Cancer is the second leading cause of death
in the world. Therefore, the screening of specific lectins from
a large number of lectins is of great significance not only for
the discovery of tumor markers and cancer treatment, but also
for better understanding and conquering cancer (Balachandran
et al., 2017).

A plenty of studies have generated a large amount of protein
data, using traditional biological experiments to predict and
analyze the function of proteins is not only time-consuming
but also laborious. Based on these data, it is one of the most
important topics to predict a cancerous substance by establishing
a powerful computational model to identify cancerous and non-
cancerous substances on a large scale. The description of the
characteristics of the protein sequence method contains a lot
of information, such as the chemical and physical properties
of amino acids, sequence characteristics, feature extraction
algorithm for classification algorithm which has great impact
on the design and the classification of results. Too few protein
sequence characteristics will result in the loss of important
information of protein sequence and affect the classification
results, and therefore dimension disaster, conversely, there is no
guarantee of the classification efficiency of the model. Therefore,
how to conduct efficient feature fusion and establish appropriate

mathematical expression methods and similarity measurement
standards is an important problem.

Feature Extraction Based on Sequence
Information
Nakashima et al. (1986) proposed amino acid composition
to study protein folding. One of the most basic algorithms
for extracting features of protein sequence is amino acid
composition, which represents the occurrence frequency of
each of the 20 common amino acids in the protein sequence
and converts the protein sequence into a 20-dimensional
feature vector. Yu et al. (2004) proposed using k peptide
component information to represent protein sequences. Feng
et al. (2013) proposed a Naïve Bayes-based method to predict
antioxidant proteins using amino acid compositions and
dipeptide compositions.

Feature Extraction Based on Physical and
Chemical Properties of Amino Acids
Bu et al. (1999) proposed an autocorrelation function algorithm,
which is a description method based on Amino Acid Residue
Index (Kawashima et al., 1999), for the study of protein structure
predetermination. Chou (2001) proposed the pseudo-amino
acid composition method, including sequence order information
other than amino acid composition.

Feature Extraction Based on Protein
Evolution Information
Evolutionary information is one of the most important
information of protein functional annotation in biological
analysis, reflecting the sequence conservation of amino acids at
each site of protein sequence in the evolutionary process (Xu
et al., 2015). Evolutionary information of proteins mainly relies
on positional specificity score matrix (PSSM) (An et al., 2016).

In the published research work, Kumar and Panwar (Kumar
and Panwar, 2011) integrated PROSITE domain information
with PSSM, developed a support vector machine model, and
obtained MCC value of 0.38 with an accuracy of 69.09%; Lin
et al. (2015) developed a sequence-based method to distinguish
cancerlectins from non-cancerlectins, and used ANOVA to select
the optimal feature subset. The accuracy of the method is 75.19%;
Zhang et al. (2016) proposed a classification model based on
random forest, the accuracy of the method is 70%; Lai et al.
(2017) proposed a new method of feature expression based on
amino acid sequence, and binomized it. In the jackknife cross-
validation, the accuracy is 77.48%. Han et al. (2014) proposed
a two-stage multi-class support vector machine combined with
a two-step optimal feature selection process for predicting
membrane protein types. Anh et al. (2014) propose a kernel
method, named as SSEAKSVM, predicting protein structural
classes for low-homology data sets based on predicted secondary
structures. Balachandran et al. (2018) proposed a support vector
machine (SVM)-based PVP predictor, called PVP-SVM, which
was trained with 136 optimal features. Runtao et al. (2018)
proposed a computational method based on the RF (Random
Forest) algorithm for identifying cancerlectins, and achieves a
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sensitivity of 0.779, a specificity of 0.717, an accuracy of 0.748.
Thesemethods have obtained quite good results, but the accuracy
still needs to be improved. In this work, we constructed a new
classification system of protein sequences, and the relatively
better result was obtained on the benchmark dataset and the
independent test dataset.

METHODS

Dataset
Data acquisition is the first step of data analysis. The benchmark
dataset is not only the database of algorithm learning, but
also the cornerstone of classification model. Constructing a
good benchmark data set also plays an important role in the
performance of classification model (Lin and Chen, 2010). In
order to compare objectively with the existing research results,
the dataset used in this work was widely used which was
constructed by Kumar and Panwar (Kumar and Panwar, 2011).

The benchmark dataset contains both positive and negative
samples. The original data were downloaded from the
CancerLectinDB database (Damodaran et al., 2008), removing
duplicated sequences and sequences without experimental
evidence, or containing non-standard amino acids, and 385
proteins were obtained to form a positive subset (Lin et al., 2015).
Using the keyword “lectins” search in UniProt database, deleting
the sequences labeled “similarity,” “fragment,” “hypothesis,”
and “possibility,” a negative subset containing 820 proteins was
constructed (Kumar and Panwar, 2011; Lin et al., 2015). If the
designed data sets contain highly similar sequences, misleading
results with high prediction accuracy will be obtained, thus
reducing the generalization ability of the model. In order to
remove homologous sequences from the benchmark dataset,
the CD-HIT program was employed with 50% as the sequence
identity cutoff to exclude any protein/peptide sequences with
more than 50% paired sequence in the benchmark dataset
(Lin et al., 2015). The benchmark datasetScan be formulated
as follows:

S = S+ ∪ S−

where the positive subset S+ contains 178 cancerlectin samples,
the negative subset S_contains 226 non-cancerlectin samples,
thus, the benchmark dataset Scontains 404 samples. The
benchmark dataset is available at https://github.com/hangslab/
cancerlectins.

Feature Extraction Method
When using the machine learning method, protein sequences
need to be transformed into numerical vectors representing
the characteristics of protein sequence. The extracted features
need not only to retain the sequence information of proteins to
the greatest extent, but also to have a greater correlation with
protein classification.

The sequence of amino acids in protein sequence is the basis
of protein biological function. The dipeptide composition is
the condition of k = 2 in the feature extraction method of

k-peptide composition (Yu et al., 2004; Lin and Chen, 2010).
The dipeptide composition can only reflect the correlation of
adjacent amino acids in protein sequence. Generally speaking,
the intrinsic properties of protein sequences may be precipitated
in higher-level residue relationships. In the tertiary structure
of proteins, the two amino acids separated from the original
sequence may be very close in space, which means that the
g-gap dipeptide composition (Sharma and Paliwal, 2008; Lin
et al., 2015) contains more information about protein sequences
than the dipeptide composition. In this paper, we developed a
feature extraction method of fusion g-gap dipeptide component,
Figure 1 is the flow chart of the model construction.

The g-gap dipeptide composition transforms each protein
sequence into a feature vector. For each g value, a 400-
dimensional feature vector (20∗20) will be generated. The range
of g is [0,9]. g = gh,gh = h,h ∈ [0, 9] is used to distinguish
the frequency of g-gap dipeptides with different values of g. We
transformed a cancerlectin or non-cancerlectin protein sample
P with L amino acids into an input vector of 4,000 dimensions,
defined as follows:

F4000 =
[

f 01 , · · · , f
0
400, f

1
1 , · · · f

1
400, · · · , f

gh
u , · · · , f 91, · · · , f

9
400

]T

where the f
gh
u is the frequency of the u-th (u = 1, 2, · · · , 400)

gh-gap dipeptide and calculated by

f
gh
u =

n
gh
u

∑400
u=1 n

gh
u

where n
gh
u denote the number of the u-th gh-gap dipeptide in

a protein. Note that when g = 0, the g-gap dipeptide will
degenerate to the adjoining dipeptide composition.

The class labels corresponding to each feature vector are
represented by t, t ∈ {0, 1},1 represents positive sample and 0
represents negative samples. Finally, a 404∗4,000 feature matrix
was obtained.

Feature Selection
When the number of features is large, there may be unrelated
features, or interdependence between features, which easily leads
to the time-consuming process of analyzing features and training
models. The more the number of features, the more likely it is to
cause “dimension disaster,” the more complex the model will be,
and its generalization ability will decline. Feature selection can
eliminate irrelevant or redundant features, reduce the number
of features, improve the accuracy of the model and reduce
the running time. On the other hand, the model is simplified
by selecting truly relevant features, which makes it easy for
researchers to understand the process of data generation.

Influenced by the collinearity of sample features, the results of
linear discriminant analysis are poor (Lin et al., 2013), and the use
of binomial distribution will lead to a high-dimensional feature
vector (Yanyuan et al., 2018), which consumes a lot of computing
time and may lead to over-fitting. After comparison, the feature
selection method used in this paper is variance analysis (Lin
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FIGURE 1 | The flowchart of our method.

et al., 2015). The variance analysis decomposes the difference of
samples at the level of known influencing factors into intra-group
variance and inter-group variance. The intra-group variance
is not affected by the level of influencing factors, but mainly
sampling error. The variance between groups is influenced by the
level of factors, which is the essential difference between samples.
The characteristic variance is measured by calculating the ratio
F of variance between feature groups and variance within the
group. The F-value of the u-th feature in the benchmark dataset
is defined as follows:

F(u) =
S2A(u)

S2E(u)

where S2A(u) is the sample variance between groups, S2E(u) is the
sample variance within groups. They are given by:

{

S2A(u) =
SSA(u)
dfA

S2E(u) =
SSE(u)
dfE

where SSA(u) is sum of squares between groups and SSE(u) is sum
of squares within groups, which can be calculated by:















SSA(u) =
∑K

i=1mi

(

∑mi
j=1 f

gh
u (i,j)

mi
−

∑K
i=1

∑mi
j=1 f

gh
u (i,j)

∑K
i=1 mi

)2

SSE(u) =
∑K

i=1

∑mi
j=1

(

f
gh
u

(

i, j
)

−

∑mi
j=1 f

gh
u (i,j)

mi

)2

where f
gh
u

(

i, j
)

is the frequency of the u-th gh-gap dipeptide of the
j-th sample in the i-th group; midenotes the number of samples
in the i-th group (herem1 = 178,m2 = 226).

dfA and dfE are degrees of freedom for the sample variance
between groups and the sample variance within groups,
respectively. They can be calculated by:

{

dfA = K − 1
dfE = N − K

where K and N are the number of groups (K = 2) and total
number of samples (N = 404), respectively.

When F < 1, the smaller the F value is, the smaller the
difference of the feature between the two groups is, the worse the
ability of the feature to recognize two kinds of proteins is; when
F > 1, the larger the F value is, the greater the difference of the
feature between the two groups is, the better the ability of the
feature to recognize proteins is. Each F value corresponds to a P-
value. The larger the F-value is, the smaller the P-value, that is,
the greater the difference of the feature between groups.

The larger the F value is, the better the discriminant ability
of the feature is. Therefore, all features can be sorted according
to their F values, and the number of optimal feature subsets can
be determined by incremental feature selection. The first feature
subset is the feature with the highest median value in ranking.
When the second highest value is added, a new feature subset is
generated. This process was repeated from the higher F to the
lower F value until all candidate features were added, therefore,
for each sample, 4,000 feature subsets will be generated. The ε-th
feature subset is composed of ε ranked gh-gap dipeptides and can
be expressed as (Lin et al., 2015):

Pε =
[

f
gh
1 , f

gh
2 , · · · , f

gh
ε

]T
, 1 ≤ ε ≤ 4, 000, 1 ≤ gh ≤ 9
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Normalization
In machine learning, normalization of feature data is an
important step. Because the characteristic information of protein
sequence transformation is dimensionless, data normalization is
used to facilitate the comparison and weighting of indicators
of different scales. The data normalization can improve
the convergence speed and the prediction accuracy of the
model. The data normalization method used in this paper
is MinMAXScaler, which normalizes each feature into [0,1]
interval. The normalization function as follows:

f
gh

∗

u =
f
gh
u − f

gh
u min

f
gh
u max − f

gh
u min

Support Vector Machine
In order to facilitate the comparison with the existing work,
support vector machine (SVM) (Kumar and Panwar, 2011; Lin
et al., 2015; Lai et al., 2017) is selected as the classifier in this
work. The basic idea of SVM is to find an optimal classification
hyperplane, whichmaximizes the interval between different types
of samples. Kernel functions include linear and Gaussian kernels.
In this paper, we use the radial basis function (RBF) (Cai et al.,
2002; Yu et al., 2003; An et al., 2016). In this work, the parameters
are tuned by the method of grid search-GridSearchCV (Liu et al.,
2014). Grid search finds the optimal parameter combination by
searching the specified parameter range exhaustively and gets
the model performance results of each group of parameters
combination. The search spaces for C is [10−3, 104]. The search
spaces for γ is [10−4, 105]. Finally, the optimal combination of
parameters [C, γ] is [1,1].

Nested Cross-Validation Test
An important purpose of model validation is to select the most
suitable model. A good model needs strong generalization ability
to unknown data. This step of model validation can reflect
the performance of different models for unknown data. In our
method, we select the cross-validation model (Metfessel et al.,
1993). Cross-checking divides the data set into two parts: training
set and test set. Training set is used for model training, and test
set is used to measure the prediction ability of the model. It can
effectively prevent model over-fitting, and effectively evaluate the
generalization ability of the model for data sets independent of
training data.

Because the feature dimension in this paper is higher
than 4,000, we chose nested cross-validation to prevent model
overfitting. The samples are randomly divided into 10 equal and
disjoint subsets in the external cycle of cross-validation. Nine of
them are in turn selected as training sets, and one test subset
is left, and then 10-fold cross-validation is carried out on the
training set in the internal cycle. The internal loop performs
feature selection and parameter optimization, and the external
loop test set performs model performance evaluation. In nested
cross-validation, the estimated true error is almost the same as
the result obtained on the test set.

FIGURE 2 | Prediction accuracy curve of feature subset.

Performance Assessment
The following indicators are used to evaluate the classification
performance of the model.

1. Accuracy: Correctly identify the proportion of samples in the
total sample.

Acc =
TP + TN

TP + TN + FP + FN

2. Sensitivity: The proportion of cancerlectins samples correctly
identified as cancerlectins.

Sn =
TP

TP + FN

3. Specificity: The proportion of non-cancerlectins samples
correctly identified as non-cancerlectins.

Sp =
TN

TN + FP

4. ROC curve

ROC curve is called “receiver operating characteristic curve”. The
ROC curve takes FPR as the horizontal axis and TPR as the
vertical axis.

The area under the ROC curve is AUC. AUC value is between
0 and 1, and the closer the AUC value is to 1, the better the
performance of the classifier is.

FPR =
FP

FP + TN

TPR =
TP

TP + FN
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TABLE 1 | F-value and P-value of features in optimal feature subset.

F-value P-value

L_R1 26.76446 3.63E-07

R_L4 24.81686 9.38E-07

Q_E0 20.28248 8.77E-06

I_D0 16.70216 5.28E-05

N_K3 16.34925 6.32E-05

N_D6 15.78628 8.40E-05

Q_P9 15.52386 9.61E-05

I_D4 15.23462 0.000111

D_N0 14.73123 0.000144

P_A1 14.28921 0.000181

N_D1 14.13802 0.000195

P_L5 13.87658 0.000223

L_P7 13.82865 0.000229

S_N5 13.69697 0.000245

A_L2 13.26494 0.000306

A_R2 12.96445 0.000357

L_P5 12.90963 0.000367

R_Q3 12.90722 0.000368

L_R8 12.702 0.000409

N_D3 12.40946 0.000476

N_G8 12.37352 0.000485

D_N7 12.2193 0.000526

D_N8 12.09143 0.000562

L_C0 11.94945 0.000605

N_V1 11.87518 0.000629

E_L5 11.79776 0.000655

Q_P1 11.78632 0.000659

Q_A0 11.54244 0.000748

L_E6 11.50195 0.000764

R_P4 11.4276 0.000794

P_L6 11.23968 0.000877

Q_M7 11.22643 0.000883

D_G0 11.22351 0.000884

S_P2 11.17902 0.000905

Q_L1 11.06357 0.000961

where TP (True positive) and TN (True negative) denote the
number of correctly predicted cancerlectins and the number
of correctly predicted non-cancerlectins, respectively; FN is the
number of the cancerlectins incorrectly predicted as the non-
cancerlectins and FP is the number of the non-cancerlectins
incorrectly predicted as the cancerlectins, respectively.

RESULTS

Prediction Performance
The protein sequence is represented by the fusion of g-gap
dipeptide features. After feature transformation, all protein
sequences are converted into a 404∗4,000 feature matrix. After
variance analysis, F-values of features are sorted in descending
order, and then feature selection and parameter optimization are
carried out in a nested cross validation.

FIGURE 3 | The ROC curve for cancerlectin prediction using the optimal 35

g-gap dipeptide.

As described in the feature extraction section, each sample
sequence is transformed into a 4,000-dimensional dipeptide
vector. Using too many low variance features to train prediction
models will be relatively time-consuming, and it is possible to
build over-fitting models. On the contrary, if the number of
characteristic peptides is too small, they can only describe some
properties of cancerlectins, even though each property may have
a high variance and contain extremely rich information. Both of
these conditions will lead to poor prediction results. The total
number of protein sequence samples in data sets is 404. In order
to build a reliable robust model, the number and accuracy of
features need to be considered simultaneously. From Figure 2,
it can be seen that the accuracy of feature subset increases slowly
after 35 dimensions, until the number of feature subsets increases
to 183 dimensions, the accuracy of model has small change
from the feature subset of 35 dimensions. The accuracy of the
first 183- dimensional model is 84% and that of the first 35-
dimensional model of feature subset is 83.91%. Finally, the top
35 g-gap dipeptides are selected. Therefore, 35 g-gap dipeptides
are selected as the optimal feature subset of the final classifier.

Feature Description
As can be seen from Table 1, the variance of L_R1 is the largest,
and the larger the variance, the smaller the P-value generally
accompanied. The variance of L_R1 is 26.76446, P-value is 3.63E-
07, Q_L1 variance is 11.06357, P-value is 0.000961. It can be seen
that each feature in the optimal feature subset is significant and
may play an important role in the classification and prediction
of cancerlectins.

As can be seen from Figure 3, the AUC of cancerlectin
prediction using the optimal 35 g-gap dipeptide is 0.9, it means
the classification performance of this classificationmodel is good.

Comparison With Existing Methods
In order to verify whether the classification model constructed in
this work is over-fitting, 30 cancerlectins sequences were selected
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TABLE 2 | Classification of new data.

ID Prediction results

1016841179 1

1016841154 1

1016841024 1

1016841005 1

560189093 1

720063203 1

727346123 1

469469047 0

403420575 1

385719187 1

384367986 1

388890228 1

1508736536 1

873090602 1

1022943309 1

974005177 1

392996940 0

385719190 1

1391723745 1

400260732 1

1370479176 1

1370451719 1

1034557774 1

768011769 1

768007991 1

768006291 0

1258501064 0

1272616377 1

1272616369 1

859066280 0

TABLE 3 | Comparison of classification results of new data.

Methods Acc (%)

CancerPred (Amino acid composition) (Kumar and Panwar, 2011) 70

CancerPred (Dipeptide composition) (Kumar and Panwar, 2011) 76.67

CancerPred [Split composition (2-part)] (Kumar and Panwar, 2011) 56.67

CancerPred [Split composition (4-part)] (Kumar and Panwar, 2011) 60

Our Method 83.3

from NCBI database which were newly stored after 2012. From
Table 2, prediction result 1 means correct classification, 0 means
wrong classification.We can see there are 25 cancerlectins in new
data were correctly predicted, the prediction accuracy of the new
data is 83.3%.

As can be seen from Table 3, the model in this work has
better classification performance on new data, that is, the model
generalization ability in this work is stronger.

Comparing our method with other published methods, as
shown in Table 4, the accuracy of the model obtained by our
method is higher than that of previous studies. Though the
specificity of our method is not much improved compared

TABLE 4 | Comparison with the results of existing classification models.

Method Sn (%) Sp (%) Acc (%)

Kumar and Panwar (2011) 68.00 69.90 69.09

Lin et al. (2015) 69.10 80.10 75.19

Damodaran et al. (2008) 75.28 80.53 77.48

Our method 83.15 80.87 83.91

with Lin et al. (2015) and Lai et al. (2017), the sensitivity is
greatly improved compared with the other three methods. The
classification model improves the ability of correct recognition
of cancer agglutinin samples, which shows that the classification
model in this paper is effective.

DISCUSSION AND CONCLUSIONS

Accumulated experimental evidences have shown that the
classification of cancerlectins has important theoretical and
practical significance for understanding its structural and
functional characteristics, identifying drug targets, discovering
tumor markers, and cancer treatment. More and more evidences
show that it is crucial to propose an effective computational
model to identify cancerlectins. In this paper, we developed a
method based on the feature extraction algorithm of fusing g-
gap dipeptide components to extract protein sequence features.
Our method improve the feature extraction algorithm of
protein sequence in cancerlectins prediction. We use the feature
extraction algorithm of fusing g-gap dipeptide components to
extract protein sequence features, which obtain an optimal
feature subset containing 35 features. The accuracy, sensitivity
and specificity are 83.91, 83.15, and 80.87% respectively. The
results are better than those of the published methods. We also
collect 30 new data form NCBI for predicted the performance of
our method, and the prediction accuracy is 83.3%. Experimental
results demonstrate that the performance of our method is better
than the state-of-the-art methods for predicting cancerlectins.

Although our method can improve the prediction accuracy,
it still has some limitations. Firstly, the benchmark dataset we
used is relatively small, so there are some gaps in the data,
and some specific attributes may be missing. Secondly, the
extraction of protein sequence feature information is a key step in
protein prediction. How to construct a better feature extraction
algorithm remains to be further studied. Third, we only focus
on the prediction of cancerlectin classification, how to choose a
better classifier is our future work.
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